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Background: Sepsis is a clinical syndrome with high mortality. Subtype

identification in sepsis is meaningful for improving the diagnosis and treatment

of patients. The purpose of this research was to identify subtypes of sepsis using

RNA-seq datasets and further explore key genes that were deregulated during

the development of sepsis.

Methods: The datasets GSE95233 and GSE13904 were obtained from the Gene

Expression Omnibus database. Differential analysis of the gene expression matrix

was performed between sepsis patients and healthy controls. Intersection

analysis of differentially expressed genes was applied to identify common

differentially expressed genes for enrichment analysis and gene set variation

analysis. Obvious differential pathways between sepsis patients and healthy

controls were identified, as were developmental stages during sepsis. Then,

key dysregulated genes were revealed by short time-series analysis and the least

absolute shrinkage and selection operator model. In addition, the MCPcounter

package was used to assess infiltrating immunocytes. Finally, the dysregulated

genes identified were verified using 69 clinical samples.

Results: A total of 898 common differentially expressed genes were obtained,

which were chiefly related to increased metabolic responses and decreased

immune responses. The two differential pathways (angiogenesis and myc targets

v2) were screened on the basis of gene set variation analysis scores. Four

subgroups were identified according to median expression of angiogenesis

and myc target v2 genes: normal, myc target v2, mixed-quiescent, and

angiogenesis. The genes CHPT1, CPEB4, DNAJC3, MAFG, NARF, SNX3,

S100A9, S100A12, and METTL9 were recognized as being progressively

dysregulated in sepsis. Furthermore, most types of immune cells showed low

infiltration in sepsis patients and had a significant correlation with the key genes.

Importantly, all nine key genes were highly expressed in sepsis patients.
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Conclusion: This study revealed novel insight into sepsis subtypes and identified

nine dysregulated genes associated with immune status in the development of

sepsis. This study provides potential molecular targets for the diagnosis and

treatment of sepsis.
KEYWORDS

sepsis, subtypes, dysregulated genes, biomarker, immune cell infiltration
1 Introduction

Sepsis is a life-threatening organ dysfunction stemming from host

response imbalance to infection. In 2017, 48.9 million septic events

were reported worldwide, with 11 million sepsis-associated deaths

recorded, accounting for 19.7% of total global deaths (Rudd et al.,

2020). In the United States, the costs associated with sepsis treatment

amounts to at least $24 billion annually (Liu et al., 2014). Sepsis is a

major cause of health concern globally due to its high morbidity, high

mortality, and huge economic burden (Weng et al., 2023). The World

Health Organization has proposed that member states strive to identify,

record and treat sepsis. Sepsis is a heterogeneous syndrome with

complex and variable pathophysiological mechanisms, necessitating

identification of different clinical biomarkers and phenotypes for

precise therapy and optimization of outcomes (Liu et al., 2020;

Komorowski et al., 2022).

With the development and wide application of high-throughput

sequencing technology, bioinformatics analysis could be used to

identify sepsis biomarkers and/or subclasses (Zhao et al., 2021).

Zeng et al. found that MAPK14, FGR, RHOG, LAT, and PRKACB

were progressively maladjusted in patients with sepsis and septic

shock (Zeng et al., 2021). Li et al. found that sepsis-related pathways

could be utilized for disease diagnosis, classification, and prognosis

(Li et al., 2023). A study based on hierarchical clustering of gene

expression profiles of neutrophils and partitioning around medoids

was performed to distinguish sepsis subtypes, which were related to

sepsis severity (Maslove et al., 2012). Zhang et al. identified two

types of sepsis that showed different mortality and reaction to

hydrocortisone therapy (Zhang et al., 2020b). Qi et al. explored

some mitochondria-related genes to identify the molecular subtypes

in sepsis (Shu et al., 2023). At present, there is no research on the

classification of sepsis subtypes based on genes expression of

differential pathways and validation of the key dysregulated genes

in the development of sepsis based on clinical samples.
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In addition, the immune response plays a significant role in the

pathogenesis and development of sepsis. Immune cells release

inflammatory mediators and cytokines aimed at eliminating

potential pathogens in the early stage; immune-suppressive

mechanisms appear in the late stage during sepsis, resulting in

immune dysfunction (Zhang et al., 2023). Bioinformatics research

has suggested that SLC2A6 was associated with sepsis-related

mortality and correlated positively with infiltration levels of Th1

cells (Li et al., 2021). Research indicated SIGLEC9, TSPO, CKS1B,

PTTG3P were significantly associated with infiltration of

neutrophils and monocytes during sepsis (Ming et al., 2022). It is

of great significance in clinical practice to explore the immune

response aspect that is important in the development of sepsis,

search key genes associated with immune cells, and elucidate the

mechanisms and functions of the molecules and cells involved.

In this research, we analyzed gene expression profiles of sepsis

patients in a public database to identify differentially expressed

genes (DEGs) and perform enrichment analysis. Gene set variation

analysis (GSVA) scores were determined to identify the highest and

lowest pathways for dividing sepsis development stages. Short time-

series expression miner (STEM) analysis and the least absolute

shrinkage and selection operator (LASSO) model were used to

identify key genes in sepsis development. We applied the

MCPcounter package of R to analyze immune cell infiltration in

sepsis. Pearson rank correlation was performed to assay the

correlation between key genes and immune cells. Finally, we used

clinical samples to validate key genes by reverse transcription

quantitative polymerase chain reaction (RT-qPCR). This research

not only divided the development stages of sepsis according to

differential pathways but also systematically analyzed immune cell

infiltration in sepsis. Our findings provide novel ideas for

augmenting the diagnosis and treatment of sepsis.
2 Materials and methods

2.1 Sepsis data source

Two sepsis-related datasets were retrieved from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/). The normalized gene expression matrix was retrieved.

We included gene expression profiling based on whole-blood arrays

from the GSE95233 dataset (including 102 sepsis patients and
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22 healthy controls) and the GSE13904 dataset (including 158 sepsis

children and 18 healthy children). All samples collection time point

were shown in the Supplementary Tables 1, 2. We applied the stat and

dplyr packages in R to annotate and normalize the raw data in these

two datasets.
2.2 Differential gene expression screening

Differential analysis was performed using the limma package of

R to screen DEGs between the sepsis and control groups of the

GSE95233 and GSE13904 datasets (Ritchie et al., 2015). DEGs were

defined as |log2-fold change| > 0.5 and P < 0.05. Then, the filtered

DEGs from the two datasets were merged to obtain intersection sets.

Furthermore, DEGs with the same expression trend (upregulated or

downregulated) in the two datasets between the sepsis and healthy

control groups were further analyzed.
2.3 Enrichment analysis

Multiple pathway datasets (Hallmark, C1-C8 collections) were

obtained from Molecular Signatures Database (https://www.gsea-

msigdb.org/gsea/msigdb). To explore related biological processes, gene

set enrichment analysis (GSEA) was carried out to implement pathway

enrichment analysis of upregulated and downregulated genes. P < 0.05

was deemed to be statistically significant for enrichment analysis. The

results of GSEA were displayed using the fgsea package in R.

GSVA was performed for the enrichment results in the GSVA

package of R, and GSVA enrichment scores of each pathway were

acquired (Hänzelmann et al., 2013; Yu et al., 2021). Afterwards,

we compared GSVA scores between the sepsis and control

groups using the limma package in R, so as to identify the

upregulated and downregulated pathways in septic patients

relative to healthy controls.
2.4 Division of development stages
in sepsis

Genes belonging to the highest and lowest pathways in the

GSVA scores of the two datasets were extracted. Consensus

clustering was implemented to select co-expressed genes of the

highest and lowest pathways by the ConsensusClusterPlus package

in R (Karasinska et al., 2020; Qiu et al., 2021). The parameters were

set as follows: reps = 1000, pItem =0.8, pFeature =0.8. Then, median

levels of co-expressed genes were calculated to divide sepsis samples

of the GSE13904 dataset into four developmental stages.
2.5 Short time-series expression
miner analysis

We performed STEM analysis of the GSE13904 dataset to

cluster the common genes in four developmental stages of sepsis

(Ernst and Bar-Joseph, 2006). The clustering module with P < 0.05
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was defined as a significant clustering module. The significantly

clustered genes displayed a more obvious trend of upregulation or

downregulation. The genes of the significant module for pathway

enrichment analysis were obtained using the GlueGO plug-in of

Cytoscape (Shannon et al., 2003).
2.6 Model building

We used the LASSOmethod for dimension reduction analysis of

module genes and 5-fold cross validation to extract key genes in

sepsis development (Kanwal et al., 2020). Subsequently, we

performed logistic regression and random forest methods to

evaluate the prediction performance of selected key genes. 5-fold

cross validationwas conducted to evaluate the prediction efficiency of

the LASSO-selected genes. Meanwhile, we calculated the correlation

between selected key genes using the circlize package in R.

In addition, we arranged and combined the selected key genes

to construct possible logistic regression models. The areas under the

receiver operating characteristics curve of each logistic regression

model were calculated.
2.7 Microenvironment cell populations-
counter analysis

Marker genes of immune cell types were acquired as described by

Bindea et al. (2013). To estimate immune cell infiltration of samples

in the GSE13904 dataset, we used the microenvironment cell

populations-counter algorithm with the MCPcounter package in R

(Becht et al., 2016). This method stably quantified the abundance of

different immunocytes. In addition, Pearson’s correlation analysis

was applied to calculate correlations between infiltration levels by

different types of immunocytes, as well as correlations between key

genes and various infiltration of immunocytes.
2.8 RT-qPCR analysis of key genes

2.8.1 Participants
To further validate the potential application of key genes for the

diagnosis of sepsis in clinical practice, we selected in-hospital sepsis

patients and non-sepsis patients in the intensive care unit (ICU) of

the First Affiliated Hospital of Zhengzhou University from June

2022 to December 2022. Patients were excluded if they met any of

the following criteria: age < 18 years, ICU stay length < 24 h,

pregnancy or lactation, malignancy, receiving immunosuppressive

treatment, and AIDS patients. The patients were included in the

sepsis group if they met the sepsis 3.0 diagnostic criteria (Singer

et al., 2016). The inclusion criteria for the non-sepsis patients were

hospitalization in the ICU owing to diseases other than sepsis

during the same period. Ethics approval was obtained from the

Research and Clinical Trial Ethics Committee of the First Affiliated

Hospital of Zhengzhou University (Number: 2021-KY-0467-003).

Written informed consent was acquired from all patients or their

surrogate decision-makers.
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2.8.2 Data collection
Data for the recruited patients, including age, sex, clinical

indices such as Sequential Organ Failure Assessment (SOFA) and

Acute Physiology and Chronic Health Evaluation II (APACHE II)

scores, and laboratory parameters such as white blood cell count,

neutrophil percentage, procalcitonin, and C-reactive protein were

recorded. Whole blood from patients within 24 h of diagnosis of

sepsis or non-sepsis was collected in a 5 ml EDTA tube; red blood

cell lysis buffer (Solarbio, Beijing, China) was added, and the sample

was fully mixed, followed by centrifugation to isolate nucleated cells

for subsequent analysis.
2.8.3 RNA extraction and RT-qPCR
Total RNA of whole blood from enrolled patients was extracted

with RNAiso Plus reagent (TaKaRa, Tokyo, Japan) according to the

manufacturer’s instructions. A reverse transcription kit (US

Everbright, Suzhou, China) was used to generate cDNA as a qPCR

template. Quantitative PCR was performed with a Universal SYBR

Green qPCR SuperMix kit (US Everbright, Suzhou, China) following

the manufacturer’s instructions. RT-qPCR analysis was performed for

expression analysis with Applied Biosystems QuantStudio™

3 (Thermo Fisher Scientific, USA). Relative expression of

genes was analyzed by the 2-DDCt method normalized to GAPDH.

The primers used were as follows: GAPDH forward: 5’-

G T CAAGGCTGAGAACGGGAA - 3 ’ , r e v e r s e : 5 ’ -

AAATGAGCCCCAGCCTTCTC-3 ’ ; CHPT1 forward: 5 ’-

AGCTCTTTGACCATGGCTGT-3’, reverse: 5’-TAAGTTCCTAA

GCGAGCGGC-3 ’ ; CPEB4 forward: 5 ’- TGAGATCAC

AGCTAGTTTTCGT-3 ’ , reverse: 5 ’- TCAATGCATGCA

TCAATGAGAG-3’; DNAJC3 forward: 5’- TTGGGATGCA

GAACTACGGG-3’, reverse: 5’- CCCGAACTTCACTGAGGGAC-

3’; MAFG forward: 5’- TGTAGCCCTTGTCTGCACTG-3’, reverse:

5’- CTGTTTTCCCGTGTTCGTTT-3’; NARF forward: 5’-

C C G T CGA CA C T C T G T T T GGA - 3 ’ , r e v e r s e : 5 ’ -

TTGGCCGCATGTCTGAAGAT-3’ ; METTL9 forward: 5’-

T T GGAGCCAAC TAGAGGCAG - 3 ’ , r e v e r s e : 5 ’ -

CACTTGCCACCTACGTTTTCC-3’; S100A12 forward: 5’- CGGAA

GGGGCATTTTGACACC-3 ’ , reverse: 5 ’- TCAGCGCAA

TGGCTACCAGG-3 ’ ; S100A9 forward: 5 ’- TCAAAGAG

CTGGTGCGAAAA-3 ’ , r e v e r s e : 5 ’ - AACTCCTCGA

AGCTCAGCTG-3 ’ ; SNX3 forward: 5 ’- GCTCCCTGG

GAAAGCGT-3’, reverse: 5’- GGATGACCAGCGACCTTGTTTA-3’.
2.9 Statistical analysis

We used GraphPad Prism version 5.0 (La Jolla, CA, USA) and

SPSS version 17.0 (Chicago, IL, USA) for statistical analysis. The

median and 25%-75% interquartile ranges were used to assess

quantitative variables; categorical variables were described as

percentages. Continuous data with a normal distribution were

analyzed using Student’s t test, and those with a nonnormal

distribution were analyzed with the Mann-Whitney test.

Classification data were compared by the chi-square test. We set a

two-tailed P value < 0.05 as statistically significant.
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3 Results

3.1 Differential expressed genes in sepsis

Figure 1 shows the flow chart of our research. We analyzed

DEGs between sepsis and control groups to identify genes

associated with sepsis. A total of 3581 DEGs in the GSE95233

dataset (Figure 2A) and 1284 DEGs in the GSE13904 dataset

(Figure 2B) were obtained. By comparing DEGs between the two

datasets, we observed that 898 genes were common to both

(Figure 2C). Specifically, we found that 774 DEGs were

upregulated (Figure 2D) and 123 DEGs downregulated

(Figure 2E) in the two datasets. These genes at the intersection

could be closely related to both adult sepsis and pediatric sepsis.
3.2 Functional enrichment of
selected genes

Based on common DEGs, enrichment analysis results suggested

that secretory granule membrane and hallmark hypoxia were

upregulated in the sepsis patients compared with the healthy controls

but that CD4 T-cell vs. B-cell upregulation, T-cell activation, and

Deurig T-cell prolymphocytic leukemia dn were downregulated

(Figure 3A). These GSEA results revealed the genes upregulated in

sepsis to be mainly enriched in metabolism-related pathways;

downregulated genes were principally enriched in immune-associated

pathways. In addition, we used the hallmark gene set to obtain signaling
FIGURE 1

The flow chart of this research. Sequencing data from healthy
controls and sepsis samples in the GSE95233 and GSE13904
datasets were analyzed through bioinformatics in order to identify
early potential biomarkers of sepsis.
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pathways in which the DEGs between the sepsis and control groups in

the GSE95233 and GSE13904 datasets were involved. In the two

datasets, angiogenesis was the most obviously highly enriched

pathway and myc targets v2 the most obviously less enriched

pathway (Figures 3B, C).
3.3 Identification of four distinct subgroups
in sepsis

To aid in selecting co-expressed genes of the angiogenesis and

myc targets v2 pathways and relevant to sepsis biology, we used

consensus clustering to obtain robustly angiogenesis (n = 11) and

myc targets v2 (n = 26) pathway genes for sepsis subtyping

(Figure 4A). Besides, we acquired types corresponding to the two

pathways (angiogenesis=C2, myc targets v2=C3). On the basis of

the median expression levels of co-expressed genes, we assigned the

sepsis samples of the GSE13904 dataset to four stages: myc targets

v2 (angiogenesis ≤ 0, myc targets v2 > 0), mixed (angiogenesis > 0,

myc targets v2 > 0), quiescent (angiogenesis ≤ 0, myc targets v2 ≤ 0),

angiogenesis (angiogenesis > 0, myc targets v2 ≤ 0) (Figure 4B). The

expression levels of angiogenesis and myc targets v2 genes among

the four subgroups were visualized in Figure 4C. According to the

results, we defined the development stages of sepsis in the following

order: normal, myc targets v2, mixed-quiescent, angiogenesis.
Frontiers in Cellular and Infection Microbiology 05
3.4 Key genes associated with sepsis
development

STEM analysis was applied to select genes with persistent

imbalance in module genes. In order to screen progressive

dysregulation genes during the development of sepsis, we utilized

STEM analysis to identify common genes. These common genes fell

into four significant clusters (Figure 5A). The U42 cluster showed

an obvious upregulation trend in the following order: normal < myc

targets v2 < mixed-quiescent < angiogenesis (Figure 5B). Next, we

preformed pathway enrichment analysis of genes in the U42 cluster.

The results showed that these genes were mainly enriched in

positive regulation of inflammatory response, myeloid leukocyte

activation, secretory granule lumen (Supplementary Figure 1).

To select the most discriminating genes dysregulated in sepsis

development, we used LASSO analysis to obtain nine key genes

(CHPT1, CPEB4, DNAJC3, MAFG, NARF, SNX3, S100A9,

S100A12, METTL9) from the U42 cluster (Figure 5C). These key

genes correlated positively with each other (Figure 5D). The nine key

genes were upregulated in sepsis compared with healthy controls

(Supplementary Figures 2A, B). The area under the receiver

operating characteristics curves of nine genes in the logistic

regression and random forest models in the internal validation

were 0.957 and 0.987, respectively (Figure 5E), which indicated

that these nine genes could well predict sepsis development.
B

C D E

A

FIGURE 2

Identification of common DEGs in sepsis. (A) The volcano plot of DEGs between the healthy controls and sepsis samples in the GSE95233 dataset.
(B) The volcano plot of DEGs between the healthy controls and sepsis samples in the GSE13904 dataset. (C) Venn diagram of DEGs in the GSE95233
and GSE13904 datasets. (D) Venn diagram of up-regulated DEGs in the GSE95233 and GSE13904 datasets. (E) Venn diagram of down-regulated
DEGs in the GSE95233 and GSE13904 datasets.
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3.5 Immune cells infiltration in sepsis

We identified infiltration of ten immune cell types in GSE13904

bymicroenvironment cell populations-counter analysis (Figure 6A).

The results showed that the relative abundances of neutrophils and

endothelial cells in sepsis patients were significantly higher than

those in healthy patients; the relative abundances of B lineage cells, T

cells, cytotoxic lymphocytes, and NK cells were lower. Correlation

results between immune cells suggested remarkable positive

correlations for fibroblasts and CD8 T cells, cytotoxic lymphocytes

and T cells (Figure 6B). In addition, we found that these key genes
Frontiers in Cellular and Infection Microbiology 06
correlated negatively with most types of immune cells, except for

endothelial cells and neutrophils (Figure 6C).
3.6 Validation of key genes expression

A total of 44 sepsis patients and 25 age- and sex-matched non-

sepsis patients were enrolled in our research. The baseline

demographic characteristics and clinical data between the two

groups are summarized in Supplementary Table 3. The sepsis

patients had significantly higher SOFA and APACHE II scores
B C

A

FIGURE 3

The pathway enrichment analysis of DEGs. (A) Significant up-regulated and down-regulated signaling pathways of DEGs between sepsis samples and
healthy controls in the C1-C8 and Hallmark collections. The left was down-regulated signaling pathways and the right was up-regulated signaling
pathways. (B) In the Hallmark collection, significant up-regulated and down-regulated signaling pathways of DEGs between sepsis samples and
control samples in GSE13904, as quantified by GSVA. (C) In the Hallmark collection, significant up-regulated and down-regulated signaling pathways
of DEGs between sepsis samples and healthy controls in GSE95233, as quantified by GSVA. FC, fold change; GSVA, gene set variation analysis.
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than the non-sepsis patients on the day of admission to the ICU.

The median white blood cell count, neutrophil percentage,

procalcitonin level, and C-reactive protein level in the sepsis

group were higher than those in the non-sepsis group. In

addition, expression of the nine key genes in whole blood

between sepsis patients and non-sepsis patients was compared by

RT-qPCR, and CHPT1, CPEB4, DNAJC3, MAFG, NARF, SNX3,

S100A9, S100A12, and METTL9 levels in the sepsis group were

significantly elevated compared with those in the non-sepsis group

(Figures 7A–I).
4 Discussion

Sepsis remains a major public health problem (Tang et al.,

2023). In this study, we employed GSVA to identify two differential

pathways (angiogenesis and myc targets v2) between sepsis patients

and healthy controls. Based on the co-expressed genes of the two

pathways, we divided sepsis into four stages: normal, myc targets v2,

mixed-quiescent, and angiogenesis. We further used STEM and

LASSO analyses to screen nine key genes, CHPT1, CPEB4,
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DNAJC3, MAFG, NARF, SNX3, S100A9, S100A12, and METTL9,

which were progressively dysregulated during the development of

sepsis and had important diagnostic functions. More importantly,

clinical samples from the ICU verified higher expression of the nine

genes in sepsis patients than in non-sepsis patients, which

supported the bioinformatics results.

CHPT1 is a key enzyme that participates in the synthesis

of glycerophospholipids, catalyzing phosphatidylcholine synthesis

and regulating choline metabolism (Wang et al., 2021).

Metabolomics analysis demonstrated that serum concentrations

of glycerophospholipids and the glycerophospholipid were

significantly altered in sepsis (Wang et al., 2021). Our previous

research also found that compared with the sham operation group,

the plasma metabolites of septic rats involved in the metabolism of

glycerol phospholipids and amino acids were significantly changed

(Cui et al., 2020). CPEB4, a sequence specific RNA-binding protein,

exits in the 3’ untranslated region of some mRNAs (Ivshina et al.,

2014). Research showed CPEB4 could stabilize anti-inflammatory

transcripts containing AU-rich elements and cytoplasmic

polyadenylation elements in the 3’ untranslated region, which was

necessary to solve the inflammatory response triggered by
B

C

A

FIGURE 4

Development stages of sepsis based on expression of angiogenesis and myc targets v2 genes. (A) Heatmap showing consensus clustering analysis
for angiogenesis and myc targets v2 genes in sepsis samples of GSE13904. (B) Scatter plot depicting median expression levels of co-expressed
angiogenesis (x-axis) and myc targets v2 (y-axis) genes in sepsis samples of GSE13904. Sepsis subgroups were divided according to the relative
expression levels of angiogenesis and myc targets v2 genes. (C) Heatmap showing the expression levels of angiogenesis and myc targets v2 co-
expressed genes across each subgroup.
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lipopolysaccharide (Suñer et al., 2022). Sibilio et al. found that

CPEB4 mediated repair and remodeling of acute inflammatory

tissue injury (Sibilio et al., 2022). Inflammation and cell stress can

result in the accumulation of misfolded or unfolded proteins,

known as endoplasmic reticulum (ER) stress (Kim et al., 2013).

Similarly, persistent ER stress can also trigger and aggravate

inflammation through multiple mechanisms (Zhang and

Kaufman, 2008). Research has shown that stress-induced loss of

dynamic balance in ER function was closely related to the

progression of sepsis (Gong et al., 2022), and DNAJC3 could

defend cells against ER stress in response to unfolded proteins

(Pauwels et al., 2022). MAFG, a small Maf protein, acts as a
Frontiers in Cellular and Infection Microbiology 08
heterodimer chaperone with Nrf2 (Li and Zhan, 2022). Sepsis

leads to redox imbalance, which is characterized by excessive

production of reactive oxygen species. MAFG and Nrf2 were

highly involved in the regulation of numerous antioxidant genes

at the transcriptional level, and the Nrf2 signaling pathway could

respond to excessive reactive oxygen species (Caggiano et al., 2017).

NARF is a protein-coding gene that is related to mitochondria and

iron-sulfur cluster binding (Ding et al., 2020). Iron-sulfur cluster, a

redox regulator, is known for its role in mediating electron transfer

in the mitochondrial respiratory chain (Read et al., 2021). Research

showed that the iron-sulfur cluster could regulate oxidative stress

through superoxide reactive protein, which might affect the
B

C
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E
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FIGURE 5

Identification of key genes associated with sepsis development. (A) Heatmap of continuously imbalanced genes identified by STEM in sequence:
normal < myc targets v2 < mixed-quiescent < angiogenesis. Gene sets were aligned based on cluster distribution to produce simplified expression
profiles. (B) The box diagrams of STEM genes in four clusters. The line diagrams and box diagrams were applied to show the fold change (log2FC)
and absolutely expressed levels, respectively. Highlight representative genes with red lines. **P < 0.01. (C) The gene feature selection of optimum
parameter (l) in the LASSO model. (D) The correlation circus of key genes expression. Red indicated positive correlation and green indicated
negative correlation. The depth of color represented the intensity of correlation. (E) The receiver operating characteristic curves of nine key genes
by the logistic regression and random forest.
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progression of sepsis (Kobayashi et al., 2014). SNX3 belongs to the

endosomal protein sorting nexin family, which participates in

vesicular transport events, including autophagy and endocytosis

(Maruzs et al., 2015). Promoting autophagy could alleviate sepsis-

related organ injury, which might be a new treatment for sepsis

(Sun et al., 2021). S100A9, a proinflammatory alarmin, was

upregulated in a variety of infectious diseases (Holzinger et al.,

2019; Marinković et al., 2020). A study found that targeting S100A9

could reduce neutrophil recruitment and lung accumulation in

sepsis, thereby improving sepsis-related lung injury (Ding et al.,

2021). S100A9 usually binds with S100A8 to form heterodimer,

which plays an important role in the inflammation (Wang et al.,

2018). S100A8/S100A9 heterodimer was reported to help stratify

and predict mortality in the septic shock patients (Dubois et al.,

2020). Similarly, Davydova et al. suggested that septic shock

patients with high levels of S100A12 and S100A8/A100A9 at

admission might have a higher risk of death (Dubois et al., 2019).

S100A12, similar to S100A9, belongs to the S100 gene family, which

plays essential immune response role in inflammation-related

diseases (Shah et al., 2017). The research indicated that

expression of S100A12 and S100A9 in the peripheral blood of

sepsis patients was upregulated compared with that of healthy

controls (Uhel et al., 2017), which was consistent with our results.

Another study reported that S100A12 promoted inflammation in

sepsis-induced acute respiratory distress syndrome by activating the

NLRP3 inflammasome signaling pathway (Zhang et al., 2020a).

METTL9 is widely specific methyltransferase (Davydova et al.,

2021). Daitoku et al. identified that METTL9 catalyzed formation
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of Np-methylhistidine in the S100A9, weakening its affinity for zinc

(Daitoku et al., 2021). Given that S100A9 might play an

antibacterial role by chelating the zinc necessary for growth of

pathogenic bacteria, METTL9 mediated S100A9 methylation may

participate in the innate immune response to infection.

Enrichment analysis revealed significant upregulation of

metabolic-related pathways and downregulation of immune-

related pathways in sepsis. It was reported that sepsis may lead to

increased aerobic and anaerobic metabolism, abnormal fatty acid

metabolism, and impaired oxygen supply (Ping et al., 2021). PKM2-

dependent aerobic glycolysis promoted macrophages stimulated by

lipopolysaccharide to release HMGB1 and IL-1b (Xie et al., 2016).

Numerous studies have indicated that immunosuppression was a

factor for increased susceptibility to mortality and secondary

infection in sepsis, and most sepsis-mortality occurred in hypo-

inflammation (Gandhirajan et al., 2021; Torres et al., 2022). Severe

depletion of dendritic cells might be used to predict sepsis outcome

in the early stage (Weber et al., 2015). Besides, sepsis-induced

lymphopenia was more prominent in sepsis non-survivors than in

survivors (Yao et al., 2022).

Sepsis could damage the innate and adaptive immune

responses, which made it impossible to control various types of

infections (McBride et al., 2020). Analysis of immune cell

infiltration in sepsis patients indicated that most types of

immunocyte infiltration decreased, except infiltration by

neutrophils and endothelial cells. Due to delayed neutrophil

apoptosis, neutrophils level rapidly increased in sepsis (Zhang

et al., 2023). The delayed neutrophil apoptosis and formation of
B C

A

FIGURE 6

(A) Heatmap showing immune cells infiltration between sepsis samples and healthy controls of GSE13904. ****P < 0.0001. (B) Correlation between
the infiltration levels of immune cells by Pearson’s correlation analysis. Red represented positive correlations and green represented negative
correlations. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Correlation between key genes and various infiltration of immune cells by Pearson’s correlation
analysis. Red represented positive correlations and blue represented negative correlations. *P < 0.05, **P < 0.01, ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1226159
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tong et al. 10.3389/fcimb.2023.1226159
neutrophil extracellular traps occurred together with long-term

endothelial damage and organ dysfunction (Denning et al., 2019).

A significant decrease in lymphocytes (especially CD4 T

lymphocytes) was well characterized in sepsis (Martin et al.,

2020). In addition, circulating counts of mucosal-associated

invariant T cells, natural killer T cells, and gamma delta T cells

decreased significantly, the extent of which was related to increased

infection risk (Grimaldi et al., 2014). A substantial decline in B-cell

counts in sepsis patients was reported, secondary to T lymphocyte

deficits and increased apoptosis (Venet et al., 2010). Loss of NK cells

directly impacted the immune reaction of sepsis patients (Inoue

et al., 2010). Furthermore, the decrease of IFN-g level owing to

accelerated apoptosis of NK cells might increase the possibility of

secondary infection in sepsis patients (Wesselkamper et al., 2008).

Our research also found that most key genes positively correlated

with neutrophils and endothelial cells, and negatively correlated

with T cells, CD 8 cells, and NK cells. These findings further

supported the potential role of biomarkers and provided new

insights for immunotherapeutic targets.
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Our research has certain limitations. Firstly, the two databases

contain not only adults with sepsis and healthy controls but also

children, which may affect biased interpretation of the results.

Secondly, we need apply larger clinical samples (adults and

children) to verify the expression levels of nine key molecules

identified. Further research should explore whether these key

genes are associated with the prognosis of sepsis patients.
5 Conclusion

In summary, our research revealed that sepsis could be divided into

four developmental stages (normal, myc targets v2, mixed-quiescent,

angiogenesis). In addition, we screened nine key genes that might be

helpful in diagnosing andmonitoring the development of sepsis. These

key genes showed an inextricable link with the immunological

microenvironment in sepsis. This research provides novel insight into

latent molecular targets for combating sepsis and promotes a full

understanding of the potential immunemechanisms involved in sepsis.
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FIGURE 7

Identification of nine key genes expression in the whole blood between the sepsis and non-sepsis patients. (A–I) Expression of CHPT1, CPEB4, DNAJC3,
MAFG, NARF, SNX3, S100A9, S100A12, METTL9 between sepsis group and non-sepsis group, respectively. *P < 0.05, **P < 0.01, ***P < 0.001.
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