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¹Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil,
²Laboratory of Biochemistry of Trypanosomes (LabTryp), Departamento de Parasitologia, Instituto de
Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil, ³Laboratório de Proteômica
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The apicomplexan parasite Toxoplasma gondii is the causative agent of

toxoplasmosis, a global disease that significantly impacts human health. The

clinical manifestations are mainly observed in immunocompromised patients,

including ocular damage and neuronal alterations leading to psychiatric

disorders. The congenital infection leads to miscarriage or severe alterations in

the development of newborns. The conventional treatment is limited to the

acute phase of illness, without effects in latent parasites; consequently, a cure is

not available yet. Furthermore, considerable toxic effects and long-term therapy

contribute to high treatment abandonment rates. The investigation of exclusive

parasite pathways would provide new drug targets for more effective therapies,

eliminating or reducing the side effects of conventional pharmacological

approaches. Protein kinases (PKs) have emerged as promising targets for

developing specific inhibitors with high selectivity and efficiency against

diseases. Studies in T. gondii have indicated the presence of exclusive PKs

without homologs in human cells, which could become important targets for

developing new drugs. Knockout of specific kinases linked to energy metabolism

have shown to impair the parasite development, reinforcing the essentiality of

these enzymes in parasite metabolism. In addition, the specificities found in the

PKs that regulate the energy metabolism in this parasite could bring new

perspectives for safer and more efficient therapies for treating toxoplasmosis.

Therefore, this review provides an overview of the limitations for reaching an

efficient treatment and explores the role of PKs in regulating carbon metabolism

in Toxoplasma, discussing their potential as targets for more applied and efficient

pharmacological approaches.
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1 General aspects of the parasite and
the disease

Toxoplasmosis is a worldwide disease with important impacts

on human and animal health (Flegr et al., 2014). The etiologic agent

of toxoplasmosis is the pathogen Toxoplasma gondii, an obligate

intracellular parasite with great ability to infect different genera of

warm-blooded species, like several species of birds and more than

300 species of mammals, including humans (Hunter and Sibley,

2012). Toxoplasma gondii belongs to the phylum Apicomplexa,

which includes more than 6,000 species of intracellular parasites

associated with several infectious diseases (Morrison, 2008), such as

Plasmodium (pathogen of malaria), Cryptosporidium (pathogens of

diarrheal outbreaks), and Babesia (pathogen of babesiosis) (Arisue

and Hashimoto, 2015).

Toxoplasma gondii is an obligate intracellular protozoan that

invades new host cells for its survival and proliferation and

differentiates into various forms during its life cycle. The tachyzoite

is the asexual replicative form that can infect virtually any host cell,

while the bradyzoite is the latent form present in tissue cysts (Skariah

et al., 2010). The sexual phase of the parasite occurs in the digestive

system of felids, the definitive hosts, leading to the formation of the

oocysts (with sporozoites) that contaminate soil, water, and food

sources (Djurković-Djaković et al., 2019). Intermediate hosts,

including humans, can be infected by ingesting food contaminated

by oocysts or consuming undercooked meat from infected animals

with tissue cysts (Ducrocq et al., 2021).

Immunocompetent individuals are usually asymptomatic;

however, severe manifestations of the disease, which can also

progress to death, are observed in immunocompromised patients

(Robert-Gangneux and Dardé, 2012). The presence of tissue cysts is a

survival mechanism of the parasite for evasion of the immune system,

prolonging the persistence of the parasite in the host. It is still

unknown whether the reactivation of cysts is completely prevented

under conditions of immunocompetence or whether the parasite can

release immunosuppressive factors, triggering reactivation of the

infection (Elsheikha et al., 2020). The reactivation of tissue cysts

can lead to serious health problems linked to ocular damage and

blindness (Jones and Holland, 2010; Grigg et al., 2015). The

occurrence of vertical transmission of parasites during pregnancy

can lead to irreversible damage in embryos (Mareze et al., 2019).

Studies conducted in France have shown that both prevention and the

administration of adequate drugs during pregnancy can reduce

newborns’ risk of symptoms and sequelae (Wallon and Peyron, 2015).

Although toxoplasmosis occurs worldwide, seroprevalence rates

vary by geographic region. Higher rates are usually verified in people

with lower socioeconomic levels or fewer years of schooling (Jones

et al., 2014). A study in Germany revealed a global seroprevalence of

55%, and the risk of toxoplasmosis was associated with the

consumption of raw meat (Wilking et al., 2016). Low prevalence

rates were found in England (17.32%) in pregnant women (Flatt and

Shetty, 2013) and a prevalence of 12.3% was found in China in

patients with psychiatric disorders (Xiao et al., 2010). In Japan, the

presence of anti-T. gondii antibodies in pregnant women was 10.3%,

and the possibility of infection during pregnancy was only 0.25%

(Sakikawa et al., 2012)
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The scenario observed for toxoplasmosis in Latin America is

unique, with higher infection rates than countries in the Northern

Hemisphere. In Mexico, seroprevalence can reach 70% of the

population (Caballero-Ortega et al., 2012). In Colombia, a

seroprevalence of 29.9% was observed in blood donors (Alberto

Betancur et al., 2011) but can reach more than 80% in workers from

numerous slaughterhouses (Cortes et al., 2009) or as a result of

consuming unboiled water and wild animals (Gómez-Marıń et al.,

2012). In Cuba, ocular toxoplasmosis can exceed 45% (Bustillo

et al., 2015)and in Panama, seroprevalence of 44.41% occurs in

pregnant women, representing a high-risk factor for congenital

toxoplasmosis (Flores et al., 2021).

The average seroprevalence rate of T. gondii in Brazil, the largest

country in South America, is above 60%, varying among geographic

regions (Pappas et al., 2009). For example, in Fortaleza, a city in the

Northeastern region, the general seroprevalence in pregnant

women was 68.6% (Sroka et al., 2010) while in the state of Rio

Grande do Sul, in the Southern region, a study indicated a positivity

of 74.5% (Spalding et al., 2005). In the state of Minas Gerais, in the

Southeastern region, the rate increases to 68.3% in rural areas,

possibly associated with the consumption of unwashed fruit,

contaminated water, undercooked meat, and unpasteurized milk

(Antinarelli et al., 2021). The city of Santa Maria, in the Southern

region, has observed the largest outbreak of toxoplasmosis in the

country, with a high occurrence of congenital infection and severe

abnormalities in newborns (Conceição et al., 2021).

Initial studies involving the genetic characterization of T. gondii

described three clonal lineages, classified as Types I, II, and III

(Howe and Sibley, 1995). Type I strains are characterized by a

higher virulent profile, causing severe clinical manifestations in

humans, such as ocular toxoplasmosis (Khan et al., 2005),

psychiatric disorders, and intense inflammatory responses from

the host immune system (Halonen and Weiss, 2013). Type II and

Type III strains are less virulent and can differentiate into

bradyzoites, forming tissue cysts that constitute the latent phase

of the infection (Skariah et al., 2010). In South America, cases of

ocular toxoplasmosis tend to be more severe, with larger and more

numerous lesions than those found in Europe (de-la-Torre et al.,

2013). The severe clinical manifestations of toxoplasmosis found in

Central and South America can be associated with the highest

prevalence of Type I and the occurrence of strains with high

genomic diversity and high virulence (Shwab et al., 2018;

Hosseini et al., 2019). Type II parasites are widely spread in

human populations from North America and Europe, and this

type is highly associated with ocular toxoplasmosis in France

(Fekkar et al., 2011). A systematic review of studies on clinical

samples indicates that the prevalence of T. gondii genotypes varies

among the continents, with the highest prevalence of Type I strain

reported for North and South America and the lowest prevalence

for Africa. Type I and Type III were reported more in North and

South America (Hosseini et al., 2019)

The genetic diversity of Toxoplasma found in South America

differs from that found in North America and Europe, where

hundreds of atypical genotypes coexist without dominant strains

(Shwab et al., 2014). Phylogenetic analyses have indicated that the

ancestor of T. gondii emerged in the Amazon around 1.5 million
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years ago. Various factors have contributed to genomic

diversification and the emergence of more virulent strains in

South America. The great diversity of intermediate hosts,

carnivorism between species, and the presence of other felid

species (for sexual reproduction) have provided different selective

pressures. As a result, the emergence of new lineages increased

(Bertranpetit et al., 2017). In addition, the migratory events of the

fauna between the Americas allowed the entrance of new genotypes

of Toxoplasma in North America, and the further passage of

animals through the Bering Strait enabled the arrival of the

parasite in Asia, Europe, and Africa (Bertranpetit et al., 2017).

The current genomic structure of a few strains of T. gondii found in

the OldWorld can be attributed to the recent expansion of domestic

cats as companion animals and as the primary definitive hosts,

where previously only genotypes of parasites more adapted to this

animal were more easily dispersed (Müller and Howard, 2016).

Toxoplasma is an apicomplexan parasite that has a symbiotic

organelle, the apicoplast, essential for its survival due to its vital role

in metabolism, mainly in pathways linked to the biosynthesis of

fatty acids, isoprenoids, and heme (Van Dooren and Striepen, 2013;

Arisue and Hashimoto, 2015). Furthermore, the apicoplast displays

specific enzymes with no homologs in the host cells; thus, this

organelle could be considered an important potential target for

more specific treatments.
2 Chemotherapies against T. gondii:
current drugs and challenges

The pharmacological approaches against toxoplasmosis usually

combine two drugs, pyrimethamine and sulfadiazine, which act

synergistically on the parasite’s survival and proliferation, inhibiting

the folate metabolic pathways (Dunay et al., 2018). However, these

drugs are not selective enough against the parasites and affect

biochemical pathways in human cells. Adverse effects have been

related mainly to pyrimethamine and its inhibition effect on folic

acid pathways in tissues with high metabolic activity, such as

epithelium and bone marrow. In addition, significant adverse

effects can occur independent of the clinical manifestation of the

infection (Ben-Harari et al., 2017). A study involving 115 patients

with symptoms of encephalitis indicated that 62% suffered side

effects due to the use of sulfadiazine, and around a third of the

patients abandoned the treatment (Alday and Doggett, 2017). The

toxic effects of drugs routinely used are significant, and cases of

Toxoplasma infections reported in the FDA adverse events

reporting system (FAERS) demonstrated that most adverse

outcome reports were serious (89%), followed by the adverse

outcome of death (11%). The study also confirmed that most

adverse outcome reports involved pyrimethamine followed by

sulfonamides and that hepatocellular injury, eosinophilia, and

systemic symptoms were associated with sulfonamide drug

reactions, whereas pancytopenia, neutropenia, and nausea were

associated with pyrimethamine (Shammaa et al., 2021).

Sulfadiazine can be substituted for clindamycin in people

allergic to sulfa drugs, although the treatment is less effective and

has similar adverse effects (Katlama et al., 1996). The combination
Frontiers in Cellular and Infection Microbiology 03
of sulfamethoxazole and trimethoprim has also shown similar

efficacy to pyrimethamine-sulfadiazine. Therefore, it can be used

as an alternative in patients who cannot tolerate pyrimethamine or

when the drug is unavailable (Rajapakse et al., 2013). However, in

addition to side effects, the administration of pyrimethamine and

sulfadiazine is associated with rare severe reactions, including

agranulocytosis and hepatic necrosis (Alday and Doggett, 2017).

Another significant factor is the need for long-term therapies,

lasting from four to six weeks in cases of eye infections and up to

one year in patients with congenital infections. Even longer

treatments may be necessary since the drugs used are unable to

affect bradyzoites and are ineffective in eliminating tissue cysts

(Harrell and Carvounis, 2014). Therefore, new therapies should

address criteria such as increased selectivity, reduced side effects,

elimination of tissue cysts, and reduced drug exposure time.

Studies have proposed that the apicoplast could be an important

target for specific drugs since it is considered the parasite’s Achilles

Heel due to its vital role in critical metabolic pathways (Kadian

et al., 2018). Several compounds have shown efficient inhibition

effects on apicoplast pathways. For example, the natural compound

thiolactomycin (TLM) is a known selective inhibitor of the Type II

fatty acid biosynthesis found in the plant plastids and bacteria,

which also occurs in the apicoplast, exhibiting growth inhibition

against Plasmodium falciparum parasites (Waller et al., 1998).

Synthetic analogs of TLM also showed improved antiparasitic

effects against Plasmodium (Waller et al., 2003), Trypanosoma

cruzi, and T. brucei (Jones et al., 2014).

Another example is the natural compound that disrupts the

membrane metalloprotease FtsH1 of apicoplasts, inhibiting

organelle biogenesis and leading to apicoplast loss and,

consequently, parasite death (Amberg-Johnson et al., 2017).

Furthermore, the machinery of apicoplast replication coordinated

by a plastid gyrase can be inhibited by ciprofloxacin, leading to

profound alterations in the apicoplast and growth inhibition in the

parasites (Botté et al., 2012). Finally, Plasmodium parasites treated

with doxycycline show impaired gene expression, causing defects in

apicoplast biogenesis and morphology and leading to the

distribution of nonfunctional apicoplasts into daughter

merozoites (Dahl et al., 2006), confirming the importance of

apicoplast enzymes as potential specific drug targets.

Apicoplasts also play an important role in the parasite’s energy

metabolism, containing all subunits of pyruvate dehydrogenase

complex (PDH) that is usually found in the mitochondrion in

most organisms, catalyzing the conversion of pyruvate to acetyl-

CoA, which is then used in Type II fatty acid biosynthesis (Fleige

et al., 2007). Since the PDH complex is found in the apicoplast, the

mitochondrial conversion of pyruvate to acetyl-CoA is indeed

mediated by the branched-chain ketoacid dehydrogenase complex

(BCKDH), which has a different substrate in human cells; instead of

pyruvate, the human enzyme uses a-ketoacid (Oppenheim et al.,

2014). Protein kinases (PKs) regulate both complexes in other

eukaryotes, but the kinases regulating PDH and BCKDH in T.

gondii are still unknown (Ferrarini et al., 2021).

Compounds that inhibit PKs have also been promising

alternatives for effectively treating several human pathologies,

such as diabetes (Prada and Saad, 2013), cancer (Zhang et al.,
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2009), and diseases caused by viruses (Buljan et al., 2020) and

protozoans (Dichiara et al., 2017). PKs are highly involved in

cellular pathways, acting in signal transduction and regulating

several biochemical pathways, permitting adaptive cellular

responses to environmental changes (Buljan et al., 2020). Drug

design strategies have allowed the development of specific kinase

inhibitors, with high selectivity against cancer, for example,

improving patients’ quality of life and survival (Di Felice

et al., 2018).

PKs are interesting targets to be explored against different

pathogens such as Plasmodium, Leishmania, Trypanosoma, and

Toxoplasma because, despite the conservation of PK families among

other organisms, there are significant differences in protein

identities, in addition to significant structural differences to their

closest mammalian homologs (Doerig et al., 2002). Furthermore,

drug design strategies are also helpful in constructing specific kinase

inhibitors acting as allosteric inhibitors in the PKs regulatory

domains, with no interactions against the ATP binding pocket

region, which is similar among different kinases (Eglen and

Reisine, 2010).

In this way, structural differences found in the pathogen kinases

also result in differential affinities to potential kinase inhibitors,

opening perspectives to design drugs with appropriate affinity to

pathogen kinases, with reduced interactions with host kinases and

prevention of unwanted effects (Knockaert et al., 2002).
3 Protein kinases: general aspects,
classification, and regulatory functions

Rapid responses to internal and external stimuli are

fundamental requirements to maintain the life cycle of any

organism or cell. Moreover, these responses are required to afford

protection to cells with regard to environmental changes, such as

determining the correct maintenance of biochemical pathways

linked to energy metabolism, storage of nutrients, and

communication, constituting a significant survival mechanism

(Humphrey et al., 2015).

To provide modulation in biochemical cascades, proteins are

subject to reversible post-translational modifications (PTMs) that

usually occur through the addition of chemical groups,

polypeptides, or direct alterations in amino acid residues, leading

to conformational changes in the protein structure, activating or

inhibiting catalytic sites, and modulating their biological functions

(Wang et al., 2014; Spoel, 2018). Over 200 PTMs are known,

including phosphorylation, acetylation, and ubiquitination,

rapidly altering protein activity with low metabolic cost

(Humphrey et al., 2015). A specialized protein is required for

each PTM. Reversible PTMs are possible, which require

appropriate enzymes to revert the structural changes and restore

the chemical activity of the substrates (Oliveira and Sauer, 2012).

The most studied PTM is phosphorylation, catalyzed by PKs

that are key regulators of cellular function; they constitute the

largest and most functionally diverse protein family. PKs direct

proteins’ activity, location, and function by adding a phosphate
Frontiers in Cellular and Infection Microbiology 04
moiety to substrate proteins. They also orchestrate the activity of

almost all cellular pathways, especially those involved in the

transduction and transmission of signals and coordination of

complex processes such as the cell cycle (Manning, 2005).

Krebs and Fischer were the first researchers to recognize the

biological role of PKs in 1956. These authors isolated a protein able

to convert a phosphorylase from the inactive to the active form

through a phosphorylation process, elucidating the origin of the

phosphate group (using labeled ATP) and determining the

optimum pH and the influence of Mn2+ in the reaction (KREBS

and FISCHER, 1956; KREBS et al., 1959). The discovery of

‘reversible protein phosphorylation’ was a great revolution in

biochemistry and led to the authors being awarded the Nobel

Prize in Physiology or Medicine in 1992.

PKs phosphorylate a substrate protein’s hydroxyl moiety of

serine, threonine, or tyrosine (Cohen, 2002). They constitute a

superfamily broadly subdivided into eukaryotic protein kinases

(ePKs) and “atypical” protein kinases (aPKs) (Miranda-Saavedra

et al., 2012). The ePKs constitute the largest group, subclassified

into eight families (AGC, CAMK, CK1, CMGC, RGC, STE, TK, and

TKL). This classification highlights the sequence similarity among

the catalytic domains and the presence of accessory domains,

considering the regulatory characteristics. AGC and CAMK tend

to phosphorylate basic residues, while CMGC kinases are usually

directed to prolines. TK and TKL phosphorylate tyrosine residues,

and STE phosphorylates serine and threonine residues (Parsons

et al., 2005). The genes encoding ePKs are highly conserved in their

primary amino acid sequences and the three-dimensional structures

of their catalytic domains, constituting around 2% of the eukaryotic

genome (over 520 proteins) (Manning et al., 2002).

On the other hand, the aPK group is constituted by a small set

of protein kinases, subclassified into four families (Alpha, PDHK,

PIKK, RIO). These families do not share apparent sequence

similarity with ePKs but possess kinase activity (Miranda-

Saavedra et al., 2007). The main differences between aPKs are

related to low structure similarities, with alterations in regulatory

regions and limited interaction binding modes (Kanev et al., 2019),

as well as lacking 11 subdomains present in the ePKs (Parsons

et al., 2005).

The relationships shown in phylogeny also can be used

to predict substrates and biological functions of many

uncharacterized kinases (Manning and Cantley, 2002). For

example, phylogenetic analyses have revealed that the main

family of serine/threonine/tyrosine ePKs is also present in

Bacteria and Archaea. The shared characteristics of these PKs in

different organisms indicate a monophyletic origin that could lead

to the last common ancestor (LUCA). In this evolutionary context,

authors have proposed that the appropriate name for this kinase

family should be Hanks-type kinases, referring to Hanks’ studies

that described this group of kinases in 1988 (Hanks et al., 1988;

Stancik et al., 2018). This PK group is also responsible for cellular

division, growth, glycolysis, and pathogenicity in Streptococcus

pneumoniae (Henry et al., 2019), virulence in Mycobacterium

tuberculosis, and spore germination in Bacillus subtilis (Cowley

et al., 2004; Shah et al., 2008).
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3.1 The role of kinases in cell metabolism

PKs coordinate essential cellular pathways. Cellular division is

highly regulated by cyclin-dependent kinases (CDKs) and cyclins.

Cyclins provide the structural domains that activate the enzymatic

activity of CDKs, acting as regulatory subunits (Malumbres, 2014).

Quiescent cells (at the G0 phase) can be stimulated through mitotic

factors, leading to the synthesis of cyclin D and stimulating CDK4

and CDK6. From there, the retinoblastoma (Rb) protein is

phosphorylated, activating cascades that modulate the S phase

with DNA synthesis. The end of the S phase is marked by the

interaction of cyclin A/CDK2, with phosphorylation of CDK6 and

E2F1, driving the cell to the G2 phase. After the G2 phase, the M

phase is started by activating CDK1 in association with cyclin B

(Otto and Sicinski, 2017; Ding et al., 2020). Several types of kinases

are activated in events of DNA damage to promote different

responses, including cell cycle arrest, protection of replication

forks, control of dNTPs levels, or autophagy (Lanz et al., 2019).

PKs also play a decisive role in cell signal transduction,

structuring cellular receptors. Receptor tyrosine kinases (RTKs)

are integral membrane proteins represented by 58 proteins in

humans. They are structurally disposed of by five regions:

extracellular ligand-binding domain, transmembrane and

juxtamembrane regions, cytoplasmic domain with tyrosine kinase

activity, and a C-terminal tail. The interaction with specific

extracellular ligands promotes conformation changes in the

receptor, activating the kinase domain and promoting the

phosphorylation of downstream proteins, amplifying the external

signal and resulting in metabolic changes in the cell (Critchley

et al., 2018).

Similarly, MAP kinases were shown to play a significant role in

the central nervous system (CNS), connecting neurons and

participating in the axonal transport and neuroregeneration

process (Asih et al., 2020). Deregulation of MAP kinases can lead

to altered gene expression patterns, resulting in serious

neurodegenerative damage. For example, the risk of Alzheimer’s

and Parkinson’s diseases has increased in patients with alterations

in kinase activity. Furthermore, altered PKs in the CNS could

generate an inflammatory state leading neurons and glial cells to

cell death (Ahmed et al., 2020).

In the context of energy metabolism, the AMP-activated protein

kinase (AMPK) controls cellular energy, regulating the dynamic of

lipids, glucose, and insulin (Xu et al., 2012). In conditions of fasting,

physical exercise, and exposure to cold temperatures, ATP is highly

consumed, with increased levels of ADP/AMP in the cell, resulting

in AMPK activation. The role of AMPK is directed to reducing

cholesterol synthesis, fatty acids, and proteins. This metabolic

switch increases the glucose and ATP levels, ensuring the supply

of energy compounds for the cell. On the other hand, AMPK is

found in an inactive state in cases of obesity in cases of increased

levels of nutrients in the organism, which demand strong external

stimuli for its activation (Ahmad et al., 2020).

Protein kinase C (PKC) isoforms are involved in lipid

metabolism, inflammatory responses, and activation of signaling

pathways. In diabetes, defects in PKC contribute to worsening
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clinical conditions, generating plaque formation in the blood

vessel, leading to lumen narrowing and ischemia in the

myocardial tissue. However, specific PKC drugs without adverse

effects on other kinases have not yet been described (Lien et al.,

2021). Therefore, many efforts worldwide have been conducted to

discover the phosphorylation sites of essential proteins and their

corresponding effector kinases (Bradley et al., 2021).

Drugs that inhibit specific kinases have been developed for

treating several diseases, and some are currently in clinical use,

such as Imatinib (Gleevec®) and Gefitinib (Iressa®) for cancer

treatment (Mikalsen et al., 2006). Until now, 67 specific kinase

inhibitor molecules have already been approved by the FDA for

therapeutic purposes (Axtman, 2021). In scientific databases, such as

the Protein Data Bank (PDB), protein structures and inhibitory

complexes related to more than 300 kinases are available for drug

design studies (Laufer et al., 2020). The web computational resource

(KinCore) predicts the dynamic states of PKs in association with

inhibitors, contributing to the identification of more efficient kinase

inhibitors (Modi and Dunbrack, 2022) and opening new avenues for

the application of safe chemotherapies against a variety of diseases

(Elkoshi, 2021). In addition, Uniprot (www.uniprot.org) provides

more than 2,000 three-dimensional structures related to human PKs,

which can contribute to developing specific kinase inhibitors for

therapeutic applications against apicomplexan parasites.
3.2 Protein kinases as potential drug
targets in protozoan parasites

There is a broad interest in developing protein kinase inhibitors

as potential drugs against various diseases, including kinases as

potential targets for new antiparasitic pharmacological strategies

(Doerig, 2004). An important number of kinases that play critical

and essential roles in the Toxoplasma life cycle have been suggested

and/or described for Apicomplexa in particular (Gaji et al., 2021).

The CDKs are serine/threonine kinases, and their association

with cyclins is the primary mechanism of regulation of CDK

activity, in addition to phosphorylation, which also modulates the

kinase activity. The genus Toxoplasma has more than 20 CDKs. On

the other hand, Plasmodium and Cryptosporidium have less than 10

CDKs each (Rotella, 2012). Interestingly, despite their potential

interest as therapeutic targets, only three CDKs have been studied

with some detail in Plasmodium falciparum (PfPK5, PfPK6, and

Pfmrk) (Waters and Geyer, 2003). In addition, all major ePKs

groups have been observed, except for receptor guanylate cyclase

(RGC) and tyrosine kinases, as well as lacking members of the

PDHK (except T. gondii) and Alpha aPK families. Furthermore,

PKs are conserved among apicomplexan and higher eukaryotes

(Miranda-Saavedra et al., 2012). The CAMK group is a family of

serine/threonine kinases that mediate many of the second

messenger effects of Ca2+ and is the second-largest kinase group

in apicomplexan (Talevich et al., 2012) Regarding the group of

calcium-dependent protein kinases (CDPKs) that participate in

invading new host cells in T. gondii (Kieschnick et al., 2001) are

highly related to other proteins found in plants and algae. However,
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there are no similar proteins in mammals, opening the perspective

for the design of specific drugs, like bumped kinase inhibitors

(BKIs), which interfere with the activity of CDPK1, blocking

the parasite invasion process in vitro (Ojo et al., 2010).

Similarly, the inhibitor H89, an ATP-competitive compound,

reduces the kinase activity of the cAMP-dependent protein kinase

(PKA) and, consequently, the replication of tachyzoites in the

parasitophorous vacuole (Kurokawa et al., 2011). Finally, other

Toxoplasma kinases may also be critical pharmacological targets,

such as the kinases that participate in immune manipulation

(ROP16, 18, and 38), the cell cycle (TgNEK1, TgCK1, TgTPK2),

the conversion of tachyzoites to bradyzoites, and those that control

the metabolic responses to stress (TgMAPK1, TgPKA-C, and

TgEIF2K) (Kato et al., 2012).

In the context of more effective drugs against Toxoplasma

parasites, some biochemical characteristics involving PKs that

participate in the carbon metabolism are only found in this

parasite and, for this reason, could become attractive targets for

new therapies. Although the TCA cycle is essential for intracellular

and extracellular tachyzoites (MacRae et al., 2012), changes in ATP

homeostasis occur in extracellular parasites, leading to high

dependence on the glycolytic pathway rather than on the

oxidative phosphorylation of mitochondria (Shukla et al., 2018).

Similarly, erythrocytic stages of Plasmodium are also highly

dependent on aerobic glycolysis as the major route to ATP

production (Salcedo-Sora et al., 2014). Furthermore, in cases

where glutamine is the major carbon source, it is catabolized via

the TCA cycle and used to produce glycolytic intermediates (Lyu

et al., 2023). Glycolysis is also essential for parasite egress (Huynh

and Carruthers, 2022). In general, glycolysis is the primary source of

ATP in the parasites, despite the fact that the mitochondrial

pathway is essential for tachyzoites. This dependence on

glycolysis is also found in cancer cells that repress the

mitochondrial TCA cycle by overexpression of dehydrogenase

kinases (PDKs), blocking the activity of pyruvate dehydrogenase

complex (PDH) (Yu et al., 2017). DCA is a potent PDK inhibitor in

tumor cells that revert the glycolytic phenotype and contribute to

cell death in its cells (Michelakis et al., 2008). DCA treatment in

Toxoplasma causes inhibitory effects in tachyzoites and affects the

mitochondrial activity in these parasites, which might indicate that

PDK could be the DCA target, regulating the TCA cycle (Ferrarini

et al., 2021). However, the PDH complex is present in the

apicoplast, distinct from the mitochondrial localization observed

in most eukaryotes. In Toxoplasma, the absence of the PDH

complex in mitochondria was compensated by the BCKDH

complex, which took over the functions initially carried out by

the canonical PDH (Oppenheim et al., 2014). Two putative

mitochondrial kinases (PDK/BCKDK) are reported in the

Toxoplasma parasites, which are located in the mitochondria. It is

still unknown whether these kinases could regulate the BCKDH

complex (Ferrarini et al., 2021), and there is still no evidence of

potential kinases regulating the PDH complex in the apicoplast.

Thus, further insights into the specific features of those PKs that can

be useful for new drug strategies are still needed to understand the

role of kinases in regulating carbon metabolism.
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Nevertheless, it is important to consider that most of the data

have been described on tachyzoites; on the other hand, knowledge

about carbon metabolism in bradyzoites is still limited, mainly due

to experimental constraints. Different studies indicate that

glycolytic degradation of glucose also plays an important role in

bradyzoites, in which they depend on the turnover of storing

polysaccharide amylopectin by glycogen phosphorylase (Coppin

et al., 2003), with its formation induced by a few electron transport

inhibitors (Tomavo and Boothroyd, 1995; Ferreira Da Silva et al.,

2008). Recently, the development of an in vitro system developing

bradyzoites enabled measurements of bradyzoite metabolites via

mass spectrometry, revealing lower levels of several TCA cycle-

associated metabolites that are consistent with a lower reliance on

this pathway (Christiansen et al., 2022). These scalable in vitro

systems can be useful in providing new data regarding bradyzoite

metabolism and identifying PKs and other enzymes specific to

glycolytic metabolism in bradyzoites, improving the selectivity of

chemotherapy strategies and reducing the side effects. If future

studies demonstrate that the overexpression of PDK in bradyzoites

is responsible for the low activity of the TCA cycle in this stage,

perhaps the DCA treatment would revert the reduced activity of

mitochondria and generate a lethal effect due to metabolic

disequilibrium, like reversion of the Warburg effect in cancer cells

(Ferrarini et al., 2021). Although DCA was not tested on

bradyzoites, it is not toxic to human cells; therefore, further

studies could open perspectives of repositioning kinase inhibitors

used in other diseases for toxoplasmosis therapy.
3.3 Regulatory kinases in the carbon
metabolism of apicomplexan parasites

PKs that coordinate glycolysis in the parasites could be

important targets to screen for new treatments due to the

differences found with regard to mammalian cells. In addition,

glycolysis is an essential pathway for the parasite life cycle, and

disruption of this pathway disturbs tachyzoite replication and the

formation of tissue cysts, constituting an essential target for

treatments (Shukla et al., 2018).

After the invasion, the replicative niche of Toxoplasma is

constituted by the parasitophorous vacuole (PV), a specialized

organelle responsible for tachyzoite protection, manipulating

signaling pathways, and acquiring soluble nutrients from the host

cell as amino acids, sugars, and nucleotides (Martin et al., 2007).

Figure 1 depicts the kinases regulating different metabolic pathways.

3.3.1 Glycolysis in cytosol
Glucose is internalized by the hexose transporter GT1

distributed on the parasite surface and is not restricted to a

particular site in the cell membrane (Pomel et al., 2008). The first

stage of glycolysis is mediated by hexokinase (1-HK), an enzyme

responsible for converting glucose to glucose-6-phosphate.

Sequence analysis has revealed considerable similarity between

T. gondii HK and Plasmodium falciparum HK but low similarity (>

35%) between parasite and host HKs (Saito et al., 2002). In
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Plasmodium vivax, HK exhibits a homotetrameric structure, unlike

that found in human HKs that are organized in monomers or

dimers. The organization of the tetrameric structure in Plasmodium

is related to the most extensive hydrophobic interactions in

peripheral regions, generating solid interactions in the interfaces

of the kinase. In contrast, these regions are replaced by polar

residues (Srivastava et al., 2020). Toxoplasma knockout parasites

for HK cannot catalyze glucose phosphorylation, even under

supplemented glucose conditions, displaying defects in the

formation of tissue cysts in the nervous system of mice and

alterations in the invasion process of new host cells (Shukla

et al., 2018).

Cryptosporidium (Apicomplexa) also shows a unique and

highly divergent HK to humans and Toxoplasma, with the

distinctive capacity to use other NTPs besides ATP, unlike other

organisms whose HKs are ATP-dependents (Yu et al., 2014).

After phosphorylation mediated by HK, the glucose-6-

phosphate is converted to fructose-6-phosphate by the glucose-6-

phosphate isomerase. From this point in glycolysis, the differences

between the enzymes from parasites and mammalian cells become

more marked. The remaining enzymes of glycolysis (from

phosphofructokinase to pyruvate kinase) are expressed in two

isoforms in the parasites, including isoforms present in the

apicoplast (Fleige et al., 2007).

The third stage of glycolysis is mediated by phosphofructokinase

(2- PFK), which uses fructose-6-phosphate as a substrate to generate

fructose-1,6-biphosphate. Two PFKs are reported in T. gondii: PFK1,
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dependent on ATP, and PFK2, dependent on pyrophosphate as a

phosphate donor. While PFK1 is not essential for parasite

proliferation, the conditional knockout of PFK2 leads to growth

arrest and an increase of pyrophosphate levels in the cytosol, which is

in high amounts in the cell, as well as reduces protein synthesis in the

tachyzoites (Yang et al., 2022).

Toxoplasma PFK2 differs from the ATP-dependent PFK found

in the host cells because it differs in subunit structure and catalytic

kinetics, constituting a potential drug target. Analogs of phosphonic

acid showed inhibitory effects in the kinetic activity of PFK2,

inhibiting parasite growth and protective effects in treated host

cells (Peng et al., 1995). Mutations in Plasmodium PFKs confer drug

resistance to antimalarial drugs because they redirect the glycolytic

metabolites to the pentose phosphate pathway and improve the

parasite’s survival (Fisher et al., 2020). Inhibitory compounds

directed to PFKs provide strong effects in other parasites, such as

trypanosomes, blocking the glycolytic pathways and leading to

parasite death and the complete cure of infected mice, with no

side effects to the host (McNae et al., 2021).

The enzyme aldolase mediates the conversion of fructose-1,6-

biphosphate to glyceraldehyde 3-phosphate, and the transformation

of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate is

mediated by the glyceraldehyde 3-phosphate dehydrogenase

(GAPDH), although they are not regulated by kinases (Fleige

et al., 2007). It has also been proposed that glyceraldehyde 3-

phosphate could be converted to dihydroxyacetone-phosphate

(DHAP) in a reversible reaction, with DHAP imported to the
FIGURE 1

Schematic model of the role of protein kinases in glycolysis, the TCA cycle, and the pantothenate pathways in T. gondii. The GT1 transporter is
responsible for the internalization of glucose to the cytosol. Kinases in the cytosol, apicoplast, and mitochondria are highlighted and listed. The
apicoplast displays a PEP transporter represented as APT in Toxoplasma and TPT in Plasmodium. The extrusion of excessive lactate and pyruvate
produced by glycolysis is exported by the FNT transporter, contributing to the acidification of the parasitophorous vacuole and parasite release.
Tachyzoites can synthesize or import pantothenate (Pan) from the host cell, but the Pan transporter is still uncharacterized (UNC). Besides the
kinases that act in glycolysis, mitochondria, and apicoplast, kinases in the pantothenate pathway are also important in converting pantothenate to
coenzyme-A (CoA) used in other biochemical pathways.
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apicoplast for metabolization in the isoprenoid pathway (Nair

et al., 2011).

Aldolase-deficient Toxoplasma strains show growth inhibition

due to the accumulation of toxic intermediates from upstream

stages of glycolysis, with no interference in the motility and invasion

mechanisms (Shen and Sibley, 2014). GAPDH is also essential to

parasite metabolism, with parasite growth impairment when the

protein is absent through knockout genetic strategies (Dubey et al.,

2017). It has been found that Toxoplasma enzymes triose phosphate

isomerase II (TPI-II), glyceraldehyde-3-phosphate dehydrogenase

II (GAPDH-II), and phosphoglycerate kinase II (PGK II) are in the

apicoplast and play an important role in the isoprenoids and fatty

acids biosynthesis (Niu et al., 2022).

Phosphoglycerate kinase (3-PGK) is the third kinase found in

glycolysis, present in two isoforms in Toxoplasma to catalyze the

conversion from 1,3-biphosphoglycerate to 3-phosphoglycerate (3-

PGA) (Smith et al., 2011). In Plasmodium falciparum, PGK showed

a 61% similarity to human PGK, with conserved regions implicated

in interaction with the substrate, cofactors, and catalysis. However,

it offers higher affinity interaction with ATP and 3-PGA (1.5- to 2.0-

fold more, respectively) and lower thermal stability than the human

homolog (Hicks et al., 1991; Pal et al., 2004).

Structural differences in PGKs from humans and parasites are

related to the acetylation profile of these kinases. In humans,

acetylation of PGK occurs in 13 lysines (Choudary et al., 2009),

while five lysines are acetylated in intracellular parasites, and only

one is found in extracellular parasites (Xue et al., 2013), indicating a

possible regulatory function. Although there are no reports about

PGK inhibitors for Toxoplasma, the compound adenylyl 1,1,5,5-

tetrafluoromethane-1,5-bisphosphonate efficiently occupied the

bind sites of the Trypanosoma PGK, inhibiting the kinase through

conformational changes (Bernstein et al., 1998). PGK is also

considered a potential target for cancer therapy, where the

expression levels could indicate tumor progression and the

existence of a multidrug resistance profile in the tumor cells (Liu

et al., 2022).

The two subsequent stages of glycolysis are conducted by

phosphoglycerate mutase (PGM), catalyzing the interconversion

of 3-phosphoglycerate to 2-phosphoglycerate, with enolase using

the 2-phosphoglycerate as a substrate to form phosphoenolpyruvate

(PEP) (Hargrave et al., 2019). Studies using the mice model have

indicated that recombinant PGM2 from Toxoplasma can induce

protective effects in the animals, with improved survival outcomes

and a reduction in the number of tachyzoites found in brain and

liver tissues (Wang et al., 2016). Toxoplasma shows two isoforms of

enolase (enolase 1, ENO1, and enolase 2, ENO2). ENO1 is only

expressed in bradyzoites and shows only one-third of the catalytic

activity of ENO2. In addition to the activity in glycolysis, ENO1 and

ENO2 also exhibit a regulatory function linked to gene expression

and are also found in the parasite nucleus (Dzierszinski et al., 2001;

Ruan et al., 2015).

3.3.2 FAS II cycle in apicoplast
PEP, generated by the enolase enzyme, can be directed along

two distinct routes, following the glycolytic pathway in the
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cytoplasm, or imported to the apicoplast through plant-like

transporters, APT in Toxoplasma or TPT in Plasmodium

(Shunmugam et al., 2022). Toxoplasma gondii exhibits two

isoforms of pyruvate kinases (4-PYK1 and 5-PYK2) responsible

for converting PEP to pyruvate in cytosol and apicoplast,

respectively (Xia et al., 2019). It has been proposed that pyruvate

produced by PYK1 in the cytosol could also be imported to the

apicoplast, although its transporter still needs to be confirmed and

characterized (Fleige et al., 2007; Xia et al., 2019). PYK1 plays a

greater role than PYK2 in parasite metabolism. Depletion of PYK2

does not significantly affect the parasite, but disruption of PYK1

leads to the accumulation of upstream metabolites from glycolysis,

reducing ATP production. Disruption of both kinases (PYK1 and

PYK2) generates complete growth arrest due to the loss of the

apicoplast, an organelle essential to the parasite’s survival (Xia

et al., 2019).

Other steps in pyruvate parasite metabolism present significant

differences related to mammalian organisms. Pyruvate

dehydrogenase complex (PDH), usual ly found in the

mitochondria of other organisms, mediates the metabolization of

pyruvate and acetyl-CoA production in the apicoplast, which is

then used in Type II fatty acid biosynthesis (FAS II pathway). In the

absence of the mitochondrial PDH complex, the BCKDH complex

assumes the canonical function of PDH, promoting the conversion

of pyruvate to acetyl-CoA, which is then metabolized through the

TCA cycle (Oppenheim et al., 2014). It is still unknown if the

apicoplast PDH could be regulated by kinases as usually observed in

other organisms (Wang et al., 2021), which could also constitute an

essential target for use in antiparasitic drugs.

3.3.3 The TCA cycle in mitochondria
In mammalian cells and organisms, the pyruvate produced by

pyruvate kinase in the last stage of glycolysis is directed to the

mitochondria. In this organelle, pyruvate is decarboxylated by PDH

in an irreversible reaction, resulting in the production of acetyl-

CoA, CO2 release, and the reduction of NAD+ to NADH. The

acetyl-CoA is then metabolized through the tricarboxylic acid

(TCA) cycle in the mitochondria (Anwar et al., 2021). The PDH

complex is present in eukaryotes and prokaryotes and is structured

through multiple copies of three catalytic subunits: pyruvate

dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and

dihydrolipoamide dehydrogenase (E3). Higher eukaryotes also have

the dihydrolipoamide dehydrogenase binding protein (E3BP)

subunit. This dehydrogenase complex is controlled by regulatory

enzymes such as pyruvate dehydrogenase kinases (with four

isoforms reported in humans) and pyruvate dehydrogenase

phosphatases (PDP, with two isoforms in humans) (Patel et al.,

2014). In non-tumoral mammalian cells, the TCA cycle and

oxidative phosphorylation (OXPHOS) in the mitochondria

produce significant amounts of ATP from pyruvate. However,

even in normal oxygen conditions, tumor cells use glycolysis as

the main route for making ATP, inhibiting the mitochondrial TCA

cycle and, consequently, the OXPHOS, avoiding oxidative damage

and apoptosis and ensuring survival (Anwar et al., 2021). In tumor

cells, theWarburg effect is observed, corresponding to a switch from
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glycolysis controlled by the Pasteur effect to aerobic glycolysis

triggered by the pyruvate’s overexpression of dehydrogenase

kinases (PDKs). These PDKs promote the phosphorylation of

mitochondrial PDH, blocking the formation of acetyl-CoA from

pyruvate, its entry into the TCA cycle, and, therefore, the OXPHOS.

Such accumulation of carbon compounds permits cell growth and

metastasis (Stacpoole, 2017).

Remarkably, reversing the Warburg effect in cancer metabolism

is possible using the small molecule inhibitor dichloroacetate

(DCA). The mechanism of action of the drug is focused precisely

on the inhibition of PDKs, restoring the activity of the PDH

complex and mitochondrial functions, and consequently,

increasing intracellular ROS levels, the susceptibility to other

drugs, as well as stopping the progression of tumor growth

(Tataranni and Piccoli, 2019). DCA can be administered orally,

and due to its inhibitory effect on PDKs, increasing the pyruvate

flux in mitochondria, promoting the TCA cycle, and indirectly the

OXPHOS results in the inhibition of tumor growth both in vitro

and in vivo (Michelakis et al., 2008). Therefore, disruption of the

PDK/PDH axis is the key to the tumor elimination mechanism of

DCA, inducing apoptosis in tumor cells without affecting non-

tumor cells. Thus, PDK became a therapeutic target in oncology

(Sutendra and Michelakis, 2013).

Metabolism in apicomplexan parasites is also highly dependent

on the glycolysis pathway, suppressing mitochondrial metabolism

and accumulating intermediate metabolites produced by glycolysis

that support rapid proliferation (Salcedo-Sora et al., 2014). Due to

TCA cycle repression, the pyruvate accumulated in the cytosol is

then converted to lactate by the enzymatic activity of two lactate

dehydrogenases (LDH1 and LDH2) and used as an energy source

by fermentative processes in the parasite (Xia et al., 2018). The

exportation of lactate by the FNT transporters has an important role

in the acidification of the parasitophorous vacuole, contributing to

the natural egress of the parasites (Huynh and Carruthers, 2022).

Inhibitory drugs for the FNT transporters reduce the exportation of

lactate, leading to rapid cytosol acidification and cell death in the

parasites (Walloch et al., 2021).

The reduction of the TCA cycle observed in the parasites also

could be controlled by the PKs. Cluster analyses have revealed the

presence of two putative kinases (6- PDK/BCKDK) that may be

regulating the mitochondrial carbon metabolism in T. gondii, which

DCA could target. Treating infected cells with DCA also produced

the intracellular parasite’s death without noticeable biological effects

on the host cells. It is important to note that it has not been formally

demonstrated that the DCA target in the parasites is indeed a kinase

(Ferrarini et al., 2021).

In addition to DCA, the compound known as BT2 (3,6-

dichlorobenzo[b]thiophene-2-carboxylic acid) is a kinase inhibitor

directed to another kinase (BCKDK) in other models. It could target

the BCKDK in the parasite mitochondria, indirectly promoting the

activity of the BCKDH. Thus, the BCKDK also could be an exciting

target for drugs against apicomplexans. BT2 is a potent allosteric

inhibitor of BCKDK. Although BCKDK and PDKs share similar

structures, the ligand-binding allosteric pocket in BCKDK (412Å3

volume) is two to four times larger than their counterparts in PDKs

(90Å3–213Å3) (Zhou et al., 2019). BT2 belongs to a family of
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benzothiophene derivatives, several of which have already been

reported as enzyme inhibitors. It has been identified as a novel

BCKDK inhibitor for therapeutic approaches. It reduces the BCAA/

BCKA concentrations in maple syrup urine disease (MSUD) and is

used to treat obesity and type 2 diabetes (Tso et al., 2014). The

treatment of the C2C12 myoblast with BT2 blocks BCKDK, causing

the activation of branched-chain amino acids catabolism and

consequently suppressing cell proliferation and differentiation

(Sato et al., 2020). Inhibition of BCKDK was sufficient to enhance

BCKDH activity across tissue types in insulin-resistant, diet-

induced obese mice (Zhou et al. , 2019). Additionally,

benzothiophene carboxamide derivatives are potent slow-binding

inhibitors of Plasmodium enoyl-acyl carrier protein (ACP)

reductase (PfENR), thus suggesting their use as an important

potential antimalarial drug (Banerjee et al., 2011) Moreover,

benzothiophene derivatives have also shown inhibitory effects in

the proliferation of T. gondii (Rosada et al., 2019).

3.3.4 Pan synthesis in the cytosol
Beyond the pathways of glycolysis involving the apicoplast and

mitochondria, the pantothenate pathway is another important

target for applied therapies against the parasites. Pantothenate

(Pan, vitamin B5) is an essential precursor for the synthesis of

Coenzyme A (CoA), which has a role in gene regulation, the TCA

cycle, heme, and fatty acid biosynthesis (Lunghi et al., 2022). While

animals acquire Pan only through diet, the apicomplexan parasites

have the machinery to produce Pan, becoming essential for the

pathogen parasite and a particular target against chronic infection

(de Vries et al., 2021). Toxoplasma parasites show two isoforms of

Pan kinases (7- Pank1 and Pank2) that promote the

phosphorylation of Pan to 4’-phosphopantothenate (4’-P-P-Pan).

In this pathogen, Pank1 and Pank2 act in a heterodimer complex,

unlike in humans, where Pank enzymes exist only as a homodimer

and are necessary for tachyzoite proliferation (Tjhin et al., 2021).

The last step of CoA biosynthesis occurs through the conversion of

phospho-CoA (D-P-CoA) to CoA and is also catalyzed by

dephospho-coenzyme A kinase (8- DPCK) (Fletcher et al., 2016).

DPCK is in the cytosol of Toxoplasma and in the apicoplast of

Plasmodium (de Vries et al., 2021). Plasmodium parasites subjected

to apicoplast disruption (mediated by drug strategies) continue to

express DPCK, with biochemical activity inside the vesicles derived

from the apicoplast rupture. The DPCK remains active inside these

vesicles and supplies the parasites with essential metabolites,

contributing to parasite survival, also indicating a critical target

that could be explored in new drug studies looking for kinase

inhibitory strategies (Swift et al., 2021).

Then, the distinctive characteristics found in different PKs in

the apicomplexans could open critical perspectives to applied

chemotherapies focused on the complete characteristics that

differentiate them from host kinases.
4 Conclusion

PKs regulate essential aspects of cell metabolism. Therefore,

they have become potential targets for effective therapies in different
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1175409
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


dos Santos et al. 10.3389/fcimb.2023.1175409
human diseases caused by protozoan pathogens, mainly when they

are structurally different from human cells or involved in the

distinctive metabolic pathways of those microorganisms. Different

routes could be explored for new kinase inhibitors (Figure 2) as the

CDKs coordinate the parasite cycle. Still, the specificities found in

the PKs regulating the parasites’ energy metabolism could offer new

perspectives for safer and more effective therapies against T.

gondii parasites.

The research on structural differences, specific kinetic activities,

and binding sites found in the kinases PFK, PGK, and PYK in

parasite glycolysis can shed light on more detailed and non-toxic

chemotherapies. For example, inhibiting PFK2 restricts the

formation of metabolites in an early stage of glycolysis and

increases pyrophosphate levels to achieve toxic effects on the

parasite. Various acetylation sites in parasite PGK could serve as

potential sites for specific compounds since acetylated residues are

distinct from the host PGK in both proliferative and latent parasites.

The combination of strategies aiming to block both PYK1 and

PYK2 in the parasites also leads to the suppression of glycolysis and

apicoplast loss in the parasites, suppressing the essential FAS II

pathway. Furthermore, the presence of isoforms with a possible

location in the apicoplast may also indicate the presence of still

unknown metabolic routes or catalytic activities, which need to be

better evaluated.

The regulatory kinase for PDH in the apicoplast and whether

the mitochondrial BCKDH is regulated by the kinases PDK and/or

BCKDK remain unclear. Then, elucidating the regulatory kinases of
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those pathways would help to understand the mechanism of DCA

inhibitory effects already reported for tachyzoites.

Other potential important targets in the parasites are the

kinases in the pantothenate pathway, which are responsible for

producing coenzyme-A (CoA) as the end product. Inhibition of its

kinases would indirectly affect the activities of PDH (in the

apicoplast) and BCKDH (in mitochondria), since these complexes

use CoA in the conversion of pyruvate to acetyl-CoA, affecting both

the TCA cycle and FAS II biosynthesis, as well as the role of CoA in

other cellular regulatory functions.

Exploring the specificities that differentiate the parasite PKs

from the host enzymes will bring information to help develop

compounds with high affinity to parasite proteins, trying to reduce

the side effects of traditional chemotherapies, and find compounds

that would eliminate the latent forms that serve as a reinfection

source in patients.
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FIGURE 2

Important protein kinases as possible targets for more effective therapies in Toxoplasma gondii. Different pathways are controlled by kinases in the
metabolism of the parasites, and the distinctive characteristics found in these proteins may bring significant useful information for new strategies,
such as highly selective kinase inhibitors, especially in relation to toxoplasmosis, which still has no definitive cure.
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