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The gut virome and the
relevance of temperate
phages in human health

Laura Avellaneda-Franco, Sofia Dahlman and Jeremy J. Barr*

School of Biological Sciences, Monash University, Clayton, VIC, Australia
Alterations in the gut virome impact human health. Bacteriophages, viruses that

infect bacteria, dominate the gut virome and are mainly composed by virulent

and temperate phages. While virulent phages exclusively replicate within and lyse

their bacterial host’s cell, temperate phages switch from an integrated state

residing within their bacterial host’s chromosome to an induced free virion state

via an induction event. How often do these induction events occur and what are

their implications on gut homeostasis? Here, we summarize the current

knowledge of the gut virome based on metagenomics and present how the

proportion of induced temperate phages varies amongst individuals, age, and

disease states. Finally, we highlight the importance of building upon classical

culture-dependent techniques and sequencing approaches to improve our

understanding of temperate phages to enable their potential therapeutic use.

KEYWORDS

gut temperate phages, gut prophages, VLPs metagenomes, bulk metagenomes, gut
virome, phage bacteria interaction, phage bacteria mammalian cells interaction,
culture-dependent techniques
Introduction

The human gut harbours a highly diverse and stable viral community that impacts

human health (Shkoporov et al., 2019; Garmaeva et al., 2021; Mihindukulasuriya et al.,

2021; Van Espen et al., 2021). These gut viruses predominantly consist of bacteriophages,

which directly interact with both their bacterial hosts and the mammalian cells lining the

gut (Jahn et al., 2019; Cornuault et al., 2020; Liang and Bushman, 2021), suggesting that

viruses have a critical ecological role in the maintenance of gut homeostasis (Gregory et al.,

2020; Li Y. et al., 2021). An increasing number of studies are investigating the association of

the gut virome with several pathologies, including metabolic syndrome (de Jonge et al.,

2022), non-alcoholic fatty liver disease (Lang et al., 2020), inflammatory bowel disease

(IBD) (Clooney et al., 2019; Gogokhia et al., 2019; Ansari et al., 2020), diabetes (Zhao et al.,

2017; Ma et al., 2018), colorectal cancer (Hannigan et al., 2018), and Parkinson’s disease

(Tetz et al., 2018). Fluctuations in the gut viral community may represent novel biomarkers

of disease states or therapeutic targets (Clooney et al., 2019; Mangalea et al., 2021).
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However, mechanistic links between these gut viruses and disease

largely remain to be determined (Lang et al., 2020; Voorhees

et al., 2020).

Coupled with next-generation sequencing, the enrichment of

viral-like particles (VLPs) has provided a high-resolution lens with

which we can study the highly diverse, unknown, and individual-

specific viral community that constitutes the adult gut virome

(Liang and Bushman, 2021). While more than 60% of gut viral

contigs cannot be assigned to a taxonomic level, upwards of 97% of

the contigs that can be assigned represent bacteriophages

(Shkoporov et al., 2019; Garmaeva et al., 2021). Bacteriophages,

or simply phages for short, are viruses that replicate within bacterial

cells through a continuum of life cycles, with the lytic and lysogenic

cycles being the most studied (Liang and Bushman, 2021). Within

the lytic lifecycle, virulent phages lyse their bacterial host to release

their viral progeny, whereas temperate phages have the potential to

either undergo a lytic cycle or integrate into their bacterial host’s
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chromosome as a prophage, as part of the lysogenic lifecycle (Liang

and Bushman, 2021).

When considering these phage lifecycles, several technical

challenges emerge with the collection and subsequent analysis of

lysogenic viruses from the gut. When processing gut VLPs, the

captured virions comprise phages replicating only within the lytic

stage of the phage lifecycle, thus integrated prophages are not

directly surveyed (Figure 1) (Breitbart et al., 2018; Gregory et al.,

2020). Following sequencing of the VLPs, the lifestyle assignment of

assembled viral contigs is based upon the presence of essential

lysogeny genes, including integrase, lysogenic recombination,

prophage proteins, and transposases (Shkoporov et al., 2019; Van

Espen et al., 2021). However, the detection of these genes may be

dubious due to genome fragmentation and the lack of extensive

viral sequence databases (Gregory et al., 2020). Moreover, it is

typical that the vast number of VLP-associated contigs cannot be

assigned at a taxonomic level (Shkoporov et al., 2019). To overcome
FIGURE 1

Bulk and VLPs-enriched metagenomes survey different gut phages lifestyles. While bulk metagenomes provide extracellular and intracellular phages
sequences, VLPs-enriched metagenomes mostly provide sequences from extracellular phages. Both techniques depend on either homology-based
methods or machine learning algorithms to predict phages and their lifestyles. The lack of extensive phage-encoded proteins databases, cryptic
phages, and fragmented genomes lead to false positive results. BG, bacterial genome; VC, viral cluster.
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this, VLPs-associated contigs can be clustered into approximately

genus- or subfamily-level groups known as viral clusters (VC)

(Shkoporov et al., 2019). A limitation of this approach is that it

can group mixed populations of virulent and temperate phages

(Campbell et al., 2020), which further confuses the abundance and

detection of temperate phages in the gut (Figure 1). Hence, the

characterization of temperate phages in wide-scale studies is

likely undermined.

Here, we review the role of phages in the human gut, presenting

the insights on temperate phages based on both culture-dependent

and -independent methods. First, we give an overview of the wealth

of knowledge on the gut viral community. We next explore the

potential roles of temperate phages in the gut. Finally, we highlight

the relevance of integrating experimental and computational

techniques to improve our understanding of temperate phages

and their potential use in medical interventions.
The gut viral community from a
metagenomic perspective

Where are they living? And who are they?

Viral populations inhabit the totality of the mammalian

gastrointestinal tract (Shkoporov et al., 2022a). A recent study

provided one of the highest-resolution demarcation of the

mammalian virome to-date across two species; the domestic pig

and rhesus macaque (Shkoporov et al., 2022a). These authors found

a strong partition between the virome inhabiting the large intestine

and other gastrointestinal locales, with the large intestine virome

being more abundant, diverse, and shared between the caecum and

colon, compared with the lower abundance and relatively confined

viromes of the small intestine and stomach (Shkoporov et al.,

2022a). The large intestine luminal content of both domestic pigs

and macaques mainly harbored tailed bacteriophages

(Caudoviricetes), including crAss-like phages and ssDNA

Microviridae, with a lower fraction of eukaryotic viruses (families

Circoviridae, Astroviridae, Caliciviridae and Parvoviridae)

(Shkoporov et al., 2022a). Furthermore, total viral loads in the

large intestine mucosa samples were three orders of magnitude

lower than matched luminal samples (Shkoporov et al., 2022a).

Similar to the enteric viral composition in rhesus macaques and

domestic pigs, the adult human gut virome is dominated by phages,

with more than 97% of the assigned contigs identified as phage

(Gregory et al., 2020; Garmaeva et al., 2021; Van Espen et al., 2021).

Gut phage populations overwhelmingly consist of Caudoviricetes

-including crAss-like phages- and Microviridae phages (Shkoporov

et al., 2019; Gregory et al., 2020; Zuo et al., 2020; Garmaeva et al.,

2021; Adiliaghdam et al., 2022; Gulyaeva et al., 2022). Moreover,

phages from the Inoviridae family along with novel candidate

families Flandersviridae and Quimbyviridae, which infect

Bacteroides, Parabacteroides, and Prevotella, are commonly found

in the gut but at lower abundances (Shkoporov et al., 2019; Gregory

et al., 2020; Zuo et al., 2020; Benler et al., 2021; Garmaeva et al.,

2021; Adiliaghdam et al., 2022). As such, the human gut virome is
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highly individual and temporally-stable, where a predominant yet

small fraction of viruses that persist over time (Shkoporov et al.,

2019; Dahlman et al., 2021; Van Espen et al., 2021). Shkoporov et al.

named this fraction as the persistent personal virome, where ~2% of

the total viral contigs recruited a median of ~90% of the VLPs-reads

per sample and were present in at least six out of 12 monthly

samples collected from ten adults (Shkoporov et al., 2019).

Similarly, Van Espen et al. showed that the ten most abundant

viral contigs represented a median of ~80% of the total reads per

sample from 91 individuals, including 46 children and 45 adults

(Van Espen et al., 2021). These results indicate that the individual

gut viral signature is captured by relatively few yet abundant

viral contigs.
When does the individual viral signature
appear? And what is its relation with
disease states?

The individual uniqueness of the virome begins immediately

after birth and may have broad implications on the development of

a healthy gut ecosystem. New-born babies have a high interpersonal

variation in their virome (Maqsood et al., 2019). Indeed, the

interpersonal variation seen in the virome among 1-4 day-old

new-born babies is significantly higher compared to the variation

among their mothers (Maqsood et al., 2019). This high

interpersonal variation is further found in children, adolescents,

adults, and even in 25-week old preterm infants (Gregory et al.,

2020; Liang and Bushman, 2021; Van Espen et al., 2021; Beller et al.,

2022; Kaelin et al., 2022). Preterm infants are particularly

susceptible to develop necrotizing enterocolitis (NEC), a disease

with a case mortality ranging between 22 to 38% (Kaelin et al.,

2022). Surprisingly, it was found that ten days prior to the onset of

NEC the virome beta diversity among preterm infants converged

with the enrichment of specific viruses (Kaelin et al., 2022). This

suggests that the collapse of the highly individualised gut virome

followed by the expansion of specific viruses could be a biomarker

of NEC disease states.

Phages can encode auxiliary metabolic genes (AMGs), and

through this influence their bacterial host’s metabolic capacities

and ecology, which may have implications in health and disease

states (Breitbart et al., 2018; Mangalea et al., 2021). In particular,

viromes of individuals at-risk for rheumatoid arthritis (RA) carry

fewer phage-encoded AMGs than healthy controls (Mangalea et al.,

2021). Notably, in individuals at-risk for RA, AMGs involved in the

production of bacterial cell membrane polysaccharides and biofilm

formation were less abundant compared to healthy controls, while

AMGs involved in lipopolysaccharide and peptidoglycan

biosynthesis were more abundant (Mangalea et al., 2021). This

indicates that phages can drive bacterial surface modifications

through AMGs, and potentially influence bacterial fitness

(Mangalea et al., 2021), subsequent phage infectivity (Shkoporov

et al., 2022b), and the stimulation of the immune system within the

gut (Mangalea et al., 2021). Additionally, it was found that the

virome of centenarians carry AMGs related to sulphur metabolic
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pathway, suggesting a higher microbial output of hydrogen sulphide

that has been reported to promote colonization resistance and

protection against aerobic pathogens (Johansen et al., 2023).
Studying gut temperate phages

The investigation of VLPs-enriched metagenomes has

substantially contributed to our understanding of phages in the

gut, however, these studies are inherently limited to virulent phages

and induced temperate phages (Breitbart et al., 2018; Gregory et al.,

2020). Comparatively, bulk metagenomes screen the entire

microbial community and with sufficient depth are capable of

sequencing both extracellular phage virions and the integrate

prophages residing within bacterial host chromosomes (Figure 1).

Thus, bulk and VLPs-enriched metagenomes capture different viral

populations and evidence of this discrepancies have been observed

(Gregory et al., 2020). By using matched bulk and VLPs-enriched

metagenomes from the Shokoporov et al. cohort (Shkoporov et al.,

2019), Gregory et al. detected a higher fraction of virus in the bulk

metagenomes and observed that only 8.5% of the viral populations

were recovered for both bulk and VLPs-enriched metagenomes

(Gregory et al., 2020), highlighting that VLPs-enriched

metagenomes only capture the induced temperate phages, herein

termed extracellular temperate phages, and suggesting that a high

proportion of temperate phages reside as prophages in their host

(Gregory et al., 2020). Therefore, a coupled approach of bulk and

VLP metagenomes might be the most suitable option to survey the

whole gut community of temperate phages. However, the ease of

extracting and processing bulk metagenomes, compared with VLP

metagenomes, along with their enhanced capacity for viral recovery

render them an attractive choice for the study of temperate phages

and their respective infection stages.

By employing bioinformatic tools, it becomes feasible to

examine both intra- and extra-cellular temperate phages within

bulk metagenomes. Various packages, such as VirSorter (Roux

et al., 2015), VIBRANT (Kieft et al., 2020), PHASTER (Zhou

et al., 2011; Arndt et al., 2016), Prophinder (Lima-Mendez et al.,

2008), ProphET (Reis-Cunha et al., 2019), PhySpy (Akhter et al.,

2012), and Phigaro (Starikova et al., 2020), can be utilized to predict

temperate phages. Subsequently, the lifestyle of the temperate phage

can be estimated using PropagAtE (Kieft and Anantharaman, 2022)

or PIE (Miller-Ensminger et al., 2023), which employ statistical

analyses of prophage-to-host read coverage ratios, with a higher

ratio being indicative of extracellular temperate phages. However,

these packages have inherent limitations, including failure to

identify novel phages and identification of false positives arising

from cryptic prophages. Despite these limitations, the study of

temperate phages from bulk metagenomes has the potential to

provide insights into their composition and life cycles within

the gut.

To move beyond predictions of temperate phages and begin to

characterise and understand phage specificity (i.e., what bacteria do

these phages infect)? and their effect on the bacterial and

mammalian host, it is essential to integrate wet lab techniques

with sequencing approaches (Fitzgerald et al., 2021; Shamash and
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Maurice, 2022). Various bioinformatic tools, such as PHERI,

HostPhinder, Host Taxon Predicter, WIsH, and CHERRY,

leverage sequence similarity, CRISPR spacer matches, and deep

learning models to predict phage-bacteria interactions (Shang and

Sun, 2022; Ostenfeld et al., 2023). However, their effectiveness is

limited to well-characterized phage-host pairs and host species,

with false positive predictions remaining difficult to validate

(Ostenfeld et al., 2023). To overcome these limitation, a range of

experimental approaches, including traditional spot, plaque, and

liquid assays, viral tagging, microfluidic PCR, phageFISH, single cell

sequencing, and Hi-C sequencing can be employed to validate

prophage predictions and begin to build experimental systems for

further characterisation (Edwards et al., 2016). It is important to

note that most of these methods, along with phenotypic and gene

function characterization, are heavily dependent on culture-based

techniques (Edwards et al., 2016; Ostenfeld et al., 2023). To this end,

recent studies have begun to isolate, culture, and sequence gut

bacterial isolates from faecal samples worldwide (Stokholm et al.,

2016; Forster et al., 2019; Hryckowian et al., 2020; Camarillo-

Guerrero et al., 2021). These studies not only provide the

protocols to isolate novel gut bacteria but also provide novel

temperate phages and their bacterial hosts as in vitro model

systems, enabling insights into gut phage biology.
Temperate phages insights from
culture-independent and culture-
dependent techniques

The bloom of temperate phages after birth

During the first years of life, there is a striking increase in the

abundance and richness of VLPs, the majority of which appear to be

temperate (Liang et al., 2020; Beller et al., 2022; Shamash and

Maurice, 2022). In the first ~four days postpartum, VLPs are not

detected in the majority of meconium samples (Liang et al., 2020).

However, in the following month of life, detectable VLPs expand in

the gut reaching concentration of 109 VLPs per gram of stool

remaining at this abundance through to adulthood (Liang et al.,

2020). In a Belgian study of eight infants, it was found that 76% of

the sequenced VLPs were predicted to potentially have a temperate

lifestyle (Beller et al., 2022). Notably, another study found that one

to four day old babies share ~60% of their bacterial populations with

their mothers’ while sharing just ~15% of their gut viruses

(Maqsood et al., 2019). Thus, the establishment of the gut virome

in the first years of life appears to be driven by an early bloom of

extracellular temperate phages originating from pioneering

maternal bacteria colonising the gut (Maqsood et al., 2019; Liang

and Bushman, 2021; Taboada et al., 2021).

In a small collection of bacterial strains isolated from new-born

babies, spontaneous induction of VLPs was observed in ~30% of

isolates (Liang et al., 2020). Using the same bacterial strains, the

number of induced strains was increased to 80% following the

addition of the gold standard induction agent Mitomycin C (Liang

et al., 2020). A similar study screened prophage induction across
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900 Escherichia coli strains isolated from 648 faecal samples

collected from 1-year-old infants and found >60% were capable

of autoinducing prophages and forming plaques in two laboratory

E. coli strains (Mathieu et al., 2020). These in vitro observations

support the hypothesis that earlier gut phage populations originate

from prophage-induction events of pioneer bacteria.
Induction of temperate phages
in the adulthood

During the transition from infancy to adulthood, a noticeable

decline in extracellular temperate phages is observed in the gut

(Beller et al., 2022). This decline reaches its peak during adulthood

(18-60 years old), with a higher proportion of temperate phages

undergoing lysogenic cycle, gradually shifting towards a preference

for lytic cycles as individuals age (Johansen et al., 2023). In a cohort

of Belgian infants, a decreasing abundance of the extracellular

temperate phages was observed towards the end of the first year

(Beller et al., 2022). Congruently, in a Danish population of 45

adults and 46 children, the alpha diversity of extracellular temperate

phages was significantly decreased in adults compared to infants,

with the relative abundance of extracellular temperate phages

ranging from 0% to 68% (Shkoporov et al., 2019; Van Espen

et al., 2021). This broad range in the relative abundance points

out that external factors such as diet, age, use of medication,

location, and disease states can affect either the initial number of

prophages or the number of induction events per individual. Lastly,

in a Japanese cohort, a higher ratio of temperate phages to bacteria

was observed in centenarians compared to both elderly (<60 years

old) and young adults (>18 years old), indicating a shift back to lytic

cycle as individuals age (Johansen et al., 2023).

Prophages are differently induced by dietary compounds

(Boling et al., 2020) and oral medications (Sutcliffe et al., 2021).

While compounds such as fernet, Arabica coffee, and oregano

reduced the number of VLP related to spontaneous inductions in

isolated strains of Bacteroides thetaiotaomicron, Enterococcus

faecalis, and Staphylococcus. aureus, other agents, such as

toothpaste, were able to increase the induction of certain

prophages (Boling et al., 2020). In fact, a decrease of integrase

genes in VLPs-associated contigs was observed during the

transition from a normal to high-fat diet in mice, suggesting an

overall reduction of extracellular temperate phages was driven by

diet (Schulfer et al., 2020). In the case of the gut lysogen

Lactobacillus reuteri, dietary fructose or gut-derived short chain

fatty acids drove the induction of its prophage via the Ack pathway

in a RecA dependent manner (Oh et al., 2019). Moreover, oral

medications divergently induced VLPs in three Bacteroidetes, three

Firmicutes, and one Actinobacteria gut strains (Sutcliffe et al.,

2021). These results suggest that both spontaneous and

differential prophage induction occur in the gut and that these

induction events are both strain- and compound-specific (Sutcliffe

et al., 2021), and in consequence, prophage inductions may differ

between individuals based on its diet and use of medication.

Further evidence suggests that induction of prophages are

associated with IBD (Clooney et al., 2019). Temperate VCs
Frontiers in Cellular and Infection Microbiology 05
differentially increased in patients with the two most common

subtypes of IBD, Crohn’s disease (CD), and UC, relative to

control subjects (Clooney et al., 2019). Moreover, temperate VCs

recruit significantly more reads in CD patients than healthy controls

(Clooney et al., 2019). Furthermore, 15 out 17 Siphoviridae contigs

increased in IBD patients were classified as temperate phages of

Firmicutes (Clooney et al., 2019). These results correspond with the

reduced Firmicutes abundance in IBD and provides evidence that

induction of specific temperate phages may directly alter their host

abundance and association with IBD (Clooney et al., 2019).
How do temperate phages interact with
bacterial host and epithelial cells?

Integrated prophages can modulate the metabolism of their

bacterial host and encode genes to induce epithelial cellular

responses (Campbell et al., 2020; Brown et al., 2021). The

prophage BV01 was found to alter the bile acid metabolism of its

host, Bacteroides vulgatus. By integrating into the tspO promoter,

phage BV01 disrupted the genes function and repress the bile acids

deconjugation, suggesting a regulatory link between TspO and the

hydrolysis of bile acids (Campbell et al., 2020). Bile acids are

secreted by the mammalian cells at high concentration in the

small intestine, facilitate fat absorption, and alterations on their

metabolism are associated with obesity (Campbell et al., 2020; Li R.

et al., 2021). Furthemore, it was shown that both bile acids and

oxidative stress induce the production of Bxa in Bacteroides gut

isolates (Brown et al., 2021). Bxa is a Bacteroides-encoded ADP-

ribosyltransferase, which is known to be encoded by a prophage

within select B. stercoris strains (Brown et al., 2021). The expression

of Bxa in B. stercoris lysogens is co-activated with genes relevant to

bacterial adhesion and secretion, and importantly, secreted Bxa

induces the gut epithelial cells to secrete inosine, which further

promotes B. stercoris growth and biofilm formation (Brown et al.,

2021). Notably, phage BV01 was found to integrate into the genome

of another bacterial host exclusively in a gnotobiotic mouse model

(Campbell et al., 2020), highlighting the presence of unexplored

tripartite biological factors necessary for successful infection that

are not effectively replicated under in vitro conditions. This wet-lab

characterization shows the co-dependent relationships between

prophages, bacteria, and the human host.
Conclusion

Bulk and VLPs-enriched metagenomes continue to be pivotal in

our understanding of temperate phages within the gut. While we are

beginning to uncover associations between temperate phages and gut

health, it is important to recognise the inherent limitations when

utilising these sequencing approaches, particularly the bias towards

isolating either the intracellular or extracellular lifecycles of temperate

phage. The next steps towards the understanding of these viruses must

hybridize both culture-based techniques with sequencing approaches

to unveil the biology and mechanistic insights of gut temperate phages,

their ecology and associations with human health.
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