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Background: Evidence supports an observational association between the

gut microbiome and susceptibility to extraintestinal cancers, but the causal

relationship of this association remains unclear.

Methods: To identify the specific causal gut microbiota of oral and

oropharyngeal cancer , we performed two-sample Mendel ian

randomization (MR) analysis of gut microbiota on oral and oropharyngeal

cancer using a fixed-effects inverse-variance-weighted model. Gut

microbiota across five different taxonomical levels from the MiBioGen

genome-wide association study (GWAS) were used as exposures. Oral

cancer, oropharyngeal cancer and a combination of the two cancers

defined from three separate data sources were used as the outcomes.

Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per

standard deviation (SD) higher abundance of microbiome.

Results & Conclusions: There was little evidence for a causal effect of gut

microbiota on oral and oropharyngeal cancer when using a genome-wide p-

value threshold for selecting instruments. Secondary analyses using a more

lenient p-value threshold indicated that there were 90 causal relationships

between 58 different microbial features but that sensitivity analyses

suggested that these were possibly affected by violations of MR

assumptions and were not consistent across MR methodologies or data

sources and therefore are also to unlikely reflect causation. These findings

provide new insights into gut microbiota-mediated oral and oropharyngeal

cancers and warrant further investigation.
KEYWORDS

gut microbiome, oral cancer, oropharyngeal cancer, Mendelian randomization,
meta-analysis
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Introduction

Head and neck cancer is the sixth most common cancer

worldwide (Warnakulasuriya, 2009), with oral and oropharyngeal

cancers being the most common subtypes. Tobacco and alcohol

consumption (Hashibe et al., 2009), human papillomavirus (HPV)

infection (Ang et al., 2010), and specific sexual behaviors (Heck

et al., 2010) have been recognized as oral and oropharyngeal cancer

risk factors. Recently, there has been growing recognition of links

between cancer and the microbiome; in particular, cancer-

associated biomarkers have been observed in the gut microbiome

(Cullin et al., 2021). The gut microbiota is a collection of bacterial

species present in the intestinal tract. The roles of gut microbes in

tumors can be divided into local and distal roles (Matson et al.,

2021). In addition to the prominent role that specific gut microbes

possess in local carcinogenesis, gut microbes can also alter the host’s

overall immune system, leading to cancer (Castellarin et al., 2012;

Amieva and Peek, 2016). There is a natural anatomical barrier

between intestinal microorganisms and the intestinal epithelium,

primarily composed of goblet cells that secrete intestinal mucus

(Kim and Ho, 2010) and Paneth cells that produce antimicrobial

peptides (Salzman et al., 2007). Therefore, the contact between

intestinal microorganisms and the immune system is limited.

However, specific microorganisms affect the integrity of the gut

barrier. When this integrity is disrupted, an increased number of

carcinogens circulate through the impaired gut barrier (Rajagopala

et al., 2017); furthermore, inflammation or immunosuppression are

induced, playing an indirect role in promoting cancer (Yu and

Schwabe, 2017). An example illustrating this distal role is that the

gut microbiota can promote hepatocellular carcinoma and

pancreatic cancer growth/progression/invasion and metastasis,

which contain no known microbiome, by elevating cancer-

promoting inflammatory microbial-associated molecular patterns

such as lipopolysaccharides (Dapito et al., 2012; Ochi et al., 2012).

The administration of probiotics to regulate the immune system

is a potential antitumor strategy (Vétizou et al., 2015). Gut microbes

can modulate immunity by regulating the primary and secondary

lymphoid organs of the intestinal epithelial barrier, thereby affecting

the tumor microenvironment (Gopalakrishnan et al., 2018). An

association between gut microbes and intestinal tumor

susceptibility has been previously reported (Yachida et al., 2019).

Gut microbiota have been shown to affect the body’s immune

response by regulating immune cell function, affecting

inflammatory response, regulating immune tolerance (Zhou et al.,

2021), and producing metabolites (Zhang et al., 2019). However, the

causal relationship between the gut microbiota and parenteral

tumors, especially oropharyngeal and oral cancers, remains unclear.

Mendelian randomization (MR) is a statistical method used to

assess the causal relationship between exposure and outcome, based

on instrumental variables (genetic variants) which can be viewed as

a natural analog of randomized controlled trials (RCTs). In contrast

to traditional gold-standard RCTs, participants are assigned

according to their genotype, reducing the impact of reverse

causality and confounding factors such as ethical and

socioeconomic factors. Therefore, we aimed to investigate

whether the gut microbiota is causally related to oral and
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oropharyngeal cancers using two-sample MR which uses

summary-level data, typically from genome-wide association

studies (GWASs).
Methods

Study design and data sources

Our MR analysis used gut microbiota features as the exposure

data and oral and oropharyngeal cancer data as the outcome

(Figure 1). The original investigation was conducted after

obtaining ethical approval for each study included in the MR

analysis. Genome-wide association study (GWAS) data for the

gut microbiota were obtained from the MiBioGen study

(Kurilshikov et al., 2021) and the oral and oropharyngeal cancer

data were obtained from the MRC IEU OpenGWAS data resource

(Elsworth et al., 2020). The original oral and oropharyngeal cancers

data were released from OncoArray Oral Cavity and Oropharyngeal

Cancer Consortium (Lesseur et al., 2016) and UK Biobank

(Burrows et al., 2021). The MiBioGen consortium includes 24

cohorts and totals 18340 participants. In each cohort, the gut

microbiome is analyzed through 16S rRNA sequencing using

Illumina platforms (MiSeq or HiSeq), while the participants

undergo genotyping using whole-genome SNP arrays. All
FIGURE 1

The whole workflow of MR analysis.
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outcomes were based on European ancestry. Each outcome data

source we used contained three outcomes: oral cancer,

oropharyngeal cancer, and their combination. The OncoArray

study comprised a cohort of 6,034 cases and 6,585 controls. The

number of cases and controls in North America were 2549 (42.2%

of total cases) and 2522 (38.3% of total controls), respectively. In

Europe, 2499 cases (41.4% of total cases) and 2928 controls (44.5%

of total controls) were reported. For Hispanic or Latin American,

OncoArray included 986 cases (16.3%) and 1135 controls (17.2%).

Because our MR Study was limited to European populations and gut

microbial exposures were not available with respect to Hispanic or

Latin American populations, we therefore excluded outcomes if

they were Hispanic or Latin American from the study which were

restricted to only those of North American and European ancestry.

Given the ethnic diversity, Lesseur et al. evaluated associations

within continent (Europe, North and South America) using

multivariate unconditional logistic regressions under a log-

additive genetic model adjusted for age, sex and regional

eigenvectors. Genotyping of 13,107 individuals was conducted

using Illumina platforms across 12 epidemiological studies. After

rigorous quality control measures, a total of 6,034 cases and 6,585
Frontiers in Cellular and Infection Microbiology 03
cancer-free controls were included in the final analysis, 4839 cases

and 5257 controls of which were of European decent and therefore

were used in this MR analysis. Whole-genome imputation was

performed using the Haplotype Reference Consortium panel,

resulting in approximately 7 million high-quality imputed

variants. The UK Biobank began in 2006 by recruiting

approximately 500,000 participants between the ages of 38 and

73. Participants completed a series of questionnaires that provided

detailed personal and lifestyle information. In addition, participants

provided biospecimens, including blood, urine, and saliva, which

were subsequently sequenced for genome sequencing and

genotyping using the Illumina sequencing platform in the UK

Biobank. Details of outcomes are provided in Table 1. The

number of total cases of oral and oropharyngeal cancer combined

and controls of the UK Biobank were 839 and 372016, respectively.
Selection of instrumental variables

We initially extracted instrumental variables using a genome-

wide association study p-value threshold of 5e-08. Subsequently,
TABLE 1 Outcome GWAS samples used in this study.

GWAS
ID

Trait Consortium Sample
size

Number
of SNPs

Population ncase ncontrol PMID/DOI

ieu-b-89 Oral cavity and
pharyngeal
cancer

OncoArray oral
cavity and
oropharyngeal
cancer

5,425 7,514,278 European
(Geographic
region: Europe)

2,497 2,928 27749845

ieu-b-94 Oral
cavity cancer

OncoArray oral
cavity and
oropharyngeal
cancer

4,151 7,510,833 European
(Geographic
region: Europe)

1,223 2,928 27749845

ieu-b-96 Oropharyngeal
cancer

OncoArray oral
cavity and
oropharyngeal
cancer

4,018 7,508,444 European
(Geographic
region: Europe)

1,090 2,928 27749845

ieu-b-90 Oral cavity and
pharyngeal
cancer

OncoArray oral
cavity and
oropharyngeal
cancer

4,671 7,510,261 European
(Geographic
region:
North America)

2,342 2,329 27749845

ieu-b-93 Oral
cavity cancer

OncoArray oral
cavity and
oropharyngeal
cancer

3,464 7,506,142 European
(Geographic
region:
North America)

1,135 2,329 27749845

ieu-b-97 Oropharyngeal
cancer

OncoArray oral
cavity and
oropharyngeal
cancer

3,448 7,506,485 European
(Geographic
region:
North America)

1,119 2,329 27749845

ieu-
b-4962

Oral and
oropharyngeal
cancer

UK Biobank 372,855 9,185,233 European 839 372,016 10.5523/
bris.aed0u12w0ede20olb0m77p4b9

ieu-
b-4961

Oral
cavity cancer

UK Biobank 372,373 7,723,107 European 357 372,016 10.5523/
bris.aed0u12w0ede20olb0m77p4b9

ieu-
b-4968

Oropharyngeal
cancer

UK Biobank 372,510 8,283,869 European 494 372,016 10.5523/
bris.aed0u12w0ede20olb0m77p4b9
GWAS, Genome-wide association study; ncase, Number of case; ncontrol, Number of control; PMID, ID of study in Pubmed; DOI, Digital Object Identifier.
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Kurilshikov et al. identified a total of 30 quantitative SNP-feature

associations through mbQTL analysis (Kurilshikov et al., 2021).

After conducting the main Mendelian randomization (MR) analysis

for these exposures, we further performed a secondary analysis

using a more lenient threshold criteria, specifically, we extracted five

levels of GWAS summary data of exposure (phylum, class, order,

family, and genus) derived from MiBioGen, where the number of

features were 9, 16, 20, 35, and 131 respectively. Single-nucleotide

polymorphisms (SNPs) smaller than the p-value threshold within

the locus-wide range (1 × 10-5) were selected as instrumental

variables according to a previous study (Sanna et al., 2019). One

MR principle is that there is no linkage disequilibrium (LD)

between the included instrumental variables, as a strong LD may

lead to biased results, for strong LD may bias the results by genetic

confounding or overestimating the association between the genetic

variants used and the exposure and outcome. In this study, the

SNPs were clumped within each phenotype, clumping processing

(R2< 0.1, clumping distance = 500 kb) (Ni et al., 2021) was

performed to evaluated LD among the SNPs used to instrument

each phenotype separately, where SNPs in LD were removed and

the strongest (i.e., that with the smallest p-value) was retained for

MR analyses.
Assumptions

The two-sample MR study relies on three critical assumptions

to minimize bias. First, the genetic instruments used were robustly

associated with exposure. Second, there is no confounding factor

between the instrument and the outcome. Third, instrumental

variables affected the outcomes only through exposure, meaning

that there was no horizontal pleiotropy effect between instrumental

variables and outcomes.
Statistical methods and multiple
testing correction

When combining summarized data on genetic associations, it is

necessary to ensure that genetic associations are expressed per

additional copy of the same allele. If a genetic variant is a biallelic

single nucleotide polymorphism (SNP) with alleles A and G on the

positive strand, then the corresponding base pairs on the negative

strand will be T and C. In this case, one dataset may report the

association per additional copy of the A allele, and another per

additional copy of the T allele – but the same comparison is being

made. Allele and strand information can be double-checked by

comparing allele frequency information – if the allele frequencies

are similar for the A and T alleles, this means that this is a strand

mismatch. For palindromic variants – if the alleles were A and T (or

C and G), then the same alleles would appear on both the positive

and negative strands. In such a case, if the allele frequency is close to

50%, it may be necessary to drop the variant from the analysis if it is

not possible to verify that the alleles have been correctly orientated.

While this is a conservative recommendation, allele alignment

problems have led to incorrect results in MR analyses. Therefore,
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palindromic SNPs with intermediate (i.e., 0.42%) frequencies were

discarded. Analytical methods used included the Wald ratio and

inverse variance weighted (IVW) estimators (Burgess et al., 2013).

The Wald ratio estimates the causal effect of the exposure on the

outcome using a single instrumental variable (IV). When horizontal

pleiotropy is absent, IVW results are considered robust. In general,

the Wald ratio was used for the analysis with only one SNP and the

IVW method was used for the analysis with multiple SNPs The

IVW has the strictest assumptions; therefore, this method was

considered the main analytical method, to which results from all

other methods were compared. Effect estimates and 95% confidence

intervals (CIs) reflect the odds ratios (ORs) for disease per standard

deviation (SD) higher abundance of microbiome.

In our study, we chose not to apply multiple testing correction

in both primary and secondary analyses due to the complex

interactions and correlations among microbial features. Although

multiple testing correction is common in many studies, we believe

that it might be overly stringent in this context, potentially

obscuring true causal relationships. This decision is grounded in

the complexity of the microbial ecosystem, where microbes often

influence each other. Given these interactions, applying multiple

testing correction to each microbial feature may be overly

conservative and might obscure some signals that have genuine

causal relationships.
Colocalization analysis

Colocalization analysis is commonly employed to ascertain

whether two phenotypes are driven by the same causal variant

within a particular genomic region, thereby bolstering evidence for

the association between the two phenotypes. For colocalisation

analyses, we extracted SNPs that fell within a 500 kb window

upstream and downstream of the SNP used as an instrument for

the microbial feature from both the microbiome and oral cancer

GWAS datasets. To be more specific, we acquired GWAS summary

data from theMRC IEUOpenGWAS data resource. Using the SNPs

extracted during the primary MR analysis, we queried their

chromosomal number and position within the PheWAS - IEU

OpenGWAS project (mrcieu.ac.uk). With this positional

information, we adjusted the numerical value by either adding or

subtracting 500,000 to establish a positional range spanning 500kb

upstream and downstream. With the chromosome number and

positional range, we then conducted a filter operation on the GWAS

summary data previously downloaded, resulting in the final

selection of SNPs located within a 500kb radius both up and

downstream of the instrument. The number of extracted SNPs is

shown in Supplementary Table 2.

Specifically, we used the SNP positions that satisfy the threshold

criteria and fall within a 500 kb window upstream and downstream

as candidate SNPs for extraction in both exposure and outcome

traits for colocalization analysis. Colocalization analysis involves

five mutually exclusive model assumptions, namely: H0: no

association exists between all SNP loci within a genomic region

and both the exposure and outcome; H1/H2: significant association

exists between the exposure/outcome, respectively, and SNP loci
frontiersin.org
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within a genomic region; H3: association exists between both

exposure and outcome and SNP loci within a genomic region,

driven by distinct causal variants; H4: association exists between

both exposure and outcome and SNP loci within a genomic region,

driven by the same causal variant. During the colocalization

analysis, posterior probabilities (PP.H0-PP.H4) are generated for

each of these models. The sum of the posterior probabilities for the

five models equals 1. A higher posterior probability for a specific

model indicates a higher likelihood of that model assumption being

valid given the data. We considered the model assumption to be

valid when the posterior probability of that model was greater than

0.80. Priors are as follows: p1: prior probability a SNP is associated

with microbiome trait, default is 1e-4; p2: prior probability a SNP is

associated with outcome, default is 1e-4; p12: prior probability a

SNP is associated with both exposure and outcome, default is 1e-5.

Our colocalization analysis was based on any result obtained

from the primary MR analysis that suggested a causal effect of an

exposure the OncoArray outcomes. First, we identified SNPs within

a 500kb range for both exposure and outcome, and then merged the

data based on their rsID, aligning effect alleles. We calculated the

variance (VAR) after splitting and cleaning the data by removing

missing values, specifying phenotype types: binary phenotype as

“cc” (for outcomes) and continuous phenotype as “quant” (for

exposure). We conducted colocalization analysis using the “coloc”

package and genera ted locus zoom plots us ing the

“locuscompare” package.
Assessment of assumptions

We approximated the variance explained in each gut microbial

trait by the respective associated genetic instruments using the

following Equation 1 (Shim et al., 2015; Papadimitriou et al., 2020):

R2 =
ð2� EAF � ð1 − EAFÞ � beta2Þ

(2� EAF � (1 − EAF)� beta2) + (2� EAF � (1 − EAF)� N � SE2)
(1)

In this context, EAF represents the frequency of the effect allele,

beta signifies the estimated genetic impact on exposure, N stands for

the sample size of the GWAS concerning the association between the

SNP and exposure, and SE represents the standard error of the genetic

effect. Since EAF was not available for raw data on gut microbes, we

inquired the allele frequency (GRCh37) of each SNP through the 1000

genome project (https://www.internationalgenome.org/1000-genomes-

browsers/index.html). The power of our MR analyses was assessed

using the online calculator mRnd (https://shiny.cnsgenomics.com/

mRnd/).
Sensitivity analyses

Maximum likelihood (Pierce and Burgess, 2013), MR-Egger

(Bowden et al., 2015), weighted median (Bowden et al., 2016),

weighted mode, and MR-PRESSO (Verbanck et al., 2018) were used

to infer potential causality. The Maximum likelihood (ML) method

bears resemblance to IVW, provided there is no presence of
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heterogeneity and horizontal pleiotropy. If these assumptions

hold true, the outcomes will remain unbiased, and the standard

errors will be smaller compared to IVW (Yavorska and Burgess,

2017). We used the MR-Egger intercept term to assess pleiotropy.

In the presence of horizontal pleiotropy, the MR-Egger effect

estimate is a more accurate representation of the unbiased causal

effect. If this intercept term was close to zero, then the MR-Egger

regression model would be similar to the IVW model. However, if

the intercept term was different from zero, it indicates that there

may have been horizontal pleiotropy among these IVs. The

weighted median can provide consistent estimates of causal

effects, providing<50% of SNPs are invalid. We assessed the

robustness of the results using sensitivity analysis and tested

heterogeneity using Cochran’s Q-test in the IVW test and MR-

Egger regression. We conducted MR-PRESSO tests to correct for

horizontal pleiotropic effect by removing the IV outliers. MR-Egger

regression was used to estimate the effect of pleiotropy; it produced

a more robust pleiotropy-corrected causal estimate under the

assumptions of no measurement error and instrument strength

independent of direct effects (Burgess and Thompson, 2017). Leave-

one-out analysis was used to determine whether the original causal

effect was driven by a single SNP. We also used the MR Steiger test

to examine evidence for directionality in the relationship (i.e., that

the exposure caused the outcome rather than the reverse) by

comparing the variance explained in the exposure and outcome

by the exposure-related IV (Hemani et al., 2017). Furthermore, we

assessed instrument strength using the F statistic (Burgess and

Thompson, 2011), calculated using the Equation 2:

F =
R2ðN − k − 1Þ
k(1 − R2)

(2)

where R2 represents the variance of exposure explained by the

selected SNPs, N is the sample size, and k represents the number of

instrumental variables. If F< 10, indicating a higher likelihood of

weak instrument bias, the association between instrumental

variables and exposure was considered weak.
Meta-analyses

We had three outcome datasets: OncoArray (including North

American and European individuals treated as separate data

sources) and the UK Biobank. The meta-analysis involved meta-

analysing the IVW-specific estimates of the microbial features on

the same outcomes across different datasets. The meta-analysis

employed both a random-effects model and a fixed-effects model,

and was conducted using the meta-package in R. Heterogeneity

between studies was assessed using I2 and associated p-value. We

first determined whether the direction of the effect size for each

microbial feature was consistent across the different methods within

each data source. If the direction was consistent across methods, we

conducted a meta-analysis. If the effect size direction for a particular

microbial feature differed among methods for any of the three data

sources, then meta-analysis was not performed for that

microbial feature.
frontiersin.org

https://www.internationalgenome.org/1000-genomes-browsers/index.html
https://www.internationalgenome.org/1000-genomes-browsers/index.html
https://shiny.cnsgenomics.com/mRnd/
https://shiny.cnsgenomics.com/mRnd/
https://doi.org/10.3389/fcimb.2023.1210807
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2023.1210807
Software and pre-registration

Analysis was performed using R software (version 4.0.2; R

Foundation for Statistical Computing, Vienna, Austria), with the

R packages “TwoSampleMR” (version 0.5.6) (Hemani et al., 2018)

and “MRPRESSO” (Verbanck et al., 2018). We followed STROBE-

MR (guidelines for strengthening the reporting of observational

studies in epidemiological studies using MR to report our results

(Skrivankova et al., 2021).
Results

Primary MR analysis

We employed a genome-wide association study p-value

threshold of 5e-08 to extract instrumental variables. Our results

are consistent with those of Kurilshikov et al., as a total of 30 SNPs

associated with 27 microbial phenotypes were extracted

(Kurilshikov et al., 2021). Among these, genus Intestinibacter,

genus RuminococcaceaeUCG009, and genus CandidatusSoleaferrea

yielded one extracted SNP each (rs10805326, rs8009993, and

rs830151, respectively), yet no corresponding SNP was found in

the outcome. Conversely, for genus Peptococcus, genus Enteror-

habdus, genus Ruminococcus1, and genus Faecalibacterium, the sole

SNPs (rs75754569, rs11098863, rs10769159, and rs12320842,

respectively) were discarded for being palindromic with

intermediate allele frequencies.

We proceeded to perform MR analysis on the remaining 20 gut

microbial features. Wald ratio results indicated that order

Gastranaerophilales, family Gastranaerophilales, and genus

Gastranaerophilales exhibited carcinogenic effects on oral and

oropharyngeal cancer in the North American population from

OncoArray with odds ratios (ORs) per standard deviation (SD)

higher abundance of 2.610 [1.124-6.061] (oral and oropharyngeal

cancer) and 3.609 [1.232-10.568] (oropharyngeal cancer). However,

these effects were inconsistent across multiple data sources, as the

causal effect directions of order Gastranaerophilales, family

Gastranaerophilales, and genus Gastranaerophilales varied across

different data sources (Supplementary Table 1). Subsequently, we

conducted colocalization analysis on these 30 SNPs, revealing that

none of the PP.H4 values exceeded 0.80, providing limited evidence in

support of the hypothesis that “exposure and outcome are associated

with SNP loci within a genomic region, driven by the same causal

variant.”(Supplementary Table 2) (Supplementary Figure 1).
Secondary MR analysis

Subsequently, we conducted analyses using a more lenient p-

value threshold. We extracted five levels of GWAS summary data

on exposure derived from MiBioGen. After the removal of

palindromic SNPs, clumping, and harmonization of the data, the

number of SNPs associated with the microbial traits that were

available in the outcome data ranged from 4 to 22; the microbial
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trait associated with the fewest SNPs was the genusHungatella, with

four SNPs extracted, and the microbial trait associated with the

most SNPs was the class Actinobacteria, with 22 SNPs extracted

(Supplementary Table 3). The R2 and F-statistic values for the

exposures are summarized in Supplementary Table 4. The R2 values

for all SNPs of exposure were greater than the corresponding R2 for

the SNPs of the outcome. The F-statistics for all exposures were

greater than 10, indicating little evidence for weak instrument bias,

which demonstrated that all SNPs had sufficient validity.

A secondary MR analysis provided evidence for causal

relationships between 90 (includes 58 microbiota signatures) and

oral cancers across the three data sources. There were 13, 15, and 17

microbiota features that caused a change in risk of oral cancer,

oropharyngeal cancer, and combined oral and oropharyngeal

cancer in the European population, respectively (Supplementary

Figures 2-13), and nine, three, and eight microbiota features that

caused a change in risk of oral cancer, oropharyngeal cancer, and

combined oral and oropharyngeal cancer in the North American

population, respectively (Supplementary Figures 14-25). The

number of features that possessed causal relationships with oral

cancer, oropharyngeal cancer, and combined oral and

oropharyngeal cancer in the UK Biobank data were 10, 5, and 10,

r e s p e c t i v e l y ( S u p p l e m e n t a r y F i g u r e s 2 6 - 3 7 )

(Supplementary Table 3).

We present the results of microbiota signatures with causal

effects on oral or oropharyngeal cancer in combined oral and

oropharyngeal cancer data, for these estimates were consistent in

terms of direction of effect in all methods. For the European region,

genus Hungatella (OR=2.735, [1.565;4.78] (Oropharyngeal

cancer)), and Parabacteroides were risk factors, whereas the genus

Alistipes and Eubacterium coprostanoligenes group, phylum

Lentisphaerae (OR=0.448, [0.292;0.686] (Oropharyngeal cancer)),

class Lentisphaeria, and order Victivallales were protective

factors (Figure 2A).

In North American populations, one protective factor (genus

Butyrivibrio) (OR=0.784, [0.619;0.991] (Oral cavity and

oropharyngeal cancer)), and one risk factor (genus Eubacterium

xylanophilum group) (OR=2.223, [1.129;4.376] (Oral cavity cancer))

were causally associated with combined oral and oropharyngeal

cancers and oral or oropharyngeal cancer (Figure 2A).

In the UK Biobank data, there were seven microbial

characteristics were associated with outcomes, among which class

Betaproteobacteria, order Burkholderiales(OR=1.001, [1.000;1.002]

(Oral cavity cancer)) were risk factors, whilst class Actinobacteria,

family Bifidobacteriaceae, genus Bifidobacterium(OR=0.998,

[0.998;0.999](Oral and oropharyngeal cancer)) and Butyrivibrio,

and order Bifidobacteriales were protective factors. (Figure 2B).

Unfortunately, none of the signatures were consistent across the

three data sources. However, there were 7 signatures that were

consistent across the two data sources, including class Lentisphaeria

(European region and North American region of OncoArray),

genus Butyrivibrio (North American region of OncoArray and

UK Biobank), order Bacillales (European region of OncoArray

and UK Biobank), order Bifidobacteriales (European region of

OncoArray and UK Biobank), order Burkholderiales (North
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American region of OncoArray and UK Biobank), order

Victivallales (European region and North American region of

OncoArray), family Bifidobacteriaceae (European region of

OncoArray and UK Biobank). We compared the direction of the

resulting effect size for the 20 exposures in the main analysis with

the direction of the effect size obtained after the use of the lenient

threshold criteria. Among the 180 causal relationships examined,

113 exhibited consistent effect directions in the secondary MR

analysis following lenient threshold criteria. Of the 20 phenotypes

assessed in the main analysis, none had directionally consistent

effect estimates across main and secondary analyses across all

methods in 9 outcomes. Notably, genus Tyzzerella3 and genus

Romboutsia maintained consistent directions for 8 effect estimates

after the secondary analysis. The direction of effect for

Gastranaerophilales on oral cavity and pharyngeal cancer and

oropharyngeal cancer (Both from North American region of

OncoArray) was the same as the direction of effect for

Gastranaerophilales in the secondary analysis across all methods

(Supplementary Table 1).
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Sensitivity analyses

The results of Cochran’s Q test suggested that there was little

evidence of heterogeneity, where all p-values were greater than 0.05.

The horizontal pleiotropy between instrumental variables and

outcomes was assessed using the MR-Egger regression. There was

little evidence of horizontal pleiotropy was found (Supplementary

Table 4). MR-PRESSO global test results showed the presence of

outliers only in the genus Veillonella analysis of Oral and

oropharyngeal cancer (UK Biobank). After excluding outliers, the

MR-PRESSO results showed that there was no evidence for a causal

effect of Veillonella on either cancer. Additionally, the leave-one-out

analysis showed that none of the identified causal associations were

driven by any single IV. (Supplementary Figures 2–37).

In our secondary MR Analysis, 18 causal relationships (17

microbial traits) were found to be inconsistent in the direction of

causal effects among different methodologies (Supplementary

Table 3), so these causal relationships were excluded from the

subsequent meta-analysis. There were 72 causal relationships (50
A

B

FIGURE 2

Features that causally associated with oral and oropharyngeal cancer of OncoArray and UK Biobank.(A) Forest plot of features that causally
associated with Oral and oropharyngeal cancer of OncoArray; (B) Forest plot of features that causally associated with Oral and oropharyngeal cancer
of UK Biobank.
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microbial traits) in the same direction of causal effects across

methodologies (Supplementary Table 3).

We performed the MR Steiger directionality test to determine

whether there was evidence that the assumed direction of causality

was correct. All Steiger test p-values were less than 0.05, suggesting

that the assumed direction of effect from the gut microbiome to oral

and oropharyngeal cancers was correct, except for the genus

Hungatella on oropharyngeal cancer (Steiger P-value=0.32).

However, the R2 of exposure SNPs was greater than that of the

outcome, suggesting that all causal directions were correct.
Meta-analysis

For class Lentisphaeria, genus Butyrivibrio, genus Ruminococcus

2, order Victivallales, and phylum Lentisphaerae consistently

aligned with the MR methods, and therefore, estimates of the

effect of these microbial features on oral and oropharyngeal

cancer from all three data sources were included in the meta-

analysis. Our results showed that there was limited evidence

suggesting a causal effect of any microbial feature on oral and

oropharyngeal cancer in the meta-analysis (Supplementary

Table 5). Next, we conducted a meta-analysis for oral cancer

outcomes, using the same criteria as before. Although genus

Eubacterium xylanophilum group, genus Parabacteroides, and

genus Ruminococcus gauvreauii group consistently aligned with

the MR methods, the meta-analysis results provided little

evidence for causal effects (Supplementary Table 6).

Only the estimates of genus Ruminococcaceae UCG010 were

consistent in direction across all methods in individual data sources,

therefore, the meta-analysis was conducted with this one microbial

feature. Results showed little evidence for a causal effect of

Ruminococcaceae UCG010 on oropharyngea l cancer

(Supplementary Table 7).
Discussion

In the current study, we performed MR analyses to assess causal

effect of gut microbial signatures on oral and oropharyngeal cancer.

Firstly, the main analysis is where instruments have been selected

based on a genome-wide p-value threshold. Although the initial

ana ly s i s found a causa l a s soc ia t ion be tween genus

Gastranaerophilales and oropharyngeal cancer, despite initial

analyses suggesting a causal effect, colocalisation analyses implied

that these results are unlikely reflective of causality. Although we

lowered the criteria for the extraction of instrumental variables and

obtained 58 microbiota features with possible causal associations in

secondary MR analysis, after meta-analysis of the 9 microbial

features across each data source was consistent among different

methods, random effects model showed limited evidence of causal

effects. In addition, the main results of the meta-analysis were

derived from secondary MR with lenient threshold criteria, which is

likely biased given the lack of robust associations between

instruments and the exposure. Therefore, based on the results of

our primary MR analysis and colocalization analysis, which is a
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requirement for causality, we believe that the current evidence does

not yet support the causal association of gut microbiota

characteristics with oral and oropharyngeal cancer.

Whilst we were unable to provide strong evidence of horizontal

pleiotropy in these analyses, it is possible (and likely) that the

instruments we used may still be pleiotropic. While our outcome

data originated from a sample of European individuals, it’s crucial

to note that the MiBioGen data exhibit mixed ancestry, introducing

the possibility of violating the second MR assumption due to genetic

confounding. To establish causality, addressing confounding

becomes imperative, wherein a third variable influences both

exposure and outcome, creating a noncausal association. Genetic

confounding is a nuanced scenario wherein genetic factors serve as

this influential third variable. The inherent complexity of gene

inheritance in organisms poses a challenge, making it arduous to

fully isolate or control for the specific effects of individual genes,

rendering the adjustment for genetic confounding difficult.

We observed that original data for microbial features under the

same taxonomic classification (class Lentisphaeria-order

V i c t i v a l l a l e s ) a nd ( o r d e r B ifidoba c t e r i a l e s - f am i l y

Bifidobacteriaceae) were entirely identical, yielding the same OR

values. This convergence could be attributed, on one hand, to

potential characteristic dominant species within the same

taxonomic classification, resulting in data congruence between the

upper and lower taxonomic levels. On the other hand, order

Bifidobacteriales predominantly segregates into family

Bifidobacteriaceae and family Gardnerellaceae, with the latter

recognized for its presence in maintaining vaginal microbial

equilibrium in female reproductive tracts. Given that our

exposure data were sourced from gut microbiota, data congruence

between order Bifidobacteriales and family Bifidobacteriaceae was

plausible. We opted for data representation at relatively lower

taxonomic levels and refrained from analyzing analogous

microbial features as independent exposures. For instance, we

selected order Victivallales from (class Lentisphaeria and order

Victivallales) and family Bifidobacteriaceae from (order

Bifidobac t e r i a l e s and f ami l y B ifidobac t e r i a c eae ) to

curtail redundancy.

Understanding the causal relationship between gut microbiota

and oral and oropharyngeal cancers can help guide decisions on

health management and disease prevention strategies. Because

GWAS data for the oral microbiome are unavailable, and oral

microbiota has a more diverse and dynamic bacterial community

than gut microbiota (Maki et al., 2021). Therefore, we selected the

largest currently published GWAS for the gut microbiome from the

MiBioGen consortium. Our study validated the features of the gut

microbiota associated with cancer susceptibility. We performed

analyses both with the genome-wide p-value threshold and with a

more lenient p-value threshold, as a secondary analysis. Whilst

extracted instrumental variables that did not meet the traditional

genome-wide p-value threshold may very likely lead to weak

instrument bias and violate core MR assumptions, the use of a

lenient p-value threshold allowed the application of pleiotropy-

robust methods in sensitivity analyses. And for those results with

different causal directions from different MR methods, only those

results with the same causal direction from all methods were
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reported. We assessed weak instrument bias through F-statistics

and found little evidence for weak instruments. However, even if the

F-statistic is greater than 10, instrumental variables may still be

ineffective, as they could exhibit a high degree of pleiotropy

(wherein ineffective instruments can still yield a high F-statistic)

(Wade and Hall, 2019). Instrumental variables might be associated

with outcomes through various channels, leading to violations of

MR assumptions if independent from the exposure. We cannot rule

out this possibility in our analysis. In addition to the pleiotropy-

robust methods, the MR Steiger directionality test was used to test

for the causal direction of effect and, in almost all causes, it provided

evidence that the assumed causal direction (i.e., from the exposure

to outcome) was correct. The genus Hungatella failed to pass, that

is, it did not provide enough evidence to support the direction of

causality. Therefore, genusHungatella cannot be considered to have

a causal effect on oropharyngeal cancer.

Moreover, augmenting the study’s sample size holds the

potential to enhance statistical power, thereby elevating the

probability of identifying associations. Larger sample sizes

contribute to more accurate estimates and diminish p-values. The

observed disparity in the significance of the association between a

gut microbiome feature, as indicated by Oncoarray versus UK

Biobank, may stem from variations in sample size. Despite the

notably extensive size of the UK Biobank dataset, the proportion of

cases within the total sample remains relatively modest. This

discrepancy could have compromised statistical power,

conceivably masking authentic effect signals that might otherwise

be discernible. In addition, the MR-Egger method is sensitive to

horizontal pleiotropy, that is, genetic variation affects the outcome

independent of the exposure. Although the p value of the MR-Egger

intercept in our study was greater than 0.05, there was indeed an

unbalanced pleiotropic effect in our secondary analysis.

In our secondary MR results, the genus Intestinibacter,

Ruminiclostridium5, and the order Rhodospirillales exhibited

causal effect estimates using the MR-Egger method that differed

in direction from those obtained through other methods (IVW,

Maximum Likelihood, Weighted Median, etc.), suggesting

violations of MR assumptions. The difference in power limitations

between the MR-Egger estimator and other MR methods stems

from the fact that the former estimates two parameters – the causal

effect and the degree of unbalanced pleiotropy – whereas other

methods focus solely on estimating the singular parameter, the

causal effect. While our sensitivity analysis did not reveal the

presence of pleiotropy, the results for these specific microbial

features suggest a potential underlying pleiotropy. Additionally,

several other microbial features displayed varying causal effects

across different data sources, such as the family Prevotellaceae and

the orders Bacillales and Burkholderiales. The family Prevotellaceae

demonstrated a risk factor for oral and oropharyngeal cancer in

European populations while being protective in North American

populations. We hypothesize that these variations in the impact of

these microbial features on oral and oropharyngeal cancer between

North American and European populations could stem from

differences in dietary habits and lifestyles, or potentially

environmental influences on microbial composition and

functionality. Furthermore, the sample size and diversity of the
Frontiers in Cellular and Infection Microbiology 09
microbial communities under study could affect the stability of

results. The divergence in outcomes between different regions could

possibly be attributed to factors such as higher microbial diversity.

However, our study’s primary objective was to explore microbial

features associated causally with the occurrence of oral and

oropharyngeal cancer in European populations. At present, there

are no reports on variations in the effects of regional microbial

features on oral and oropharyngeal cancer. Therefore, our

interpretation of potential reasons for the differing impacts can

only be approached with caution.

In our study, we’ve chosen not to apply multiple testing

correction in the primary and secondary analyses due to the

complex interactions and correlations among microbial features.

While multiple testing correction is common, we believe it might be

overly strict in this context, potentially hiding true causal

relationships. We acknowledge this as a limitation and

recommend future research to explore these interactions, develop

precise statistical methods, and conduct larger studies

for validation.

Our study initially provided evidence that features of the gut

microbiome may influence oral and oropharyngeal cancers.

However, due to likely violations of core MR assumptions and

heterogeneity across both different methodologies that test those

assumptions and across data sources of the same outcomes, our

results indicate that gut microbiota may not play an important role

in the development of oral and oropharyngeal cancers. In

conclusion, we comprehensively evaluated the potential causal

relationship between the gut microbiota and oral and

oropharyngeal cancers. This study provides new insights into the

mechanisms of microbial-mediated oral and oropharyngeal

cancer development.
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