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Structure of gut microbiota
and characteristics of
fecal metabolites in
patients with lung cancer

Xingbing Lu1, Li Xiong1, Xi Zheng2, Qiuju Yu1,
Yuling Xiao1* and Yi Xie1*

1Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China,
2Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
Objective: The gut micro-biome plays a pivotal role in the progression of lung

cancer. However, the specific mechanisms by which the intestinal microbiota

and its metabolites are involved in the lung cancer process remain unclear.

Method: Stool samples from 52 patients with lung cancer and 29 healthy control

individuals were collected and subjected to 16S rRNA gene amplification

sequencing and non-targeted gas/liquid chromatography-mass spectrometry

metabolomics analysis. Then microbiota, metabolites and potential signaling

pathways that may play an important role in the disease were filtered.

Results: Firmicutes, Clostridia, Bacteroidacea, Bacteroides, and Lachnospira

showed a greater abundance in healthy controls. In contrast, the

Ruminococcus gnavus(R.gnavus) was significantly upregulated in lung cancer

patients. In this respect, the micro-biome of the squamous cell carcinoma(SCC)

group demonstrated a relatively higher abundance of Proteobacteria,

Gammaproteobacteria, Bacteroides,and Enterobacteriaceae, as well as higher

abundances of Fusicatenibacter and Roseburia in adenocarcinoma(ADC) group.

Metabolomic analysis showed significant alterations in fecal metabolites

including including quinic acid, 3-hydroxybenzoic acid,1-methylhydantoin,3,4-

dihydroxydrocinnamic acid and 3,4-dihydroxybenzeneacetic acid were

significantly altered in lung cancer patients. Additionally, the R.gnavus and

Fusicatenibacter of lung cancer were associated with multiple metabolite levels.

Conclusion:Our study provides essential guidance for a fundamental systematic

and multilevel assessment of the contribution of gut micro-biome and their

metabolites in lung cancer,which has great potential for understanding the

pathogenesis of lung cancer and for better early prevention and targeted

interventions.
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Highlights
Fron
• We combined multi-omics to find changes in the

composition of the gut micro-biome in clinical lung

cancer patients, characterized by a decrease in Probiotics

and an overgrowth of potentially pathogenic bacteria.

• We are the first to study the relationship between lung

cancer and the gut microbiota and its metabolite

population, supporting the hypothesis that changes in

specific microbiota influence the development of lung

cancer. We suggest that decreasing levels of Firmicutes

and Lachnospira and increasing levels of Ruminococcus

gnavus group are associated with lung cancer.

• We found that most metabolites were closely associated with the

characteristic micro-biome and that metabolism is attenuated

in lung cancer patients, such as quinic acid, 3-hydroxybenzoic

acid,1-methylhydantoin,3,4-dihydroxydrocinnamic acid

and 3,4-dihydroxybenzeneacetic acid, and the five

metabolites most closely associated with lung cancer

showed a decreasing trend in lung cancer patients.
1 Introduction
Lung cancer(LC) is one of the most common malignancies

worldwide, with increasing incidence and mortality rates

worldwide, and will have 2.2 million new cases and 1.8 million

deaths in 2020 (Sung et al., 2021). Eighty-five percent of LC

pathological types are non-small cell lung carcinoma (NSCLC),

including squamous cell carcinoma (SCC) and adenocarcinoma

(ADC) (Majem et al., 2020). The vast majority of LC patients

diagnosed at middle or advanced stages account for the poor

prognosis and high mortality in this patient population (Zheng

et al., 2020). China is a region with a high incidence of LC and

increasing mortality, representing the main cause of high cancer

deaths in both men and women (Chen et al., 2016). The significance

of the human gut micro-biome is gradually being recognized. How

to sustain a healthy gut micro-biome is becoming a growing

concern.Over the years, the gut micro-biome as a symbiotic

micro-biome has been widely studied and explored for its effects

on immune regulation, substance metabolism, angiogenesis, the

immune micro-environment, invasion and apoptosis in cancer

(Geller and Straussman, 2018; Liu et al., 2020). Growing evidence

substantiates that gut micro-biome is associated with many

diseases, such as gastric cancer (Ravegnini et al., 2020), colorectal

cancer (Mori et al., 2018), and breast cancer (Okubo et al., 2020).

Due to technical constraints and lack of adequate clinical data,

the molecular patterns associated with microorganisms and the

specific mechanisms by which bacterial metabolites drive cancer are

not entirely clarified.Currently, limited studies of the gut micro-

biome in NSCLC patients have been conducted. Zhuang et al.

analyzed the gut micro-biome of 30 LC patients and found a

significant correlation between bacteria such as Enterococcus and
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LC (Zhuang et al., 2019). Zheng et al. (2020) analyzed the gut

micro-biome of patients with early LC, revealing the characteristics

of the micro-biome and establishing a predictive model for the early

diagnosis of LC. Although the “gut-microbiota-lung axis” (Liu et al.,

2020) has been hypothesized and extensively studied, the specific

mechanisms are not yet clear. The importance of microbiota-related

metabolites in the development of LC suggests that it is necessary to

study the role of the gut micro-biome and its metabolome in the

pathogenesis of LC. To date, it remains unclear how and which

interactions of the micro-biome and metabolites promote LC

development. Evidence for the relevance of gut micro-biome

characteristics and their metabolites with LC is limited, and

potential molecular mechanisms need to be further investigated.

Therefore, we aimed to identify changes in the gut micro-biome and

its metabolites in LC patients, to better understand the involvement

of the gut micro-biome in the pathogenesis of LC, and to explore

new features of LC progression, which are essential for early

diagnosis and prevention of LC.
2 Materials and methods

2.1 Study participants

A total of 81 fecal samples were collected from 52 LC patients

(median age: 56.9 years old) and 29 matched HC individuals from

West China Hospital, Sichuan University (Table 1). All patients

were diagnosed with LC for the first time based on their

histopathological features, and were classified as malignant

tumors by TNM after surgery. The LC patients and healthy

controls with the following conditions were excluded: congestive

cardiac failure, respiratory failure, intestinal disease, renal failure,

severe liver dysfunction, or consumption of probiotics or antibiotics

within one month before specimen collection. In addition, all

patients included in our study were all diagnosed with LC for the

first time, they did not receive any prior drug treatment directly

related to their LC diagnosis, and they did not have any other

comorbid oncological disease. The clinical characteristics of all

participants are listed in Table 1, and there were no significant

differences in age, body mass index (BMI) and male-female ratio

between the two groups (P>0.05). Each patient signed an informed

consent form before the study. The protocol was approved by the

Ethics Committee of the West China Hospital, Sichuan University.
2.2 DNA extraction and PCR amplification

Total DNA extraction from the 81 fecal specimens was conducted

according to the instructions of the DNeasy PowerSoil kit (Qiagen,

Hilden, Germany). DNA concentration and purity were determined

using NanoDrop2000 (Thermo Fisher Scientific, Waltham, MA,

USA), and the quality of the extracted DNA was inspected by 1%

agarose gel electrophoresis. PCR amplification of the V3-V4 variable

region was performed using343F(5′-TACGGRAGGCAGCAG-3′)
and 798R(5′-AGGGTATCTAATCCT-3′) (Nossa et al., 2010)
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primers by the following amplification procedure: pre-denaturation at

95°C for 3 min, 27 cycles (denaturation at 95°C for 30 s, annealing at

55°C for 30 s, extension at 72°C for 30 s), and extension at 72°C for

10 min.
2.3 Library construction and sequencing

The Amplicon quality was visualized using agarose gel

electrophoresis. The PCR products purified with AMPure XP

beads (Agencourt) and amplified for another round of PCR. After

purified with the AMPure XP beads again, the final amplicon was

quantified using Qubit dsDNA Assay Kit (Thermo Fisher Scientific,

USA). The concentrations were then adjusted for sequencing.

Sequencing was performed on an Illumina NovaSeq 6000 with

250 bp paired-end reads. (Illumina Inc., San Diego, CA; OE Biotech

Company; Shanghai, China).
2.4 Sample preparation for
metabolome profiling

Sixty milligrams of feces from each sample were added to 360

mL of precooled methanol and 40 mL of internal standard (L-2-

chloro-phenylalanine, 0.3 mg/mL; methanol configuration). The

mixture was ground, stirred, incubated and centrifuged. The

supernatant was concentrated, dried, dissolved and resuspended

for subsequent GC-MS/MS analysis. Similarly, 60 mg of feces from

each sample was added to 650 mL of methanol-water (V:V=4:1) and

20 mL of internal standard. The mixture was ground, stirred,

incubated and centrifuged. The supernatant was filtered and

transferred for LC-MS/MS analysis.
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2.5 Bioinformatic analysis

2.5.1 16SrRNA amplicon sequencing
analysis process

The library sequencing and data processing were conducted by

OE biotech Co., Ltd. (Shanghai, China). Raw sequencing data were

in FASTQ format. Paired-end reads were then preprocessed using

Cutadapt software to detect and cut off the adapter. After trimming,

paired-end reads were filtering low quality sequences, denoised,

merged and detect and cut off the chimera reads using DADA2

(Callahan et al., 2016) with the default parameters of QIIME2

(Bolyen et al., 2019) (2020.11). At last, the software output the

representative reads and the ASV abundance table. The

representative read of each ASV was selected using QIIME2

package. All representative reads were annotated and blasted

against Silva database (Version 138) using q2-feature-classifier

with the default parameters.

QIIME2 software was used for alpha and beta diversity analysis.

Alpha diversity including Chao1 index and Shannon index was

used to estimate the diversity of the micro-biome in the sample (Hill

et al., 2003), and then statistical t-test was used to detect if there was

a significant difference in the index values between the two groups.

Beta diversity analysis represents a comparison of micro-biome

community composition and is used here to assess differences

between microbial community composition (Zhuang et al., 2019).

The basic output of this comparison is a distance matrix that

represents the difference between every two samples in the

community. The binary jaccard distance matrix performed by R

package was used for binary jaccard Principal coordinates analysis

(PCoA) to estimate the beta diversity. Then the R package was used

to analyze the significant differences between different groups using

ANOVA/Kruskal Wallis/T test/Wilcoxon statistical test.
TABLE 1 Baseline characteristics of the discovery cohort.

Chacracteristic Patients with lung cancer(n=52) Haelth Control
(n = 29)

P-value

Demographics/anthropometric

Age year (mean ± SD) 56.92±12.37 50.72±16.54 0.060

Male/female (No.) 36/16 16/13 0.206

BMI (kg/m2) (mean ± SD) 22.86±2.30 22.93±2.74 0.892

Tumor type (%)

ADC 30(57.69%) N/A

SCC 22(42.31%) N/A

Tumor stage(%)

I 20(38.46%) N/A

II 9(17.31%) N/A

III 15(28.84%) N/A

IV 8 (15.39%) N/A
fron
TNM, tumor node metastasis scale.
Unpaired t-test was used to compare age and BMI between lung cancer group and healthy controls; Fisher’s exact test was used to compare gender distribution between the two groups. N/A, not
applicable.
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LEfSe is a software package for discovering high-dimensional

biomarkers with inputs that include genes,metabolites, and

classification.We first used the non-parametric factorial Kruskal-

Wallis (KW) sum-rank test to detect specificspecies relating

significant abundance differences in two groups (Zhuang et al.,

2019). We then estimated the effect of each component (species) by

LEfSe linear discriminant analysis (LDA). In order to detect the

species contributing to the abundance differences in different

groups of microbial communities,we carried out a test of

significance differences between groups. Based on the obtained

community abundance data, rigorous statistical methods were

used to detect species with different richness in different groups

(samples) of microbial communities, and hypothesis testing was

performed to assess the significance of these observed differences

(Zhuang et al., 2019).
2.6 GC/MS and LC-MS data preprocessing
and statistical analysis

The obtained GC/MS raw data in D format were transferred

to.abf format via software Analysis Base File Converter for quick

retrieval of data. Then, data were imported into software MS-DIAL,

which performs peak detection, peak identification, MS2Dec

deconvolution, characterization, peak alignment, wave filtering,

and missing value interpolation. Metabolite characterization was

based on LUG database. A data matrix was derived. The three-

dimensional matrix includes: sample information, the name of the

peak of each substance, retention time, retention index, mass-to-

charge ratio, and signal intensity. In each sample, all peak signal

intensities were segmented and normalized according to the

internal standards with RSD greater than 0.1 after screening.

After the data was normalized, redundancy removal and peak

merging were conducted to obtain the data matrix.

The original LC-MS data were processed by software Progenesis

QI V2.3 (Nonlinear, Dynamics, Newcastle, UK) for baseline

filtering, peak identification, integral, retention time correction,

peak alignment, and normalization. Main parameters of 5 ppm

precursor tolerance, 10 ppm product tolerance, and 5% product ion

threshold were applied. Compound identification were based on

precise mass-to-charge ratio (M/z), secondary fragments, and

isotopic distribution using The Human Metabolome Database

(HMDB), Lipidmaps (V2.3), Metlin, and self-built databases. The

extracted data were then further processed by removing any peaks

with a missing value (ion intensity = 0) in more than 50% in groups,

by replacing zero value by half of the minimum value, and by

screening according to the qualitative results of the compound.

Compounds with resulting scores below 36 (out of 60) points were

also deemed to be inaccurate and removed. A data matrix was

combined from the positive and negative ion data.

The matrix was imported in R to carry out Principle

Component Analysis (PCA) to observe the overall distribution

among the samples and the stability of the whole analysis process.

Orthogonal Partial Least-Squares-Discriminant Analysis (OPLS-

DA) and Partial Least-Squares-Discriminant Analysis (PLS-DA)
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were carried out to visualize the metabolic alterations between

NSCLC patients and healthy controls after mean centering and

unit variance scaling. To prevent overfitting, 7-fold cross-validation

and 200 Response Permutation Testing (RPT) were used to evaluate

the quality of the model. The variable importance in projection

values and S-plots were selected to obtain the significant variables

for subsequent analysis.Student’s t-test was used to measure the

significance of each variable among those selected. Differential

metabolites found from the OPLS-DA models were identified or

tentatively annotated. Differential metabolites analysis were

conducted using the R package MetaboAnalystR. The significantly

altered metabolites were determined by variable importance in

projection (VIP) scores from pairwise PLS-DA analysis and

pairwise comparisons using the Wilcoxon rank-sum test.

Meanwhile, the differential metabolites with VIP value >1.0 and P

value <0.05 and FC value <0.5 or >2 were selected. Interactions

among disease associated metabolites were estimated by Spearman’s

rank correlation. Metabolite set enrichment analysis (MSEA) was

performed using the online tool MetaboAnalyst. All heat maps were

drawn using the R package Complex Heatmap.
2.7 Statistical analysis

All statistical calculations were performed in R3.4.3.The

correction of the P-value is responsible for the false discovery rate

(FDR). Age and BMI data were expressed as the mean ± standard

deviation (SD), and differences between groups were assessed using

a one-way analysis of variance (ANOVA). Inter-group comparisons

were performed using aWilcoxon rank sum test of non-parametric

data. A t-test was applied after the results were reflected as visual

metrics using a histogram. Multiple clusters were analyzed using the

nonparametric factor Kruskal-WallisWallis. Fisher’s exact test was

performed on categorical variables. The dissimilarity tests among

groups(PERMANOVA) were conducted on Euclidean distance for

metabolites and Bray-Curtis distance for bacteria,with10,000

permutations in the R package, vegan. A P-value below 0.05 was

considered statistically significant.
3 Results

3.1 Gut micro-biome profile of lung
cancer patients

According to the Venn diagram, the LC group and the healthy

group contained core 798 ASVs, and 1082 ASVs and 1201 ASVs were

unique to the LC and HC, respectively (Figure 1A). At the phylum

level, Bacteroidota,Firmicutes,Proteobacteria and Actinobacteriota

accounted for the major components of the gut microbiota

(Figure 1B). The FBR (ratio of Firmicutes to Bacteroidetes) was

calculated as 0.810 (0.346/0.427) and 0.913 (0.401/0.439) based on

the percentage of Firmicutes and Bacteroidetes in LC patients and HC,

respectively. At the genus level, the most common in LC and HC were

Bacteroides (Figure 1C).
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3.2 The alpha diversity and beta diversity of
the gut micro-biome

The alpha diversity of the gutmicro-biome in the LC group andHC

population was similar in Chao1 and Shannon (Figures 2A, B). The beta

diversity of LC patients was significantly different fromHC (p=0.017) as

assessed by principal coordinate analysis (PCoA) (Figure 2C).

3.3 Specific gut micro-biome signatures in
lung cancer patients

The LEfSe study showed that the number of micro-biome

promoting healthy, such as Firmicutes, Clostridia, Bacteroidaceae,

Bacteroides and Lachnospira, was also significantly reduced in LC

patients. In contrast, Ruminococcus gnavus(R.gnavus) was higher in

patients with LC and SCC sub-types than in HC patients (Figure 3). In

addition, the major sub-types of LC appear to have different microbiota

profiles.For example,Proteobacteria,Gammaproteobacteria,

Enterobacterales and Enterobacteriaceae showed higher abundance

in SCC patients, while Roseburia and Fusicatenibacter were more

abundant in ADC (Figures 3, S1).
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3.4 Metabolomic signature of gut samples
in HC and LC patients
Eight stool samples with the highest colony abundance in each

group were selected for GC/LC-MS untargeted metabolic analysis.

permutation plots indicated that the fit (R2Y) and predictive ability

(Q2Y) of the model were 0.933/0.914 and 0.264/0.217, respectively,

indicating good fit and predictive ability of the OPLS-DA model

(Figures S2A, S2B). The OPLS-DA plots with supervised analysis

function fully reflected the significant differences between

metabolites of LC and HC groups, and the model was valid and

not over-fitted (Figures 4A, B). Variable importance (VIP) values

obtained from the OPLS-DA model results were used to rank the

overall contribution of each variable to group differentiation. In our

study, the default screening criteria for differential metabolites were

set to VIP>1 and P<0.05, plotted as volcano plots and differential

metabolite heat maps (Figure S2C, D). Volcano plots showed that

almost all GC-MS differential metabolites were down-regulated in

LC patients (Figure 4C) and only a few LC-MS differential

metabolites were up-regulated (Figure 4D).
A B C

FIGURE 2

The alpha diversity include Chao1 index and Shannon index. (A) Chao1 indicates species richness between the two groups. (B) Shannon indicates
species evenness between the two groups. (C) b-diversity (expressed by principal coordinate analysis, PCoA) was significantly different between LC
patients and healthy controls.
A B C

FIGURE 1

(A) Venn diagam of the lung cancer and healthy control groups. (B) Community composition histogram of LC and HC at phylum level.
(C) Community composition histogram of LC and HC at genus level.
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3.5 Potential of metabolic biomarkers

In addition, We used KEGG annotation-based metabolic

enrichment and pathway analysis, employing a hypergeometric

distribution test to map LC patients’ altered metabolites to their

biochemical pathways.Differential metabolites appear to be heavily

involved in amino acid metabolism, including tyrosine metabolism,

phenylalanine metabolism,and phenylalanine, tyrosine, and

tryptophan biosynthesis in LC patients compared to the HC

group (Figure 5A). From here, we screened five intestinal

differential metabolites with the highest relevance to LC

patients, which were quinic acid, 3-hydroxybenzoic acid,

1-methylhydantoin, 3,4-Dihydroxyhydrocinnamic acid and

3,4-Dihydroxybenzeneacetic acid, all of them showed a

down-regulated state, significantly lower than the HC group.

(Figures 5B–F; Table S1).

For the different sub-types of LC, differential metabolites are

closely associated with steroid biosynthesis, caffeine metabolism

and amino acid metabolism mainly in ADC patients (Figure S3A).

Tyramine levels were upregulated in the ADC group, but 1,7-

dimethyluric acid, stigmasterol and 3-hydroxybenzoic acid

exhibited downregulation (Table S2). In the SCC group,
Frontiers in Cellular and Infection Microbiology 06
differential metabolites were mainly associated with citrate cycle

(TCA cycle), central carbon metabolism in cancer, and glyoxylate

and dicarboxylate metabolism(Figure S3B). 3b-Hydroxycholest-5-

en-26-oic acid and stearic acid showed up-regulation in the SCC

group, but aconitic acid,behenic acid,and glucose-6-phosphate were

down-regulated (Table S3).Furthermore, the differential

metabolites in ADC patients relative to SCC are mainly involved

in ABC transporters and carbon metabolism in cancer is closely

related (Figure S3C). In addition, D-glucose and maltotriose were

upregulated in the ADC group,but stearic acid, Udp-n-

acetylglucosamine and palmitic acid expression were down-

regulated (Table S4).
3.6 Correlation between the altered
metabolites and gut micro-biome

Considering the intimate contact between gut microbes and

metabolites, we appraised the reliability of correlations between

altered taxa and LC-related metabolites (Figures S4A, B). We used

the specific gut micro-biome obtained from the LEfSe analysis of LC

patients as a baseline, and the software set the correlation coefficient
D

A B

E F

C

FIGURE 3

Differential abundance of gut microbiota in LC and HC. The taxa decreased (A–C) and increased (D) in LC patients at the phylum, and genus,
p<0.05. Purple and Green represented the HC(n=29) and LC patients(n=52), respectively.Starred samples (*/**) were used to demonstrate the
significant difference between the group. (E) Discriminant analysis of LEfSe species difference between LCand HC. (F) Discriminant analysis of LEfSe
species difference between SCC, ADC, and HC. The LDA score obtained by linear regression analysis (LDA), the larger the LDA score, the greater the
influence of species abundance on the difference effect. Different colors indicate different groups. Red bars indicate species with relatively high
abundance in the red group. Green bars indicate species with relatively high abundance in the green group. Blue bars indicate species with relatively
high abundance in the blue group.
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D

A B

E F

C

FIGURE 5

(A) Enrichment analysis of the GC&LC-MS/MS metabolites in feces samples of LC and HC. (B–F) The Wilcoxon test showed that five fecal
metabolites were significantly altered in LC patients.
D

A B

C

FIGURE 4

The alterations in fecal metabolites of LC and HC (Left,GC-MS; Right,LC-MS). (A, B) Scatter plotof OPLS-DA model of LC and HC. (C, D) Volcano
plots for LC and healthy group. P<0.05 for significant difference. Red dots represent those up-regulated, blue dots represent those down-regulated.
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at 0.5 as a threshold and plotted the network of relationships with

fecal metabolites.From the network diagram, we found a negative

correlation between the LC characteristic bacterium R.gnavus and

most metabolites, while a positive correlation between the probiotic

Lachnospira, Firmicutes and ADC subtype characteristic bacterium

Fusicatenibacter and most metabolites. For example, picolinic acid

was positively correlated with Lachnospira, Firmicutes and

Fusicatenibacter, while it was negatively correlated with R. gnavus

(P<0.05, r=0.5) (Figure S4C).
4 Discussion

An increasing body of evidence suggests that gut dysbiosis can

cause immune dysregulation and chronic inflammation and even

promote the progression of various tumors, including LC, through

the ‘gut-lung’ axis (Wang et al., 2020; Ge et al., 2021; Zhao et al., 2021).

Our study showed a lower proportion of Firmicutes and a higher

proportion of Proteobacteria and Actinobacteriota in LC patients,

which is inconsistent with the results reported by Qian et al. (2022)

(Figure 1B). Overall, we found differences in the composition of the gut

micro-biome between the LC patients and the HC group, characterized

by loss of probiotics and overgrowth of potentially pathogenic

bacteria.Interestingly, the ratio of Firmicutes to Bacteroidetes (FBR)

has been used as an indicator of metabolism, nutrition and evaluation

of gut micro-biome in cancer patients (Xi et al., 2022). Reduced FBR

may be associated with the progression and recurrence of breast cancer

(Okubo et al., 2020) and colorectal cancer (Gao et al., 2017). In the

present study, there was little difference in FBR in LC patients, and

there is insufficient evidence to speculate whether FBR is directly

related to LC disease. In our study, the LC and healthy groups did

not differ in the alpha diversity of the gut micro-biome and were highly

similar (Figure 1). Researches found that high diversity increased

circulating memory CD8 T cells and natural killercells and

prolonged progression-free survival in cancer patients (Bernicker and

Quigley, 2019). Conversely, low diversity can cause a decrease in host

immunity and an increase in oncogenic metabolites that induce and

promote tumor progression (Wang et al., 2011).

We characterized the gut micro-biome of LC patients from LefSe

and histograms and identified microbiota that may contribute to the

development of LC. At the phylum level, Firmicutes are significantly

enriched in the HC, containing a large number of commensal species

that are part of the healthy humanmicro-biome. Firmicutes are known

to promote single-chain fatty acids(SCFAs) production in the colonic

lumen and to regulate inflammation and tumor formation, which may

be associated with reduced abundance of this bacterium in LC (Sivan

et al., 2015). Studies have confirmed that Firmicutes and Bacteroidota

(Bacteroidetes) catabolize carbohydrates in the colon to produce

SCFAs,of which Firmicutes are the main butyrate producers and

Bacteroidetes mainly produce acetate and propionate (Allers et al.,

2020). SCFAs such as butyrate can inhibit the proliferation of LC cells

by regulating the expression of p21, while propionate can inhibit cell

growth by inducing apoptosis and cell cycle arrest (Mowday et al.,

2022). In our study, Firmicutes family (including Clostridia,and

Lachnospira) and Bacteroidota family (including Bacteroidaceae and

Bacteroides) were significantly reduced in LC patients with diminished
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tumor suppressive effects and promoted LC development, in

agreement with the conclusion reached by Xi et al. (Kim et al.,

2019). The results of our study are also similar to those reported in

healthy Korean subjects, confirming that the Bacteroidetes micro-

biome plays a positive role in intestinal health and tumor prevention

(Noh et al., 2021; Wu et al., 2021). It was found that the anti-

inflammatory genus Lachnospira belongs to SCFA-producing

bacteria and its abundance decreased significantly with increasing

body weight (Mayengbam et al., 2019). Lachnospira levels have been

found to be significantly reduced in patients with Alzheimer’s disease,

presumably positively correlating with improvements in cognitive

function (Guo et al., 2021). Studies have reported that R.gnavus

inhibits TNF-a secretion and may suppress lung cancer metastasis

(Biggs et al., 2017). In addition, R.gnavus was significantly associated

with a low risk of Alzheimer’s disease and a high risk of amblyopic

lateral sclerosis (Ning et al., 2022). This suggests that R.gnavus has

different roles in different diseases. In the present study, R.gnavus

showed a significantly high expression abundance in LC, especially in

SCC patients. We suggest that elevated levels of R.gnavus are associated

with LC, and we further reveal that impairment of normal gut

micobiome function is associated with the progression of LC. We

hope that the results of this study will provide some guidance for using

gut microbes as biomarkers to assess the progression of LC or provide

intervention targets to control the disease progression.

Furthermore, we found that patients with different pathological

types of LC seem to have their own unique gut micro-biome that

may be involved in the development of SCC and ADC subtypes. It is

well known that the family Enterobacteriaceae belongs to the order

Proteobacteria, Gammaproteobacteria and Enterobacterales, and

that they show high abundance in SCC patients, similar to the

results of Jain et al. (2019). Interestingly, Proteobacteria is a

potential pathogen causing intestinal dysbiosis in LC patients (Liu

et al., 2019) and can promote inflammation and carcinogenesis by

activating Toll-like receptors or NOD-like receptors, producing

genotoxins and virulence factors (Schwabe and Jobin, 2013;

Bingula et al., 2020). Geller et al. showed that tumor bacteria in

pancreatic cancer, especially Gammaproteobacteria, account for

gemcitabine resistance and exacerbate cancer progression (Geller

et al., 2017). Moreover, the presence of Gammaproteobacteria was

found to correlate with low PD-L1 expression and poor response to

checkpoint-based immunotherapy, translating into poor survival

(Boesch et al., 2021). However, the detailed link between the

enteropulmonary axis and lung immunity or cancer development

remains to be further elucidated. Zhao et al. (2018) found that

Roseburia and Fusicatenibacter are elevated in patients with

Hashimoto’s thyroiditis and may be involved in disease

progression. Roseburia belongs to the healthy human micro-

biome and produces SCFAs, whose relative abundance is higher

in patients with LC, and who are more likely to experience

gastrointestinal reactions after chemotherapy (Zhang et al., 2020;

Mammadova et al . , 2021). The highest abundance of

Fusicatenibacter and Roseburia in the ADC group in this study

was similar to the results of Qian et al. (2022).

The decreased diversity of the gut micro-biome may be partly

responsible for the apparent lack of intestinal metabolites that we

observe in LC patients. There is evidence that gut micro-biome
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promote chronic inflammation and tumorigenesis, such as colorectal

cancer, through their metabolites (Han et al., 2020). For example,

Granulicatella adiacens in sputum promotes LC through polyamine

metabolism (Cameron et al., 2017). We are the first to study LC in

relation to the gut micro-biome and its metabolites. By non-targeted

assay analysis, significant differences in micro-biome functional

abundance and metabolites were observed between the two groups.

Healthy controls had a significantly higher micro-biome functional

profile, whereas the gut micro-biome of LC patients showed a

decreasing trend in metabolic capacity during the disease.According

to the screening criteria, we summarized that the top five metabolites

with the best correlation to LC were quinic acid, 3-hydroxybenzoic

acid, 1-methylhydantoin, 3,4-Dihydroxyhydrocinnamic acid and 3,4-

Dihydroxybenzeneacetic acid (Figure 5; Table S1). It was discovered

that quinic acid (QA) can only be synthesized indirectly by healthy gut

micro-biome, such as Firmicutes, and has antioxidant, anti-

inflammatory and anti-cancer effects (Candeias et al., 2018; Naranjo

et al., 2018). QA enhances the therapeutic response to PD1(L1) in

colon cancer (Lin et al., 2018), and which also inhibits p-PI3K and p-

AKT expression and suppresses the proliferation and growth of

melanoma cells (Kang et al., 2021). 3-hydroxybenzoic acid (3-

HBA) has analgesic and anti-inflammatory effects, which is

associated with lipid homeostasis regulation, and has not been

studied in relation to tumors (Khan et al., 2016). Li et al. (2014)

found that that 1-methylhydantoin (MH) inhibits the proliferation

and induces apoptosis in colon cancer SW480 cells, while blocking

the G0/G1 phase of the cell cycle. 3,4-Dihydroxyhydrocinnamic acid

(also known as dihydrocaffeic acid, DHCA) is present in normal

human body fluids and has antioxidant activity (Amic et al., 2018).

Hydrogels containing DHCA components were found to release

doxorubicin (DOX) and to be effective in killing colon tumor cells

(Liang et al., 2019). 3,4-Dihydroxybenzeneacetic acid (also known as

3,4-dihydroxyphenylacetic acid, DOPAC) not only inhibits colon

cancer cell proliferation (Catalan et al., 2020), but also reflects the

progression of osteosarcoma (Bandala et al., 2021), and combines

with Fe3O4@TiO2 nanocomposites to improve the sensitivity of

tumor treatment (Liu et al., 2021). Interestingly, the probiotics

Firmicutes and Lachnospira were positively associated with most

metabolites in LC patients, whereas opportunistic pathogenic bacteria

such as R. gnavus were negatively associated with most metabolites.

Thus, the present study adequately confirmed that most metabolites

were able to inhibit LC tumor cell proliferation and induce apoptosis,

with the decrease of probiotics and increase of opportunistic

pathogenic bacteria, resulting in the decrease of metabolism of

most intestinal metabolites in LC patients, thus affecting the

malignant progression of LC disease. Undoubtedly, changes in the

micro-biome and its associated metabolites caused by dysbiosis of the

gut micro-biome are key pathways in the development of LC, laying

the foundation for early diagnosis and active prevention of LC.
5 Conclusion

In conclusion, this is the first study to link LC to the gut micro-

biome and its metabolites. We determined that the gut micro-biome

and its metabolites vary with the different stages of LC development.
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In addition, we preliminarily explored the possible relationship

between gut micro-biome and intestinal metabolites in LC patients

to provide some guidance for further assessment of LC progression or

for intervention to control disease progression. However, several

limitations were found in our study. First, a limited number of

pathological types of LC were included in our study, and the sample

size was relatively small. Moreover, there were differences in the genetic

background, diet and environment of the experimentally recruited

population. It should also be borne in mind that the limitations of 16S

rRNA gene sequencing and GC/LC-MSmethods affected the reliability

of our findings to a certain extent. Indeed, additional LC tissue and

plasma specimens for transcriptomic and metabolomic analysis are

needed to validate and study the interactions between gut micro-biome

and hosts.
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