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Characteristics of the pulmonary
microbiota in patients with mild
and severe pulmonary infection

Danting Zhan1†, Dan Li2†, Ke Yuan2†, Yihua Sun2, Lijuan He2,
Jiacheng Zhong1* and Lingwei Wang1*

1Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital, Guangdong, China, 2BGI
Genomics, Shenzhen, China
Background: Lung infection is a global health problem associated with high

morbidity and mortality and increasing rates of hospitalization. The correlation

between pulmonary microecology and infection severity remains unclear.

Therefore, the purpose of this study was to investigate the differences in lung

microecology and potential biomarkers in patients with mild and severe

pulmonary infection.

Method: Patients with pulmonary infection or suspected infection were divided

into the mild group (140 cases) and the severe group (80 cases) according to

pneomonia severity index (PSI) scores. Here, we used metagenomic next-

generation sequencing (mNGS) to detect DNA mainly from bronchoalveolar

lavage fluid (BALF) collected from patients to analyze changes in the lung

microbiome of patients with different disease severity.

Result: We used the mNGS to analyze the pulmonary microecological

composition in patients with pulmonary infection. The results of alpha diversity

and beta diversity analysis showed that the microbial composition between mild

and severe groups was similar on the whole. The dominant bacteria were

Acinetobacter, Bacillus, Mycobacterium, Staphylococcus, and Prevotella, among

others. Linear discriminant analysis effect size (LEfSe) results showed that there

were significant differences in virus composition between the mild and severe

patients, especially Simplexvirus and Cytomegalovirus, which were prominent in

the severe group. The random forest model screened 14 kinds of pulmonary

infection-related pathogens including Corynebacterium, Mycobacterium,

Streptococcus, Klebsiella, and Acinetobacter. In addition, it was found that

Rothia was negatively correlated with Acinetobacter, Mycobacterium, Bacillus,

Enterococcus, and Klebsiella in the mild group through co-occurrence network,

while no significant correlation was found in the severe group.

Conclusion: Here, we describe the composition and diversity of the pulmonary

microbiome in patients with pulmonary infection. A significant increase in viral

replication was found in the severe group, as well as a significant difference in

microbial interactions between patients with mild and severe lung infections,

particularly the association between the common pathogenic bacteria and

Rothia. This suggests that both pathogen co-viral infection and microbial
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1227581/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1227581/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1227581/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2023.1227581&domain=pdf&date_stamp=2023-10-12
mailto:zhong.jiacheng@szhospital.com
mailto:limey@sina.com
https://doi.org/10.3389/fcimb.2023.1227581
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2023.1227581
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Zhan et al. 10.3389/fcimb.2023.1227581

Frontiers in Cellular and Infection Microbiology
interactions may influence the course of disease. Of course, more research is

needed to further explore the specific mechanisms by which microbial

interactions influence disease severity.
KEYWORDS
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1 Introduction

Pulmonary infection poses a significant threat to human health due

to high morbidity and mortality rates (Diseases and Injuries, 2020).

According to the 2019 statistical report of the World Health

Organization (WHO), pulmonary infection is the fourth leading

cause of death worldwide (Diseases and Injuries, 2020). In recent

years, newly emerging respiratory pathogens such as influenza, middle

east respiratory syndrome (MERS), and severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) have caused global

pandemics, resulting in inflammation of the lung parenchyma,

terminal airway, alveolar cavity, and lung interstitium. These

pathogens have similar clinical symptoms, including fever, cough,

sputum, chest pain, and even severe pneumonia with shock and

organ failure (Zumla et al., 2015; Kevadiya et al., 2021; Cong et al.,

2022). In the clinic, smear microscopy, culture, antigen/antibody

testing, and nucleic acid are commonly used to detect the pathogens.

However, more than 60% of lung infections remain unidentified and

the severity of the condition cannot be determined (Miao et al., 2018).

Recently, the rapidly developing metagenomic next-generation

sequencing (mNGS) has been increasingly applied in the diagnosis

and treatment of pulmonary infectious diseases, providing more

microbial genotype information in the clinical setting (Miao et al.,

2018; Li et al., 2020). mNGS maps the acquired sequence information

to the microbial resource database, overcoming the limitations of

targeted detection methods, and characterizes all microorganisms in

the human system through a single detection. The rapid development

of mNGS has increased our understanding of the diversity,

composition, and function of the lung microbiome (Miao et al.,

2022; Xiao et al., 2022; Vallianou et al., 2023).

The pulmonary microbiome is related to the maintenance of

normal respiratory system function and the seriousness of lung

disease (Fenn et al., 2022; Natalini et al., 2023). An imbalance in the

lung microbiome community, leading to immune dysfunction in

patients, may be a significant factor contributing to the occurrence

and development of idiopathic pulmonary fibrosis and chronic

obstructive pulmonary disease (COPD) (Invernizzi and

Molyneaux, 2019; Ramsheh et al., 2021). Therefore, an in-depth

study of lung microecology is conducive to further understanding of

the pathogenesis of lung diseases and a search for new methods and

means of prevention and treatment of lung diseases. Some articles

summarized the composition and changes of pulmonary microbial

communities, as well as the relationship between microorganisms
02
and respiratory diseases in asthma (Huang and Boushey, 2015). The

authors highlight the spatial variability of microbial communities in

different parts of the lungs and establish a connection between

different respiratory diseases and the composition of microbial

communities (Dickson et al., 2013). Additionally, some studies

reported that respiratory microbiome markers predict the

occurrence or death of ventilator-associated pneumonia (VAP) in

intensive care unit (ICU) patients (Mizrahi et al., 2017; Kitsios,

2018; Liu et al., 2022). However, there has been limited research

investigating the link between respiratory microbiota and the

severity of pneumonia, ranging from mild to severe cases.

To explore the composition of the pulmonary microbiome in

patients with mild or severe infections, we used mNGS to evaluate

the changes and characterist ics of the microbiota in

bronchoalveolar lavage fluid (BALF) or sputum. Additionally, we

further analyzed the relationship between pulmonary

microorganisms in different conditions with the analysis of alpha

and beta diversity, linear discriminant analysis (LDA) effect size

(LEfSe), random forest model, and microbial correlation.
2 Materials and methods

2.1 Recruitment of participants

This study is a retrospective study and was approved by

Shenzhen People’s Hospital (LL-KY-2023129-01). Both samples

and data were collected with the informed consent of the

participants. Patients who were at least 18 years of age with

pulmonary infection or suspected infection in Shenzhen People’s

Hospital from 2019 to 2022 were enrolled. Pulmonary infection is

defined according to the Chinese Guidelines for the Diagnosis and

Treatment of community-acquired pneumonia in adults (Infectious

Diseases Group R.S. and Chinese Medical Association 2018). Their

BALF or sputum were collected and sent to BGI for mNGS. Clinical

data were also collected from all enrolled patients for analysis. The

exclusion criteria included (I) diagnosis suggested noninfected; (II)

sample types are not BALF or sputum; (III) incomplete medical

history and age <18; (IV) multiple repeat detection; (V) RNA test

sample and failing to pass quality control of mNGS. The enrollment

flowchart is shown in Figure 1. A total of 220 patients were finally

included. They were divided into two groups based on PSI scores

(Fine et al., 1997) that grade I, II, and III patients were defined as the
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mild group (n = 140) and grade IV and V patients were defined as

the severe group (n = 80).
2.2 Definition

Smoking was defined according to the WHO, and these were

patients who have smoked continuously or cumulatively for 6

months or more.

Respiratory failure: The patient feels that the air is insufficient

and breathing is laborious. Objectively, there are strenuous

breathing, mouth opening and shoulder shrug, nasal flap,

cyanosis, auxiliary respiratory muscles are also involved in

respiratory movement, and abnormal changes in respiratory

frequency, rhythm, and depth.

Hypertension was diagnosed when baseline mean blood

pressure was higher than clinical ly defined for both

measurements (Systolic pressure ≥140 mmHg or Diastolic

pressure ≥90 mmHg).

Diabetes was diagnosed when patients meet one of the following

three criteria: 1) Fasting blood glucose reached or exceeded 7.0

mmol/L (126 mg/dL) twice on different days, and fasting was

defined as no caloric intake for at least 8 h; 2) In the 75-g glucose

tolerance test, blood sugar was higher than 11.1 mmol/L (200 mg/

dL) at 2 h after a meal; 3) Have classic symptoms or of diabetes and

random blood sugar above 11.1 mmol/L (200 mg/dL).
2.3 Sample collection and DNA extraction

According to the standard procedures, 1.5–3 mL of BALF or

sputum from each enrolled patient was collected. In this study, 0.45-

mL samples were mixed fully with saponin, which was at a final

concentration of 0.025%, and incubated at 25°C for 5 min. Then, 75

mL was added for dehosting process, which was fully vortexed and

incubated at 37°C for 10 min. After centrifugation at 18,000 g for

5 min, approximately 450 mL of supernatant was removed, and the

final sample was retained at the bottom of ~70–80 mL. Then, 800 mL
phosphate buffered saline (PBS) was added to the tube and fully
Frontiers in Cellular and Infection Microbiology 03
vortexed followed by centrifugation at 18,000 g for 5 min. Then,

approximately 800 mL supernatant was discarded, and the

remaining ~70 mL–80 mL at the bottom was mixed with 370 mL
TE-buffer followed by shaking. For the wall-breaking reaction, 7.2

mL lysozyme was added. Here, 250 mL of 0.5-mm glass beads were

attached to a horizontal platform on a vortex mixer and agitated

vigorously at 2,800 rpm–3,200 rpm for 30 min. Then, 0.3-mL

sample was separated into a new 1.5-mL microcentrifuge tube,

and DNA was extracted using the TIANamp Micro DNA Kit

(DP3 1 6 , T IANGEN B IOTECH) a c c o r d i n g t o t h e

manufacturer’s recommendation.
2.4 Construction of DNA libraries and
sequencing

DNA libraries were constructed through DNA fragmentation,

end-repair, adapter ligation, and PCR amplification. Agilent 2100

was used for quality control of the DNA libraries. Quality-qualified

libraries were pooled, and the DNA Nanoball (DNB) was made and

sequenced by MGISEQ-2000 platform (Jeon et al., 2014).
2.5 Bioinformatic analysis

We first used fastp to filter the raw sequencing data (Chen et al.,

2018). Then, we used hisat2 (version 2.2.1) for mapping the reads to

the human genome GRCh38 with default parameters and removed

the mapped reads (Kim et al., 2019). Finally, microbial species were

identified based on the analysis of the clean reads by Kraken2

(Wood et al., 2019). Values for the alpha diversity (Shannon’s index,

Simpson index, and Richness), beta diversity, and principal

coordinate analysis (PCoA) and nonmetric multidimensional

scaling (NMDS) based on the Bray–Curtis metrics were generated

by R (version 4.2.2). Venn diagram showing the number of

common and unique operational taxonomic units (OTUs)

between the two groups was made by an online tool (http://

bioinformatics.psb.ugent.be/webtools/Venn/). LEfSe was used to

determine the features that most likely explain the differences

between the groups (http://huttenhower.sph.harvard.edu/galaxy/

root?tool_id=PICRUSt_normalize). The random forest model by

R was used to screen the key bacteria that distinguished the two

groups of samples. The network of microorganisms was produced

by retaining edges (correlation coefficient R ranges between −0.6

and 0.6 and p < 0.05), analyzed in R with the package igraph and

visualized with Gephi 0.10.0.
2.6 Statistical analysis

In order to test the significant correlation between clinical

features and disease, continuous variables were analyzed with

Mann–Whitney test and categorical variables were analyzed with

chi-square test. All above analyses were done by GraphPad Prism

7.0. Wilcoxon signed rank test was used to compare alpha diversity
FIGURE 1

Flowchart.
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measures . PERMANOVA was used to compare beta

diversity measures.
3 Results

3.1 Clinical characteristics

More than 40M sequencing reads were generated for mNGS

analyses for which microorganisms accounted for approximately

1%. After quality control filtering, removal of potential human

DNA contamination and the samples that had <5,000 sequences, a

total of 220 recipients with pulmonary infection or suspected

infection were enrolled in this study finally, including 80 of the

220 patients into the severe group and 140 into the mild group

according to the PSI scores (Figure 1). Patient characteristics are

summarized in Table 1. There were more men [76 men (54.29%) in

mild cases and 66 men (82.5%) in severe cases] than women in this
Frontiers in Cellular and Infection Microbiology 04
cohort. The age of mild patients is generally younger than that of

severe patients. The median age of the mild group was 48.5 (IQR

39–57) years old, and for the severe group, it was 71 (IQR 65–78)

years old. For clinical symptoms, the number of patients with

respiratory failure were significantly higher in the severe group

than that in the mild group. We have also noticed a higher number

of severe patients with underlying diseases such as tumor, COPD,

coronary heart disease, and diabetes. Blood routine can reflect

human immunity to a certain extent, but the level of immunity

needs to be combined with the actual situation of the patient and

other examinations to make a comprehensive judgment.

Here, we analyzed the main indicators of immunity in blood

routine with total white blood cells (Figure 2A), neutrophilic

granulocyte percentage (Figure 2B), lymphocyte percentage

(Figure 2C), and eosinophilic percentage (Figure 2D), among

others. The results showed that there were significant differences

in the percentage of neutrophilic granulocyte and lymphocytes

between the mild and severe groups. There was no statistically
TABLE 1 Clinical characteristics.

Characteristics (Median [IQR] or n [%]) Mild (n = 140) Severe (n = 80) p value

Age 48.5 [39-57] 71 [65-78] <0.0001

Male 76 [54.29] 66 [82.5] <0.0001

Clinical symptoms

Cough 94 [67.14] 51 [63.75] 0.6096

Sputum 74 [52.86] 45 [56.25] 0.6271

Hemoptysis 9 [6.43] 7 [8.75] 0.5236

Respiratory failure 8 [5.71] 21 [26.25] <0.0001

Others 4 [2.85] 9 [11.25] 0.0111

Physical examination findings

Body temperature (°C) 36.7 [36.4-38] 37.4 [36.5-38.73] 0.0152

Pulse (times/min) 90.5 [81-102] 92 [80.75-102.5] 0.6531

Respiratory rate (times/min) 20 [20-22] 22 [20-22] 0.0517

Systolic blood pressure (mmHg) 120 [108.75-131.25] 127 [116.75-139.5] 0.0071

Underlying disease

Smoking 32 [22.86] 39 [48.75] <0.0001

Tumor 5 [3.57] 15 [18.75] 0.0002

Diabetes 7 [5] 18 [22.5] <0.0001

COPD 2 [1.42] 9 [11.25] 0.0013

Hypertension 22 [15.71] 19 [23.75] 0.1409

Coronary heart disease 0 [0] 6 [7.5] 0.0010

Others 1 [0.71] 7 [8.75] 0.0022

Others

General ward days 10 [7-16.25] 13 [9.75-19.5] 0.025

Total hospital days 11 [8-17.25] 16.5 [11-27.25] <0.0001

Cost 18268.78 [12766.62-35050.83] 44417.6 [19725.72-87830.86] <0.0001
fro
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significant difference of C-reactive protein (CRP) (p = 0.1447) and

Interleukin (IL-6) (p = 0.5267) in the two groups (Supplementary

Figures S1A, B). However, the procalcitonin (PCT) (p = 0.0237) in

the severe group was significantly higher than that in the mild group

(Supplementary Figure S1C). To be noted, as the study is a

retrospective research, not all included patients underwent CRP,

PCT, and IL-6 testing. These results suggest that there may be

differences in the immune status between the two groups.
3.2 Microbial composition in patients with
mild or severe pulmonary infection

After the identification of microorganisms and the bacterial

genera below 10 reads were removed, the diversity and species

composition were analyzed. The abundance level is based on the

relative percentage of reads, and the analysis of alpha/beta diversity

is based on the reads table. In this study, 15 of the 220 samples had a

history of tumor. To exclude the effect of the tumor on the overall

analysis, the microbial diversity of tumor patients and non-tumor

patients was analyzed. The results showed that there was no

statistically significant difference between tumor patients and
Frontiers in Cellular and Infection Microbiology 05
non-tumor patients in alpha and beta diversity (Supplementary

Figure S2). For another, the proportion of patients with a history of

tumor is relatively small and these patients had not been treated

with chemotherapy for nearly a month, so we did not specifically

distinguish this category. For the 220 samples, we first compared the

composition of lung microorganisms among the mild and severe

groups. As shown in Supplementary Figures S3A, B, the alpha

diversity with Shannon index and Simpson index revealed no

significant differences between the mild and severe subjects.

Similarly, the analysis of the beta diversity calculated with PCoA

and NMDS based on the Bray–Curtis metrics also showed no

difference in the two groups (Supplementary Figures S3C, D).

These results suggest that there is no significant difference in

overall microbial diversity between mild and severe patients.

Moreover, a Venn diagram of bacteria showed that 1,626 of the

total 1,977 genera were shared among the two groups, while 260

genera were unique for the severe group and 391 genera were

unique for the mild group (Figure 3A). For the two groups at the

genus level, the relative abundance of the top 20 genera was

analyzed (Figure 3B). Acinetobacter, Bacillus, Mycobacterium,

Staphylococcus, and Prevotella accounted for a high proportion of

patients in both groups.
B

C D

A

FIGURE 2

Analysis of blood routine between mild (n = 137) and severe (n = 78) group*. (A) Statistical analysis of white blood cell count. (B) Statistical analysis of
neutrophilic granulocyte percentage. (C) Statistical analysis of lymphocyte percentage. (D) Statistical analysis of eosinophilic percentage. *Blood
routine data were missing in three cases in the mild group and in two cases in the severe group.
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3.3 Bacterial biomarkers in the mild and
severe patients

We further analyzed the bacterial community structure associated

with the mild and severe groups using LEfSe, an algorithm for high

abundance biomarker discovery that uses LDA to estimate the effect size

of each taxon that differed between the two groups (Figure 4). A total of

23 distinct genera were identified. For the mild group, there were eight
Frontiers in Cellular and Infection Microbiology 06
identified potential markers, mainly including Mycobacterium,

Toxoplasma, and Cronobacter (Figure 4A). Similarly, we observed a

significant increase in the relative abundance of the virus in the severe

group compared to the mild group (Figure 4B). The potential markers

for the severe group included Simplexvirus and Cytomegalovirus (CMV)

(Figure 4A). Mycobacterium and Simplexvirus had the highest LDA

scores, indicating a strong influence of microbial relative abundance in

the mild group and severe group, respectively.
B

A

FIGURE 3

Comparison of relative abundance at the genus level between the mild and severe groups. (A) The Venn diagram based on the total microorganisms
of the patients. (B) Pulmonary microbiome composition at the genus level.
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3.4 High-contribution bacteria selected by
random forest model

In order to more comprehensively describe the microbial

characteristics between the mild group and the severe group, 30

key pathogenic bacteria were screened by random forest model with
Frontiers in Cellular and Infection Microbiology 07
the analysis of MeandecreaseAccuracy and MeandecreaseGini,

respectively. Combined with the pathogenic characteristics of

these microorganisms, we finally found 14 bacteria that included

Acinetobacter, Mycobacterium, and Klebsiella with a greater

contribution to distinguishing patients with mild and severe

pulmonary infection (Figure 5).
FIGURE 5

The microbe with a high contribution to distinguishing the severity of infection. Red marker: the microbe associated with pulmonary infection.
BA

FIGURE 4

Bacterial biomarkers were identified by linear discriminant analysis effect size (LEfSe) algorithm. (A) Bacterial histograms of unique biomarkers based
on LEfSe (>2). The length of the bar chart represents the magnitude of the impact of significantly different genus. (B) Differences in the relative
abundance of viruses between the two groups.
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3.5 Significant differences in microbial
interaction modes in the mild and severe
groups

We further performed the network co-occurrence map with

Spearman correlation analysis based on the bacteria with relative

abundance greater than 0.1% in the mild group (83 genera) and the

severe group (89 genera), respectively (Supplementary Figure S4). As

shown in Figure 6, the microbial network of the mild group consisted

of 68 nodes and 431 edges (389 with a positive correlation and 42 with

a negative correlation), which is more complicated than the network

with 72 nodes and 294 edges (284 with a positive correlation and 10

with a negative correlation) of the severe group. In the mild group

(Figure 6A), the central genus in this network isMycobacterium. There

is a strong positive correlation between Toxoplasma and Cronobacter,

Mycobacterium andMesorhizobium among others, while in the severe

group (Figure 6B), Toxoplasma and Salmonellawere the central genera.

There is a strong positive correlation between Alcaligenes and

Hydrogenophaga, Mycobacterium and Toxoplasma among others.

Interestingly, we found that Rothia was negatively associated with

Acinetobacter, Mycobacterium, Bacillus, Enterococcus, Klebsiella, and

other pulmonary infection-related pathogens in the mild group but not

significantly associated with those pathogenic bacteria in severe cases

(Figures 6A, B). These results suggest that differences in microbial

interactions between patients with mild and severe pulmonary

infections may be responsible for the differences in disease severity.
4 Discussion

The pulmonary microbiome could reflect the maintenance of

normal respiratory system function and the seriousness of lung

disease. However, there is little research on the microbiome with the

severity of pneumonia. Here, we analyzed the specific microbial

composition of the mild and severe pneumonia groups with the

analysis of alpha and beta diversity and screened the biomarkers of
Frontiers in Cellular and Infection Microbiology 08
patients with lung infections with varying severity by LEfSe and

random forest model. Finally, the correlation between

microorganisms was analyzed with the selected biomarkers. In

diversity analysis in the two groups, our results showed that the top

20 genera with relative abundance in the mild group accounted for

69.6% of the total abundance. Specifically, the top 5 genera were

Bacillus, Acinetobacter, Prevotella,Mycobacterium, and Staphylococcus.

In contrast, the top 20 genera in the severe group accounted for 66.06%

of the total, and the top 5 were Bacillus, Staphylococcus, Acinetobacter,

Mycobacterium, and Shewanella. Which is consistent with the

previously reported, the taxonomic groups account for pulmonary

infection in patients with lung microecological dominance (Chen et al.,

2021; Fenn et al., 2022). Although Bacillus has rarely been reported as a

direct cause of lung infection, it has been shown to contribute to the

development of severe pneumonia and is considered a potential

pathogen (Shimoyama et al., 2017). LEfSe analysis and random

forest model could be used for feature selection and biomarker

screening. For example, LEfSe analysis identified the major genera in

the pneumonia group as Pseudomonas, Corynebacterium, Roche,

Enterococcus, and Neisseria (Woo et al., 2020). Random forest model

selected pneumonia Klebsiella bacteria and Bacillus wax samples as

community-acquired pneumonia patients with high AUC value

potential diagnostic biomarkers (Hong et al., 2021). Here, we used

LEfSe and random forest model respectively to further analyze the

differentially expressed microorganisms between the two groups. LEfSe

analysis identified 23 different genera in mild and severe patients, of

which eight genera including Mycobacterium, Toxoplasma, and

Cronobacter were dominant in the mild group, while 15 genera

including Simplexvirus, Minicystis, and CMV were dominant in the

severe group. In addition, the relative abundance of virus in the severe

group was significantly higher than that in the mild group. CMV

reactivation causes serious consequences in non-immunosuppressed

critical surgery patients, and pneumonia caused by CMV infection has

a higher morbidity and mortality rate in immunocompromised

individuals (Huang and Tang, 2021). It has previously been reported

that quantification of CMV viral load in BALF can be used to assist in
BA

FIGURE 6

Correlations between key microorganisms in the two groups. (A) Network co-occurrence diagram between microbes (mild). (B) Network co-
occurrence diagram between microbes (severe). Circles of the same color belong to one module, and the size of each circle represented the
degree (refers to the number of nodes directly connected to a node, reflects the ecological role of a particular microbe). The red line indicates a
positive correlation between microbes, while the green line indicates a negative correlation. The thickness of the line reflects the size of the
Spearman coefficient between two species. The thicker the line, the higher the correlation.
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the diagnosis of CMV pneumonia (Styczynski, 2018). Similarly in

patients with VAP, highly replicative Herpes simplex virus (HSV) has

been shown to play a pathogenic role in patients (Schuierer et al., 2020).

We guessed whether the severity of pneumonia was related to the

relative abundance of virus, but more evidence is still needed. Based on

the random forest model, we finally screened out 14 bacterial genera

that may be related to the occurrence of pulmonary infection, including

Corynebacterium, Mycobacterium, Streptococcus, Klebsiella, and

Acinetobacter. These pathogens are common pathogens associated

with lung infections (Sharma et al., 2019; Fenn et al., 2022; Griffith

and Daley, 2022).

In addition to single microbial infections, the interactions

between microorganisms are receiving increasing attention from

researchers (Huang et al., 2022; Zhang et al., 2022). In this study,

we screened bacterial genera with relative abundance greater than

0.1%, conducted correlation analysis for each genus, and visualized

the results through a network diagram. Our findings indicated that

the network map was more complex in the mild group than that in

the severe group. Moreover, we observed negative relationships

between Rothia and several pulmonary infection-related pathogens,

including Acinetobacter, Mycobacterium, Bacillus, Enterococcus, and

Klebsiella, in the mild group. However, in the severe group, Rothia

was not significantly correlated with these pathogens. Previous

studies have shown that Rothia plays a role in the pathogenesis of

respiratory tract infections (Laufer et al., 2011; Ramanan et al., 2014).

Based on our findings, we speculate that the interaction between

Rothia and these lung infection-associated pathogens may contribute

to the severity of the infection. Further studies are needed to validate

this hypothesis and explore the underlying mechanisms.

However, there are still some limitations in this study. First, it only

analyzed patients from a single center, and the lung microbiome may

be related to underlying diseases, habits, and geographic origin; so,

further screening of biomarkers in a wider population should be done.

Second, this study only explored the microbial differences and

associations among patients with mild and severe pulmonary

infection based on the results of mNGS analysis, without conducting

experimental studies to further confirm the influencing mechanism.

In summary, our study investigated the composition and diversity of

the pulmonary microbiome in patients with mild and severe lung

infections. We identified biomarkers that distinguish between mild and

severe cases and further analyzed the association between microbial

interactions and disease severity. Our findings suggest that Rothia is

negatively associated with common lung infection-associated pathogens

in mild cases and positively or not significantly associated in severe cases.

However, further research is necessary to elucidate the specific

mechanism of microbial interaction on disease severity in the future.
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