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Clinical diagnostic laboratories produce one product—information—and for this

to be valuable, the information must be clinically relevant, accurate, and timely.

Although diagnostic information can clearly improve patient outcomes and

decrease healthcare costs, technological challenges and laboratory workflow

practices affect the timeliness and clinical value of diagnostics. This article will

examine how prioritizing laboratory practices in a patient-oriented approach can

be used to optimize technology advances for improved patient care.
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Introduction

Patterns of infectious diseases have changed dramatically: patients are frequently

immunocompromised and often have complicating comorbidities, infections with multi-

drug-resistant organisms (MDRO) are a global problem, new antibiotics are available, but it

is mandatory to preserve their efficacy. It is estimated that at least 700,000 people die

worldwide every year with infections caused by MDRO, and it is predicted that by 2050, 10

million deaths might be due to these organisms (O’Neill, 2016). Administration of rapid,

broad-spectrum empiric therapy is essential to improve patient outcome (Levy et al., 2018),

but this is often inappropriate (Kumar et al., 2009; Zilberberg et al., 2017). A meta-analysis

assessing the impact of antibiotic therapy on Gram-negative sepsis showed that

inappropriate therapy was associated with 3.3-fold increased risk of mortality, longer

hospitalization, and higher costs (Raman et al., 2015). Thus, rapid, accurate diagnostics are

critical for the selection of the most appropriate therapy.

Advanced, sophisticated technologies such as mass spectrometry and molecular

diagnostics are rapidly changing our ability to diagnose infections (Trotter et al., 2019),
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although they should be viewed as complementary to traditional

growth-based diagnostics. Laboratory automation and applications of

intelligent use of informatics also have a transformative impact of

microbiology diagnostics. These tools have the potential to accelerate

clinical decision-making and positively impact the management of

infections, improve patient outcome, and facilitate diagnostic and

antimicrobial stewardship (AS) programs (Messacar et al., 2017).

However, it is a challenge for clinical microbiologists to implement

these technologies because it requires changing well-established

workflow practices. This paper will focus on the impact of

automation and informatics combined with workflow changes on

laboratory, patient, and hospital management (Figure 1).
Impact on laboratory management

In clinical microbiology, the term “total laboratory automation”

(TLA) is used to describe the automation of the entire diagnostic

workflow: inoculation of the agar plates, incubation, reading of

culture results, identification (ID), and antimicrobial susceptibility

testing (AST). All these steps in a conventional laboratory are

performed manually, usually according to a sample-centered

approach. At present, two laboratory automation (LA) systems

are available: the BD Kiestra™ system (Becton Dickinson, Sparks,

MD) and the WASPLab® system (Copan Diagnostics, Murrieta,

CA) (Croxatto et al., 2016).
Inoculation

Quality and precision of inoculation are improved by

automation. Instruments work in a standardized and consistent

mode, not achievable with a manual procedure, and independent of

operator variability. Indeed, LA allows better isolation of colonies

compared to manual inoculation, with decreased need of

subcultures for follow-up work, mainly AST, resulting in a more

rapid report (Croxatto et al., 2015; Burckhardt, 2018). It was found
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that WASP automated streaking of urines using a sterile loop was

superior to manual streaking, yielding a higher number of single

colonies and of detected morphologies, species, and pathogens

(Quiblier et al., 2016). The BD Kiestra™ system, based on a

rolling magnetic bead streaking technology, has been shown to

improve the accuracy of quantitative culture results and the

recovery of discrete colonies from polymicrobial samples,

compared to manual and automated WASP streaking (Croxatto

et al., 2015; Iversen et al., 2016). This implies a reduction of bacterial

subcultures to perform ID and AST, thus shortening time to results,

as evidenced for urines (Croxatto et al., 2017) and both methicillin-

resistant Staphylococcus aureus (MRSA) and carbapenem-resistant

Enterobacterales screening samples (Cheng et al., 2020).
Incubation

Closed incubators with digital imaging of cultures allow more

rapid growth than conventional incubators that are opened

frequently throughout the day. Moreover, in TLA, plates are fully

tracked as long as they stay within the system, so that it is possible to

define by hours and minutes incubation times and plate

examination in contrast with the traditional system in which

incubation times are defined in days. Burckhardt et al. showed

that first growth of MRSA, multi-drug-resistant (MDR) Gram-

negative bacteria, and vancomycin-resistant enterococci (VRE) on

selective chromogenic plates was visible as early as after 4 h of

inoculation, although the bacterial mass was not sufficient for

follow-up work (Burckhardt et al., 2019). Also, growth of

Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis,

and S. aureus on chromogenic plates was 3 to 4 hours faster in

the automated than in classic system (Moreno-Camacho et al.,

2017). Implementation of BD Kiestra TLA significantly improved

turnaround times (TAT) for positive and negative urine cultures

(Theparee et al., 2017). Similarly, WASPLab automation enabled a

reduction of the culture reading time for different specimens

without affecting performances (Cherkaoui et al., 2019). However,
FIGURE 1

Impact of automation on laboratory, patient, and hospital management.
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minimum incubation times for each type of specimen, for a timely

and accurate positive or negative report, are not yet defined and

additional studies are needed.
Reading

Kiestra LA system, through a real-time dashboard, times tasks

as they are scheduled. Thus, each technician perfectly knows when

the culture plates will be ready for reading and when a follow-up

work can be performed. This strongly facilitates laboratory

workflow management, avoiding wasted time and allowing results

to be delivered to the clinician as soon as possible. In addition, while

in the classical system plates are read one-by-one, digital reading

allows simultaneous viewing of all the plate images from the same

sample, and even of different samples from the same patient. This

greatly facilitates and speeds up the interpretation of culture results,

either for monomicrobial or polymicrobial infections.
ID and AST

The implementation of TLA in clinical microbiology has leveraged

the advancement brought by matrix-assisted laser desorption/

ionization time-of-flight mass spectrometry (MALDI-TOF/MS)

(Thomson and McElvania, 2019; Cherkaoui and Schrenzel, 2022).

Furthermore, Copan’s TLA has recently integrated an automated

device (Colibri™) that can reproducibly prepare the MALDI target

for microbial identification. A recent study conducted by Cherkaoui

et al. established that the WASPLab coupled to MALDI-TOF/MS

significantly reduces the TAT for positive blood cultures (Cherkaoui

et al., 2023). Similarly, the BD Kiestra™ IdentifA/SusceptA, a

prototype for automatic colony picking, bacterial suspension

preparation, MALDI-TOF target plates spotting, and Phoenix™

M50 AST panel preparation, exhibited high ID and AST

performances (Jacot et al., 2021). In particular, the IdentifA showed

excellent identification rates for Gram-negative bacteria, outperforming

manual processing for Enterobacterales identification (Jacot et al.,

2021), but not for streptococci, coagulase-negative staphylococci

(CoNS), and yeasts (Jacot et al., 2021).

Finally, an automated solution for disk diffusion AST was

developed and integrated with the Copan WASPLab system. It

prepares inoculum suspensions, inoculates culture media plates,

dispenses appropriate antibiotic disks according to predefined

panels, transports the plates to the incubators, takes digitalized

images of the media plates, and measures and interprets the

inhibition zones’ diameters. Cherkaoui et al., evaluating 718

bacterial strains including S. aureus, CoNS, E. faecalis,

Enterococcus faecium, P. aeruginosa, and different species of

Enterobacterales, found 99.1% overall categorical agreement

between this automated AST and Vitek2 (Cherkaoui et al., 2021).
Artificial Intelligence

The development of intelligent image analysis based on tailored

algorithms designed on type of specimens and patient characteristics
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allows automated detection of microbial growth, release of negative

samples, presumptive ID, and quantification of bacterial colonies.

This represents a major innovation that has the potential to increase

laboratory quality and productivity while reducing TAT (Croxatto

et al., 2017). Promising results have been obtained on urine samples,

with a 97%–99% sensitivity and 85%–94% specificity by the BD

Kiestra system (Burckhardt et al., 2019). By a different approach, the

WASPLab Chromogenic Detection Module has developed

automated categorization of agar plates as “negative” (i.e., sterile)

or “non-negative”, comparing the same plate at time point zero to

the plate after the established incubation time. With this system,

an optimal diagnostic accuracy in MRSA (Faron et al., 2016a),

VRE (Faron et al., 2016b), and carbapenemase-producing

Enterobacteriaceae (Foschi et al., 2020) detection has been observed.
Other functions of LA

LA can greatly facilitate to implement an effective quality system,

which is required to ensure that reliable results are reported for

patients. LA systems automatically track and record all the useful

information for quality control: user credentials, media (lot number

and expiration date), inoculation (volumes of samples, patterns, and

times of streaking), incubation (atmosphere, temperature, and times)

and imaging (digital images of plates and times) data (Dauwalder

et al., 2016). Thus, a proper integration of LA with laboratory

information system allows for complete traceability of the analytical

process, from sample receipt to the final report.

Moreover, the possibility to access and review any taken image

represents an invaluable tool from a diagnostic point of view (e.g.,

comparing morphology of colonies in recent and old samples from

the same patient) and also for other activities such as monitoring

laboratory quality, teaching, training, and discussing culture results

with colleagues and clinicians.
Impact on patient management

Clinical impact of an assay, a technology, or a modified

workflow can be defined based on its added value for patient

management. In the case of sepsis, this can be measured as time

to targeted therapy and, hopefully, a decrease in the mortality rate.

In manual processing laboratories, the activities are performed in

batches, usually based on the type of sample and of activity

(inoculation, reading, ID, AST, technical validation, and clinical

validation), and the results are usually delivered mostly during the

morning hours. Indeed, a study evaluating the TAT for positive

blood cultures (BC) in 13 US acute care hospitals demonstrated a

significant discrepancy between times of BC collection and

reporting laboratory test results. While only 25% of specimens

were collected between 6:00 a.m. and 11:59 a.m., approximately 80%

of laboratory ID and AST results were reported in this time interval

(Tabak et al., 2018). This can have a negative impact on septic

patient management, delaying clinical decision-making for optimal

targeted therapy.
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In contrast, in automated laboratories, the activity can be

organized according to lean principles, creating a continuous

“flow” and producing “just-in-time” results. De Socio et al.

evaluated the impact of LA on septic patient management.

Positive BC were processed by fully automatic inoculation on

solid media and digital reading after 8 h of incubation, followed

by ID and AST. The authors found that a reduction of time to report

(TTR) of about 1 day led to a significant reduction of the duration of

empirical therapy (from approximately 87 h to approximately 55 h)

and of 30-day crude mortality rate (from 29.0% to 16.7%) (De Socio

et al., 2018).

Therefore, provided that the laboratory is open 24 h a day, or

taking advantage of telemedicine systems for clinical validation, LA

has a potential great impact on patient management. However, the

success of such organization lies in the responsiveness of the

medical teams, who should act upon the results soon after

delivery by the laboratory (Vandenberg et al., 2020).
Impact on hospital management

LA can improve the laboratory ability to characterize MDRO

and produce quality results, permitting a more standardized

workflow, and leaving more time for laboratory staff to focus on

second-level phenotypic and/or genotypic tests. Indeed, the large

diffusion of MDRO and the expanding spectrum of resistance

mechanisms among pathogens pointed out the limitations of

commercial routine methods for susceptibility testing of selected

antibiotics, increasing the demand for cumbersome and time-

consuming reference methods. For example, in the case of

MDRO Gram-negative isolates, colistin MIC should be

determined by the broth microdilution method (Kulengowski

et al., 2019); fosfomycin MIC, by the agar-dilution method

(Camarlinghi et al., 2019); and cefiderocol, a novel siderophore-

conjugated cephalosporin, by the broth microdilution method using

an iron-depleted cation-adjusted Mueller-Hinton broth (Simner

and Patel, 2020). Moreover, in the case of detection of

uncommon resistance phenotypes, molecular methods, gene

sequencing, or other next-generation sequencing methods are

often required (Antonelli et al., 2019).

Accuracy is not sufficient per se for a result to be useful.

Information must be given to clinicians or other healthcare

providers (e.g., pharmacists and the patient’s primary care nurse)

as quickly as possible. Timely report can affect hospital conditions

in at least two ways: permitting to rapidly control the spread of

MDRO (contact precautions, investigation of clusters of colonized/

infected patients) and reducing the duration of broad-spectrum

antibiotic therapy (positive results) or unnecessary empiric

antibiotic therapy (negative results).

In a study proposing a cumulative antimicrobial resistance

index as a tool to predict antimicrobial resistance (AR) trend in a

hospital, a reversion of AR trend was observed in 2018, in

comparison with the 2014–2017 period (De Socio et al., 2019).

The authors speculate that this could have been a consequence of

some changes in the management of infections in their hospital: (i)

incubation of all BC within 1 h from collection using satellite
Frontiers in Cellular and Infection Microbiology 04
incubators, (ii) a significant reduction in TTR after the introduction

of molecular technologies and LA, and (iii) an established close

collaboration between infectious disease clinicians and clinical

microbiologists (De Socio et al., 2019).

Finally, Culbreath et al. demonstrated that the implementation

of TLA increased laboratory productivity by up to 90%, while

reducing the cost per specimen by up to 47%, provided an

excellent elaboration of the efficiencies and cost-savings is

achievable by implementation of full LA in the bacteriology

laboratory (Culbreath et al., 2021).
Possible improvements

A detailed wish list of technical issues to be evaluated in order to

improve the performance and workflow of LA systems has been

recently published (Burckhardt, 2018). Here, we will focus on facts

that, in our opinion, could affect laboratory, patient, and

hospital management.

To facilitate the reading of the plates according to a patient-

centered approach, it would be useful to view the specimens’ Gram

stains in the same screen of cultured plates. The images could also

be shared with clinicians, improving clinician–microbiologist

interplay. Further improvement can be made by automated

microscopy systems, which can significantly reduce the workload

of the technical staff (Zimmermann, 2021).

The availability of digital images lays the foundation for

telebacteriology, intended as the use of digital imaging and file

storage for on-screen reading and decision-making (Croxatto et al.,

2016). It makes it possible to geographically dissociate plate

manipulation from reading and validation of the results. This

could promote the microbiologist counseling activity and

interaction with clinicians, as the images could be shared between

consultants located at different sites. Also, it could support a 24/7

laboratory activity, allowing the plates to be read outside the

laboratory in a hub-laboratory or even at home, with follow-up

work performed in real time where the plates are incubated.

To make these technological innovations fully operational, a

middleware information technology (IT) solution is needed to

connect all the laboratory instruments (Zimmermann, 2021).
Discussion

The main reason to introduce automation in a laboratory is to

increase productivity and to face limited budgets and personnel

shortages. However, implementation of LA can represent an

exceptional opportunity to change laboratory organization,

improve quality, and reduce TTR, with a potential positive impact

on laboratory, patient, and hospital management.

One of the most relevant innovations of LA regards the reading

phase, with the possibility to read simultaneously all the plates

inoculated from one of even more samples from the same patient.

Moreover, taking advantage of informatics, it is also possible to view

patient microbiological, hematological, and even clinical and

therapeutic data while reading the plates. This patient-oriented
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approach provides meaningful clinical interpretation of results and

decision-making.

By continuously tracing all the analytical steps, LA ensures that

the microbiologist knows in real time the work to be carried out.

This concept fully adheres to the so-called “lean” organization that,

initially envisaged for industry (Womack et al., 1990), is

increasingly applied to healthcare processes. “Lean” means to do

only valuable activities, without any delay, avoiding “waste” or

unnecessary work. This implies a dramatic revolution in the

mentality of microbiologists, transitioning from exclusively

sample-centered laboratory work towards a more clinically

oriented activity, shortening TTR and prioritizing diagnosis of

time-dependent infections. Taking advantage of workflow

optimization, about 24 h reduction in TTR has been observed for

positive BC processed by LA, with a significant decrease of duration

of empirical therapy and mortality (De Socio et al., 2018). Similar

results were observed for urines (Yarbrough et al., 2018) and nasal

MRSA surveillance (Burckhardt et al., 2018) and all types of

specimens (Croxatto et al., 2017; Theparee et al., 2017).

An artificial intelligence algorithm to interpret culture results is

another important tool applicable to LA: automated reporting of

negative samples can be done without delay and further human

assistance, so that clinicians can receive earlier results to rule out

MDRO colonization or a urinary tract infection and reduce the

need for patient isolation or antibiotic treatment (Faron et al.,

2016a; Faron et al., 2016b; Cherkaoui and Schrenzel, 2022).

Beside LA, a variety of technologies are revolutionizing clinical

microbiology. These include MALDI-TOF MS (Seng et al., 2009),

time-lapse microscopy for ID and phenotypic AST (Charnot-

Katsikas et al., 2018), molecular diagnostic tests and syndromic

panels (Arena et al., 2017; Trotter et al., 2019), and next-generation

sequencing (Mitchell and Simner, 2019; Pitashny et al., 2022). All of

them can significantly improve the diagnosis and therapy of

infections, but as stated above, they are primarily complementary

to culture (Trotter et al., 2019). Thus, in an advanced laboratory, the

goal will be to implement the use of all these technologies in a

coordinated and timely program of diagnostic stewardship (DS).

For example, for active surveillance of MDRO, both molecular and

culture methods should be available in the laboratory (Anandan

et al., 2015). Indeed, active surveillance of carbapenem-resistant

Enterobacteriaceae can limit and prevent their spread and

infections, which is crucially relevant to AS (Ambretti et al.,

2019). In high-risk patients, rapid molecular methods are more

appropriate, but cannot replace culture-based methods, as the latter

can detect all types of carbapenem-resistant organisms, perform

phenotypic susceptibility testing, and collect and store the isolates

(Ambretti et al., 2019). An interesting algorithm, based on a multi-

parametric score including clinical, microbiological, and

biochemical parameters, has been recently proposed to establish

patient priority, including information on infection or colonization

by MDRO (Mangioni et al., 2019). It is reasonable to think that by

combining DS and AS programs with a strict collaboration between

laboratory and clinicians, the impact of modern microbiology on

the management of infection can progressively increase.

In this line, rapid and effective communication from laboratory

to wards and back is essential for optimal patient care. A recent
Frontiers in Cellular and Infection Microbiology 05
study showed that many barriers exist, like verbal reporting of

results, poorly integrated information systems, mutual lack of

insight into each other’s area of expertise, and limited laboratory

services (Skodvin et al., 2017). Electronic reporting improves

communication between microbiologists and clinical staff, but a

sort of alarm for the right physician (i.e., the treating clinician, an

infectious diseases specialist, or a sepsis team member) to look up

the data immediately should be integrated. Nevertheless, we believe

that direct microbiologist/clinician interplay remains crucial for an

optimal patient management: positive BC, detection of MDRO,

isolation of alert organisms from sterile fluids, and acid-fast bacilli

in respiratory samples must be immediately reported to someone

who will act on the results.

Moreover, as microbiological methods become increasingly

sophisticated, good clinical practice should be for the microbiologist

to report the results with comments to facilitate the clinician’s

interpretation of the significance of the data (Arena et al., 2017). In

our experience, after LA implementation, a closer relationship with

clinicians has been established, providing an opportunity to convey

insight into microbiology and microbiological work processes to

clinical staff. On the other hand, patients are increasingly complex

and heterogeneous andmanagement of severe andMDRO infections is

challenging, often requiring a multidisciplinary approach for optimal

personalized diagnostics and therapy (Tiseo et al., 2022). Therefore, to

integrate DS with AS, microbiologists should broaden their knowledge

of patient care by working closely with physicians.

Information from the microbiology laboratory is essential for the

control and management of infections in a hospital. In particular,

timely and accurate data on the antibiotic susceptibility profiles for

pathogens isolated from different wards and on MDRO colonization/

infection are the basis for setting up hospital infection control and AS

programs, which can ultimately affect patient outcome.

Unfortunately, laboratories are not always able to provide timely

information due to lack of specific expertise, personnel, user-friendly

software, and optimized workflow practices. The implementation of

LA and informatics can support integration into routine practice

monitoring specimens’ quality, isolation of specific pathogens, alert

reports for infection control practitioners, and real-time collection of

lab trend data, all essential for the prevention and control of

infections and epidemiological studies.

In conclusion, timely, accurate, and clinically relevant

information is the basis for prevention and treatment of

infections. LA and informatics can greatly improve the accuracy

of diagnostic procedures, TTR, and laboratory workflow. However,

to exploit these technologies for the benefit of the patients, clinical

microbiologists need to change their way of working, according to a

lean workflow and a patient-centered approach, and their way of

thinking, working more closely with clinical staff.
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