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Molecular association of
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vulvovaginal candidiasis:
focusing on a solution

Helma David and Adline Princy Solomon*

Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical
and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant

challenge in clinical settings, owing to the inefficacy of current antifungals in

modulating virulence, development of resistance, and poor penetration into the

biofilm matrix. Various predisposition factors are molecular drivers that lead to

the dysbiosis of normal microflora of the vagina, upregulation of central

metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and

biofilm formation leading to chronic infection and recurrence. Hence, it is crucial

to understand the molecular mechanism behind the virulence pathways driven

by those drivers to decode the drug targets. Finding innovative solutions

targeting fungal virulence/biofilm may potentiate the antifungals at low

concentrations without affecting the recurrence of resistance. With this

background, the present review details the critical molecular drivers and

associated network of virulence pathways, possible drug targets, target-

specific inhibitors, and probable mode of drug delivery to cross the preclinical

phase by appropriate in vivo models.
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1 Introduction: VVC

Vulvovaginal candidiasis (VVC) is an inflammatory mucosal infection in the lower

reproductive tracts of women. Among women of different ages, more reported cases of

VVC are in the reproductive age. Also, 75% of women experience at least one episode of

VVC in their lifetime, and 8% experience a recurrence of infection, at least four episodes

per year. Global statistics show that 138 million women worldwide experience recurrent

VVC each year, with an annual prevalence of 3,871/100,000. According to base case

estimates considering the increase in female population worldwide, the expected number of

individuals affected with recurrent VVC is predicted to rise to over 158 million by 2030. As

a result, 20,240,664 more VVC-affected cases are added to the predicted increase in female

population from 3.34 to 4.181 billion people (Żyrek et al., 2021).
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The global statistics of VVC are hiked by Candida, a

predominant fungal colonizer of the vaginal lumen (Ahangari

et al., 2019). Candida albicans and several other related species,

Candida glabrata, Candida tropicalis, Candida parapsilosis, and

Candida krusei cause VVC (Guinea, 2014). Interestingly, C.

albicans, the primary causative agent of VVC, is categorized as a

critical fungal priority pathogen (CFPP) by the WHO (World

Health Organization) (Fisher and Denning, 2023). C. albicans is

also a benevolent partner of the microbiome of healthy individuals

and is capable of switching from a commensal to a pathogenic state

under adverse conditions driven by various predisposition factors

(Mukaremera et al., 2017). Several predisposition factors are

associated with VVC, which include diabetes mellitus (DM),

elevated endogenous estrogens (from pregnancy or obesity),

immunosuppression (i.e., transplant patients, antimetabolite

medications or chemotherapy, or HIV infection), broad-

spectrum antibiotic use, and other environmental factors

(Gonçalves et al., 2016). Recent studies have shown that patients

with DM are more prone to candidiasis, as glucose plays a

significant role in the colonization and proliferation of these

pathogens in the host (Gürsoy et al., 2018). Host-influenced

(predisposition) factors are critical in driving C. albicans

morphogenetic lifestyle changes from yeast to hyphal and enable

it to cross its boundary from commensal to pathogenic form and

vice versa (Mukaremera et al., 2017). C. albicans, in its lifestyle

transition, express various virulence traits that increase its survival

fitness in the host and lead to the rapid evolution of resistance to

antifungals (Slutsky et al., 1985; Sudbery et al., 2004). The survival

fitness of C. albicans enhances them to effectively colonize the host

and leads to the spread of infection in an asymptomatic/

symptomatic mode causing severe mucosal inflammation in

affected individuals (Farhan et al., 2019). Mucosal inflammation

is a symptomatic response in patients who may exhibit vaginal

itching, vaginal burning, dyspareunia, and edema, and may form a

thick or sticky discharge (Sheppard, 2020). It is quite alarming that

no new class of antifungals has reached the recipients since the

2000s to treat VVC. The loss of productivity is mainly due to the

eukaryotic nature of fungal cells, difficulties with compound

permeability across the fungal cell wall and membrane, and a

lack of interest from the pharmaceutical industry; the development

of novel antifungal agents has generally been slow (Roemer and

Krysan, 2014).

Infection and therapy must go hand in hand for a better cure.

Once it fails, the global economic burden also increases with the

emergence of antifungal resistance. Recent estimates show that the

global VVC treatment market value will reach USD 986.5 million.

In the next 10 years, the compound annual growth rate (CAGR) will

be 4.1% according to a VVC treatment market report (Denning

et al., 2018). In parallel, it would be a tremendous challenge for both

high-/low-income countries, and there is a pressing need to address

this global health-associated risk. Finding solutions through

innovations relies on molecular information on the various

drivers (predisposition factors), molecular pathways, and

associated virulence that affect the pathogen colonization and

cause infection in the host. Hence, in this review, we focus on the

predisposition factors leading to the virulence of candidiasis,
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existing treatment strategies with their disadvantages, and how

this can be tackled by deciphering possible drug targets and

probable mode of drug delivery to cross the preclinical phase by

appropriate in vivo models.
2 Molecular drivers of VVC

VVC recurrence relies on various intrinsic and extrinsic factors.

The key host-specific factors, such as the pH of the vaginal

environment, age and hormonal status, local defense mechanisms,

pregnancy, allergies, psychosocial stress, metabolic issues,

immunosuppression, and individual genetic susceptibility, are

essential. Additionally, behavioral risk factors including oral

contraceptives, overuse of antimicrobials, glucocorticoids,

inhibitors of the sodium-glucose co-transporter-2 (SGLT2),

intrauterine devices (IUDs), spermicides, and condoms, as well as

sexual, hygienic, and dressing habits, demand intervention

(Table 1) (Patel et al., 2004).
2.1 pH

C. albicans makes use of its remarkable capacity to respond to

variations in nutrition availability, ion or serum concentrations,

osmotic pressure, and ambient pH to thrive and spread within the

host. Most strikingly, C. albicans could colonize and exhibit a

normal growth rate on various host niches over a wide range of

ambient pH (Brotman et al., 2014). However, in its transition from a

commensal to a pathogenic state, the host environment pH changes

to slightly alkaline and, to an extent, neutral, like a blood pH of 7.3.

The change in the extracellular pH modulates several C. albicans

genes, viz., Rim101-dependent or -independent pathways (Davis

et al., 2000; Vylkova et al., 2011). Among various genes, PHR1 and

PHR2 (pH-responsive genes 1 and 2) are the first reported Rim101-

dependent pH-regulated genes in C. albicans. However, the

expression of pH-responsive genes is finely regulated, where a pH

≤ 5.5 is required for PHR1 expression; in contrast, a pH ≤ 5.5 is

required for PHR2. The pH-dependent control is essential for C.

albicans to establish pathogenesis in the host niches. Highly

comparable glycoproteins that are believed to be attached to the

plasma membrane by a glycosylphosphatidylinositol (GPI) are

encoded by PHR1 and PHR2, respectively (Davis et al., 2000). C.

albicans deficient in expressing PHR1/PHR2 proteins invariably

affects its morphogenesis, and cell wall synthesis is pH dependent

(Lesage and Bussey, 2006). In addition, the weak organic (lactic)

acid released from the host-epithelial or the co-colonized microbes

dissociates directly into microbial cells because of their lipophilic

characteristics. On internalization, the negatively charged counter-

ion accumulates and leads to a rise in turgor pressure, oxidative

stress, and the loss of vital cellular elements such as ribosomal RNA

and cofactors, an effective antimicrobial against C. albicans (Zeise

et al., 2021). The vaginal microbiota processes the glycogen released

from the vaginal epithelial cells, especially by female hormones, to

produce lactic acid. However, during the dysbiosis of the vaginal

microbial consortium, even though glycogen levels are high, the pH
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TABLE 1 C. albicans virulence pathways controlled by various molecular (predisposition) drivers.
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remains alkaline, and the environment is prone to infections

(d’Enfert et al., 2021).
2.2 Hormonal imbalance

Estrogen is a steroid hormone that regulates women’s immune

systems and overall health (Brotman et al., 2014). Elevated estrogen

levels retrench leukocyte infiltration and epithelial cell-mediated

antifungal responses. Among the four isoforms of estrogen [estrone

(E1), 17b-estradiol (E2), estriol (E3), and 17a-ethynylestradiol
(EE2)], E2 is most potent and more associated with many

gynecological disorders (Dubey et al., 2005).

Studies have shown that women of reproductive age are more

susceptible to candidiasis. Postmenopausal and prepuberty girls are

less prone to infection unless they undergo hormone replacement

therapy or recurrent usage of oral contraceptives (Phillips et al.,

2023). Furthermore, the effects of estrogen on the immune system

and the vaginal microbiome can make it more conducive to the

growth of C. albicans. C. albicans estrogen adaptation has been

found to increase fungal virulence by suppressing phagocytosis,

facilitating the yeast to circumvent the innate immune responses.

The enhanced binding of Factor H on the fungal cell surface in the

presence of estrogen is the cause of this emergence. A critical

component of the innate immune response, the host ’s

complement system can recognize and assault fungal cells. The

fungal cell surface protein encoded by GPD2 drives the estrogen-

induced expression of Factor H. Factor H is a human complement

regulatory protein that aids in inactivating the alternative

complement system and, thus, preventing the assault on fungal

cells (Kumwenda et al., 2022). However, preclinical studies on

animal models have shown the role of exogenous estrogen in the

fungal infection to persist in the vaginal area. The hormone

estrogen promotes the process of keratinization and cornification

of the upper layers of the vaginal epithelium, which provides an

environment that is favorable for the growth of C. albicans

(Dennerstein and Ellis, 2001; Willems et al., 2020). Furthermore,

pregnancy, antibiotic misuse, and age might cause an imbalance in

estrogen levels, boosting susceptibility to infection (Aguin and

Sobel, 2015). In this context, estrogen appears to be crucial for C.

albicans to cause hormone-associated vaginitis, whereas

progesterone does not impact the same (Fidel et al., 2000).
2.3 Diabetes mellitus

Women with diabetes are more susceptible to VVC owing to

increased serum glucose levels. Several case studies show the

relationship between women affected with DM and recurrent

VVC (Mohammed et al., 2021). DM can lead to systemic

candidiasis through diabetic vasculopathy, hypoperfusion and

hyperglycemia, and microvascular disease progression, thus

damaging the host defense mechanism, leading to fungal growth

and adhesion (Guimarães et al., 2012). The inter-relationship of

DM and VVC is due to the expression of glucose-inducible surface

proteins that resemble the complement system proteins. An
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increase in the level of such surface proteins weakens the immune

system. Furthermore, the reduced neutrophil migration diminishes

their functions, including phagocytosis, chemotaxis, and

intercellular killing (Sustr et al., 2020).

Blood glucose levels and evasion of the immune system

strengthen the major virulence factors in C. albicans, like secreted

aspartyl protease (Sap), phospholipases, candidalysin, and biofilm

formation. Sap proteins can break down various host-related

components and aid in generating nitrogen, which is required for

C. albicans penetration in the host cells (Czechowicz et al., 2022).

Similarly, phospholipases target membrane phospholipids to

initiate cell lysis and penetration (Ghannoum, 2000).

Candidalysin encoded by the gene ECE1 promotes the influx of

calcium ions and lactate dehydrogenase (LDH), impacting

membrane and cell damage destabilization (Ho et al., 2019).
2.4 Overuse of antifungals

The repeated use of antifungals, especially azoles, polyenes, and

echinocandins, as a first-line treatment strategy for VVC can

develop resistomes in C. albicans, thereby fostering its adhesion

and colonization in the epithelial cells to initiate infection

(Bhattacharya et al., 2016; Bhattacharya et al., 2020). Overuse of

antifungals can lead to a conformational change in the target,

overexpression of efflux pumps, modulation of stress responses,

and genomic modifications (Cowen, 2008). Also, antifungal overuse

can disrupt the normal microflora of the vagina, leading to an

increased recurrence of infection. Lack of proper diagnosis and use

of antifungals after antibiotic treatment can also be prominent

reasons for generating multidrug-resistant strains (Donders

et al., 2011).
2.5 Other factors

Various other factors, including variations in vaginal

temperature, nutrient stress, and immunocompromised state, can

lead to the colonization of C. albicans in the host epithelial tissue

(Willems et al., 2020). The equilibrium of the vaginal microbiota is

critically dependent on vaginal temperature. The environment for

the growth of C. albicans may be more favorable if the vaginal

temperature rises (Antley and Hazen, 1988). Likewise, nutrient

stress results from a vital nutrient deficiency that sustains a healthy

vaginal environment. The immune system needs enough specific

nutrients, such as vitamins, minerals, and antioxidants, to perform

at its best and maintain a healthy vaginal microbiome. Some

nutrient deficiencies might weaken the immune system and make

it more challenging to regulate C. albicans overgrowth (Rutherford

et al., 2019). Also, HIV/AIDS, a few autoimmune disorders, cancer

treatments including chemotherapy or radiation, organ

transplantation, and long-term immunosuppressive drug use are

among the conditions that can lead to immunocompromise. Such

immunocompromised women are more prone to C. albicans

growth and proliferation, which can result in more frequent and

severe vaginal candidiasis episodes (Willems et al., 2020).
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3 Molecular driver-associated
virulence determinants

The dysbiosis of the healthy microbiome in the vagina by

various predisposition factors leads to the initiation of the

virulence mechanism in C. albicans. The evolution of yeast-like

fungi to an invasive pathogen depends on many fungal factors along

with the host. Such host–pathogen interaction relies on many

stages, including adhesion, invasion, biofilm formation, and

spread of infection (Willems et al., 2020) (Figure 1).
3.1 Adhesion

Adhesion is a multifactorial complex process, and with the

influence of various predisposition factors, C. albicans colonize and

adhere to the epithelial cells. The colonization of the pathogen with

the host epithelial cells is through non-specific interactions like

hydrophobic and electrostatic interactions and effects changes in

the central metabolic pathways like MAPKK, Ras-PKA,
Frontiers in Cellular and Infection Microbiology 05
Calcineurin, and Ergosterol synthetic pathway (Biswas et al.,

2007; Moyes et al., 2015).

Following successful colonization, various adhesive proteins

will initiate adherence to the receptors on the host. These

adhesive proteins are encoded by different families of genes,

including ALS (Agglutinin Like Sequence), HWP1 (Hyphal Wall

Protein), and EPA (Epithelial Adhesins). ALS is the largest among

them and encodes eight proteins (ALS1–7 and ALS9) bound to

glycosylphosphatidylinositol (GPI). All these proteins mainly have

three regions, an N-terminal domain for specific substrates, the core

region with tandem repeat sequences, and a C-terminal domain

with a GPI anchor sequence (Nobile et al., 2006; Hoyer and

Cota, 2016).

The other critical group of adhesins is theHWP1 protein, which

has a characteristic of hyphal formation, with a unique mechanism

of action. The N-terminal domain is rich in Gln-Pro, the binding

site of host transglutaminase catalyzing the adhesion. A recent study

reports that HWP1 and other adhesins are necessary for rat

catheter-associated infections (Maras et al., 2021). Like HWP1, C.

albicans adherence to host epithelial cells and biofilm formation

includes Eap1p (Enhanced Adherence to Polystyrene) (Li and
FIGURE 1

Network pathway analysis of Candida pathogenicity and virulence driven by various predisposition factors. (1 and 2) Yeast cells that are planktonic
colonize surfaces. Favorable conditions promote overgrowth and adherence (3), where cells stick to host cells using adhesins, and hyphae
formation/extension and environmental constraints activate HSPs, signaling, and adaptation pathways that activate genes related to morphology. The
pathogenesis of C. albicans begins with hyphal development. (4 and 5) Epithelial/endothelial adhesion/invasion with the help of hydrolytic enzymes.
Prior to the onset of infection, generate biofilms (6). After the maturation of the biofilm, the dispersed cells from the biofilm localize to other areas
leading to the spread of infection. Different kinds of candidiasis are caused by cytolytic proteins and enzymes destroying epithelial and mucosal
surfaces (created using BioRender.com).
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Palecek, 2003; Richardson et al., 2018; Samot and Rouabhia, 2021).

Also, among the cell wall (GPI-anchored)-associated aspartyl

proteinases, Sap10 enhances C. albicans adhesion compared to

SAP9. Studies evidence the opposing effect of both the proteinases

in that the deletion of the SAP9 gene in C. albicans increased its

adhesion and vice versa in the other deleted (SAP10) mutants

(Albrecht et al., 2006).
3.2 Invasion

The invasion of C. albicans follows the adhesion promoted by

its hyphae, which causes epithelial cell damage, penetration, and

host immune system inactivation by adhesion to the host cells. The

process of invasions is enhanced by the secreted invasins, especially

hydrolytic enzymes, including hemolysins, proteases, lipases, and

phospholipases (Mayer et al., 2013). Among them, one crucial

family of invasins is SAP 1–10 encoded by SAP genes. SAPs are

classified into three classes based on their sequence homology by

amino acid and specificity for the substrate (Schaller et al., 2003).

The C. albicans SAP isoenzyme family displays sequence homology

that indicates the presence of three distinct clusters: SAP1 to SAP3,

exhibiting 67% sequence identity, and a closer association among

members SAP4 to SAP6, which share a higher sequence homology

of up to 90% (Staib et al., 1999; Naglik et al., 2003). SAP10 involved

in the GPI-linked cell surface anchoring is classified as

endopeptidases. SAP is involved in the hyphal formation,

penetration, and degradation of defense molecules secreted by the

host, like alpha-macroglobulin, collagen, mucin, complement

proteins, immunoglobulins, and lactoperoxidase. Among different

SAPs, SAP1–SAP3 are more crucial for invasion; literature has

shown the importance of these proteins, especially SAP3, in the

colonization and infection of vaginal epithelial cells (Correia et al.,

2010; Ali et al., 2018). Recent research has shown that the gene

ECE1, which codes for the protein candidalysin, is essential for

destroying epithelial cells, the generation of cytokines, and

neutrophil recruitment. This hyphae-specific protein has 271

amino acids spread over seven lysine-arginine (KR) repeats. Kex2

protease cleaves the protein into eight peptides. Peptide three (N-

SIIGIIMGILGNIPQVIQIIMSIVKAFKGNK) produced can cause

lysis and trigger inflammatory reactions, hence named

candidalysin (Engku Nasrullah Satiman et al., 2020). During

experimental VVC, deletion of ECE1 or candidalysin reduces

immunopathologic indicators of infection (neutrophils, pro-

inflammatory cytokines, and alarmins) and tissue damage.

Notably, deletion mutants did not exhibit altered colonization or

defects in filamentation in vivo, proving that candidalysin is

necessary for promoting immunopathogenesis during VVC and

that hyphae are insufficient to do so (Liu et al., 2021).

Another important class of invasins is phospholipases, a group

of hydrolases known for the hydrolysis of cell membrane

phospholipids inducing cell lysis and penetration to host tissue.

Four classes of phospholipases are known to date, A, B, C, and D,

classified based on the ester bond they cleave (Ghannoum, 2000;

Bassyouni et al., 2015). Hemolysins and esterase are other

virulence-causing enzymes in which hemolysins are necessary for
Frontiers in Cellular and Infection Microbiology 06
iron acquisition and survival when esterase is known to exhibit

cytotoxic effects (Tan et al., 2015).
3.3 Biofilm formation

C. albicans is well known for its multifaceted biofilm formation

process, which begins with the successful adhesion of yeast cells to a

surface, followed by developing a discrete colony (Sustr et al., 2020).

Next, in the intermediate phase, cells organize and begin producing

and secreting extracellular polymeric substances (EPS), which

enable the maturation of a three-dimensional structure, forming

the biofilm. The mature biofilms of C. albicans have a more

heterogeneous structure, with blastophores and hyphae enclosed

in an ECM (extracellular matrix) made of polysaccharide material.

Not only cutaneous or mucosal but also biofilm formation

associated with medical devices is also predominated by C.

albicans. It is also critical to observe that the biofilm cells, after

maturation, disperse by forming biofilms in new sites and the host

tissue becomes vulnerable to the spread of infections (Cavalheiro

and Teixeira, 2018). Several genes, including those involved in

protein synthesis, the glycolytic cycle, glycolysis, and response to

oxidative stress, are activated in C. albicans and persist and spread

in the blood candidemia. The yeast spreads from the blood to the

other sites of the body, where it causes systemic illnesses.

Extracellular hydrolytic enzymes, adhesins, phenotypic flipping,

and cytolytic proteins also aid in the spread of candidiasis

(Atriwal et al., 2021).
3.4 Host immune response

C. albicans host interaction and the lifestyle transition from

commensalism to pathogenic form activate specific virulence

pathways and respond to the change in the host environment.

Initially, innate immune cell populations recognize C. albicans in

different ways. It involves the recognition of conserved pathogen-

associated molecular patterns (PAMPs) by several families of PRRs,

including the C-type lectin receptors (CLRs), Toll-like receptors

(TLRs), RIG-I-like receptors (RLRs), and NOD-like receptors

(NLRs) (Shibata et al., 2007). The cell wall of C. albicans has two

distinct layers: the outer layer, primarily made up of O- and N-

linked glycoproteins that contain 80%–90% mannose, and the inner

cell wall, which contains the skeletal polysaccharides chitin, b-1,3-
glucan, and b-1,6-glucan, which provide cell strength and shape.

The b-1,3- and b-1,6-glucans are essential C. albicans cell wall

elements recognized by CLRs (Munro et al., 1998). Dectin 1

(CLEC7A), a CLR expressed primarily on monocytes and

macrophages that induce cytokine production as well as the

internalization of the fungus through the establishment of a

“phagocytic synapse,” is one of the most extensively investigated

b-glucan receptors. Caspase activation and recruitment domain

containing-9 (CARD9), spleen tyrosine kinase (SYK), protein

kinase C12–16, and the RAF1 kinase signaling pathway are all

involved in the process through which Dectin 1 produces

intracellular signals (Whitney et al., 2014). The release of
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neutrophil extracellular traps (NETs) during fungal infection is said

to be prevented by signaling via Dectin 1 (Branzk et al., 2014). The

relevance of CARD9 is highlighted by the fact that CARD9-deficient

mice are more susceptible to invasive candidiasis than wild-type

mice and that humans with loss-of-function mutations in CARD9

likewise exhibit greater susceptibility to invasive candidiasis

(Glocker et al., 2009). Complement receptor 3 (CR3) is primarily

involved in detecting b-glucans by neutrophils, phagocytosis, and

destroying unopsonized C. albicans (van Bruggen et al., 2009).

Various CLRs, including the mannose receptor, DC-SIGN

(CD209), Dectin 2 (C-type lectin domain family 6 member E,

CLEC6A), and MINCLE (C-type lectin domain family 4 member

E, CLEC4E), are capable of recognizing mannans and

mannoproteins (Cambi et al., 2008). Candida N-mannan is

recognized by the mannose receptor, which is predominantly

expressed in macrophages. Thus, signaling pathways are crucial

for the generation of pro-inflammatory cytokines, including IL-17

(Netea et al., 2008). Candida a-mannan is recognized by Dectin 2,

which is mainly expressed on dendritic cells (DCs), macrophages,

and neutrophils. Dectin 2 has been linked to the generation of

reactive oxygen species (ROS), in addition to its function in

regulating T helper 17 (TH17) cell responses (Ifrim et al., 2014).

During a C. albicans infection, dectin 2 and dectin 3 have been

shown to heterodimerize, causing pro-inflammatory responses like

the generation of tumor necrosis factor (TNF), IL-1, and IL-6. Both

monocytes and neutrophils express the CLR MINCLE, which

oversees activating protective responses against C. albicans,

primarily by starting TNF production (Zhu et al., 2013). While

DC-SIGN is found on both DCs and macrophages and recognizes

Candida N-linked mannan, its activation promotes adaptive

immune responses by increasing the expression of cytokines that

drive TH cell activation and differentiation (Netea et al., 2008). The

receptor, Galectin 3, on the surface of macrophages also detects

mannoproteins and triggers the release of TNF, which, in turn,

causes mouse macrophages to mount a protective antifungal

defense (Linden et al., 2013). Likewise, the immunological

response to C. albicans involves a complicated interaction

between T regulatory cells (Tregs). Studies show that Tregs can

stimulate and inhibit immunity while treating C. albicans infections.

The result of the immune response to C. albicans depends critically

on the interaction between Tregs and other immune cells, such as

Th17 cells. Tregs can control inflammatory reactions and stop

tissue damage from an overactive immune system. However,

Tregs imbalance can obstruct the removal of C. Albicans and

impair the protective immune response (Whibley and Gaffen,

2014). Similarly, a class of proteins called pentraxins is involved

in inflammatory response by the immune system. C-reactive

protein (CRP) and serum amyloid P component (SAP) are well-

known pentraxins. The liver produces CRP, an acute-phase

reactant, in reaction to inflammation. It attaches to several

pathogens, including bacteria, viruses, and fungi, and then

activates the complement system to aid in removing these

pathogens. The other pentraxin, SAP, recognizes the glucans in

the fungal cell wall, leading to opsonization and fungus clearing (Du

Clos, 2013).
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Although the human immune system is typically quite effective

at preventing fungal infections, C. albicans adopt various strategies

that include PAMPs for evading immune system clearance. The

mannan-shielded glucans on the surface of C. albicans hyphae are

less inflammatory than the yeast forms. Thus, the morphogenetic

transition from yeast to a hyphal form of C. albicans may alter the

immune response against the pathogen during the evasion process.

However, the exact molecular mechanisms underlying these

processes still need to be explored. C. albicans also suppress

macrophage nitric oxide generation and phagolysosome

maturation (van der Graaf et al., 2005). Furthermore, by causing

macrophages to change from the more inflammatory M1 to the less

inflammatory M2 phenotype, C. albicans can improve its ability to

survive. It is interesting to note that C. albicans can hijack several

PRR pathways. For instance, Candida-mediated activation of TLR2

can result in immunomodulatory signals that encourage the

development of regulatory T cells and a tolerogenic DC

phenotype (Reales-Calderón et al., 2014). Various virulent traits

of C. albicans in causing the infection can be targeted and can be a

better solution for the prevalence of RVVC. However, as a solution,

the problem exists in the emergence of multidrug-resistant strains,

showing resistance to existing treatment strategies.
4 Existing treatment strategies for
VVC

Based on the severity of the infection, uncomplicated or

complicated VVC, treatment strategies are classified into four

different classes of antifungal agents. The various classes of

antifungals clinically available include azoles, polyenes,

echinocandins, and pyrimidine analogs (de Oliveira Santos et al.,

2018) (Table 2). Azoles are heterocyclic compounds with ring

structures containing at least one nitrogen and target the

cytochrome P450 enzyme-lanosterol 14a-demethylase encoded by

ERG11, producing ergosterol from lanosterol (de Oliveira Santos

et al., 2018). Similarly, polyenes are polyunsaturated organic

compounds containing at least three single and double carbon–

carbon bonds, known to destroy the ergosterol content in the fungal

cell membrane, leading to the loss of cell membrane permeability

and causing antimycotic activity (Letscher-Bru, 2003).

On the other hand, echinocandins are amphiphilic lipopeptides

that inhibit beta-1,3-glucan synthase encoded by FKS1 and FKS2

(Letscher-Bru, 2003). Pyrimidine analogues mimic the structure of

natural pyrimidines, with a potential antimycotic ability by

converting 5-fluorouracil to 5-fluoro deoxyuridine catalyzed by

cytosine deaminase and thus interfere with the synthesis of DNA,

RNA, and protein (Lee et al., 2021).

Like two sides of a coin, although antifungals are a solution,

there also exists the problem of acquired resistance to such

antifungals, which is mainly overseen (Table 2). The acquired

resistance to antifungals refers to the capacity of C. albicans to

evolve defense mechanisms that lessen their susceptibility to them

or make them inactive. The molecular changes often involve

mutations ranging from point mutations to chromosomal
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rearrangements. These mutations can have varied effects on drug

resistance, from directly preventing the drug from binding to its

target to causing gene expression alterations that encourage

physiological conditions that increase drug resistance (Berman

and Krysan, 2020). In recent years, there has been an increase in

reports of the formation of drug-resistant strains, particularly those

that become resistant to several different medications. Additionally,

it has been shown that these resistant phenotypes can emerge

during an illness and in response to therapy, posing even another

risk to patients (Lee et al., 2021; Kalimuthu et al., 2022).

C. albicans adapt to various changes in the environment due to

their high genetic flexibility. When exposed to antifungals, the yeast

cell population undergoes a selection process that favors a group of

cells with superior stress tolerance (Lee et al., 2021). The majority of

acquired resistance mechanisms fall into two categories: (1)

mutations that increase the target’s expression or change its

affinity for the drug, and (2) mutations that decrease the amount

of drug that accumulates intracellularly by either increasing the

biological activity or overexpression of drug efflux pumps

(Ksiezopolska and Gabaldón, 2018).

There are several ways C. albicans resist azoles, including (1)

altering the biosynthesis of sterols to replace ergosterol, (2)

overexpressing the target enzyme to increase activity in the

presence of the antifungal medication, (3) overexpressing drug
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efflux pumps to lower the intracellular concentration of the drug,

and (4) altering the target gene sequence to decrease the binding

affinity. Point mutations in the ERG11 gene have been linked to the

development of resistance in C. albicans. Interestingly, 21 of the 140

distinct point mutations for the ERG11 (lanosterol 14-alpha-

demethylase) gene have been directly linked to fluconazole

resistance. Also, suppression of the ERG3 gene expression confers

azole resistance (Ksiezopolska and Gabaldón, 2018). Resistance to

echinocandins is not as widespread as resistance to azoles, but it is

far from uncommon and firmly correlated with prior medication

exposure. By mutating specific spots in the FKS1 gene, C. albicans

may circumvent the effects of echinocandins. Ergosterol levels in the

cell membrane are typically associated with resistance to polyenes.

It has been determined that mutations in the genes encoding the

ergosterol synthesis-related enzymes ERG2, ERG3, ERG5, ERG6,

and ERG11 are the cause of the lower abundance of the enzyme seen

in polyene-resistant (Walker et al., 2013). Point mutations in the

FCY1, FCY2, and FUR1 genes and C. albicans deficient to the genes

FPS1 and FPS2 have all been linked to decreased susceptibility to

flucytosine. Variations in FCY1 and FUR1 inactivate enzymes

involved in the pyrimidine pathway and changes in FCY2

interfere with drug uptake. The absence of FPS1 and FPS2

lowered the drug accumulation in the cell (Chapeland-Leclerc

et al., 2005). The emergence of resistance to these existing
TABLE 2 Molecular resistance mechanisms to the existing antifungals.

Sl.
no.

Antifungal
drug
classes

Antifungals Drug
target

Gene Mode of resistance Reference

1 Azoles Fluconazole, Clotrimazole, Isavuconazole,
Voriconazole, Posaconazole, Miconazole,
Ketoconazole, Ecnazole

14a–
demethylase
(Erg11)

ERG11 Increased concentration of lanosterol 14a-
demethylase—Overexpression of drug
targets

(Li et al.,
2021)

ERG11 Decreased lanosterol 14a-demethylase
binding affinity for the drug—Alteration in
drug target

(Li et al.,
2021)

ERG11,
UPC2, TAC1

Aneuploidy (Li et al.,
2021)

ERG11,
TAC1, MRR1

Loss of heterozygosity (Zare-Bidaki
et al., 2022)

ERG3 C5 desaturase inactivation—Affects
ergosterol biosynthetic pathway—
accumulation of sterols other than
ergosterol

(Hosseini
Bafghi et al.,
2022)

CDR1,
CDR2, SNQ2,
MDR1, TPO3

Overexpression of efflux pumps (Rybak et al.,
2019)

2 Echinocandins Caspofungin, Micafungin, Anidulafungin b1-3 glucan
synthase

FKS1, FKS2 Alteration of drug targets (Hosseini
Bafghi et al.,
2022)

ERG2 Frameshift mutation (Lee et al.,
2021)

3 Polyenes Amphotericin B,Nystatin Ergosterol ERG3, ERG5,
ERG11

Reduction in ergosterol content (Hosseini
Bafghi et al.,
2022)

4 Pyrimidine
analogues

5-Flucytosine (5FC) Nucleic acid
biosynthesis

FUR1 Alteration in 5-flurocytosine leads to uracyl
phosphoribosyl transferase inactivation

(Tortorano
et al., 2021)
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antifungals shows the need for next-generation antifungals with a

novel mechanism of action.
5 Possible drug targets: finding a
solution to VVC

In accordance with the clinically available treatment regimens,

the exploration of medications in clinical trials for vaginal

candidiasis encompasses various approaches. The investigation of

potential treatments involves the study of Salvia officinalis,

clotrimazole, and their combination (Ahangari et al., 2019).

Similarly, the effectiveness of TOL-463 and ibrexafungerp in

treating candidiasis is currently in the preliminary stages of

research (Marrazzo et al., 2019; Azie et al., 2020). Additionally,

researchers are specifically examining oteseconazole’s potential for

managing recurrent VVC (Sobel et al., 2022). Furthermore, the

exploration extends to boric acid as a potential therapeutic option

for non-albicans yeast infections (Ray et al., 2007). However, with a

restricted range of clinically accessible antifungals and ongoing

challenges in developing novel antifungal classes, the emergence of

antifungal resistance poses a persistent threat to the advancement of

antifungal treatments. Multidrug-resistant fungus species have

recently emerged, and their incidence has increased, spurring

research into new treatments. The clinical limits of off-target

effects and drug interactions make it an exciting option to

optimize these pharmacological classes to increase fungal-specific,

on-target effectiveness (Revie et al., 2018). Given the potential of

spreading resistance, the scientific community and the

pharmaceutical industry focus on developing antifungals with a

novel mechanism of action against a fungal-specific pathway and

potentiating the activity of the existing antifungals. Given that up to

80% of hits turn out to be false positives, discovering novel targets

specific to fungus has proven difficult (Murphy and Bicanic, 2021).

Exploring possible therapeutic targets (Table 3) for candidiasis

based on key pathways while considering biological functions and

mechanisms is crucial (Spampinato and Leonardi, 2013). It is

essential to identify therapeutic targets for candidiasis to treat

candidiasis effectively. C. albicans central pathways that involve

ergosterol biosynthesis, cell wall formation, mitochondrial function,

signal transduction pathways, DNA replication and repair, and

protein synthesis present promising drug targets for treatment.

However, substantial experimental validation of their biological

efficacy is required to ensure the effectiveness and safety of these

pharmacological targets (Table 4) (Mazu et al., 2016).

In the era of “antimicrobial resistance”, addressing candidiasis

might entail a tactic of utilizing a combined treatment strategy

involving specific anti-virulence/anti-infective agents alongside less

effective antifungal drugs (Mota Fernandes et al., 2021). More

specifically, the anti-infective/anti-virulence agents inhibit

virulence traits without affecting the pathogen growth and, thus,

do not exert selective pressure on the pathogen to develop

resistance. Such anti-infective/anti-virulence drugs may potentiate

the existing failed antifungals exhibiting a synergistic effect in

fighting infections, an exciting backbone to develop next-
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generation antifungals. There are several strategies involved in the

design and development of next-generation antifungal/anti-

infective agents. Antifungal therapeutics from natural sources

have drawn attention because they exhibit structural diversity and

uniqueness in functional modes of action, making them desirable

candidates to thwart the development of drug resistance (Seleem

et al., 2017). Several such natural compounds, for example, piperine,

cinnamaldehyde, berberine, and curcumin, are known to

downregulate the virulence traits of C. albicans (Priya and

Pandian, 2020; Yong et al., 2020; Rajasekar et al., 2021; Deng

et al., 2022). Similarly, quorum-sensing molecules established to

target biofilm formation and restore the pathogen’s susceptibility

are also gaining attention. The sesquiterpene alcohol farnesol

(C15H26O) was initially identified as a quorum-sensing molecule

generated by C. albicans. Farnesol is produced by enzymatically

phosphorylating farnesyl pyrophosphate, which inhibits the

generation of hyphae in a concentration-dependent manner. The

inhibition is achieved by negatively regulating the RAS1-cAMP-

PKA pathway by targeting CYR1. Farnesol has recently become a

prospective drug due to its antifungal efficacy (Nikoomanesh et al.,

2023). Probiotic vaginal colonization, particularly with

Lactobacillus sp., has also been widely studied and shown to have

a significantly lower risk of VVC and to even treat VVC. Probiotics

function by aiding in the vaginal microbiome’s restoration of

balance and safeguarding against the overgrowth of C. albicans.

They accomplish this by creating metabolic by-products that stop

the growth of infections, such as organic acids, hydrogen peroxide,

bacteriocins, and biosurfactants (Fuochi et al., 2019). In addition to

probiotics, targeted antifungal therapy may be used as part of

personalized medicine depending on the specific Candida strain

infecting the patient and how they react to various antifungal

medications. It deals with the problem of antimicrobial resistance

and offers patients therapy options because of resistance to previous

antifungal medications (Wu et al., 2022).

Another evolved strategy is the drug repurposing approach that

is gaining importance in diseases like cancer and requires expansion

in infectious diseases as well. It involves identifying new therapeutic

applications for already approved, withdrawn, abandoned, and

experimental drugs. It also has the added benefit of reducing the

typical drug development period by up to 5–7 years (Ashburn and

Thor, 2004). Notably, C. albicans are resistant to various classes of

antifungal drugs available on the market, including the most recent

ones (Pappas et al., 2016). Hence, combining the existing

antifungals with newly developed anti-infectives can potentially

overcome the problem of drug resistance, by acting through a

different mechanism.

In summary, the next-generation antifungals are a novel class

of antifungals with new targets with novel therapeutic indications,

and old targets with a new therapeutic indication may be the

probable first-line approaches (Bouz and Doležal, 2021).

Furthermore, the development of a suitable drug delivery system

is equally important in the process of drug development, which

would increase the biological efficacy of the drugs, or else the

nonspecific delivery leads to the accumulation of drugs in the

body, causing increased toxicity.
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TABLE 3 Drug targets and virulence-associated molecular pathways in C. albicans.

Virulence Reference
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M
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P
K
 P
ath

w
ay

Adhesion, invasion, and
cytotoxicity

(McCall et al., 2018)

Adhesion, invasion, and
cytotoxicity

(McCall et al., 2018)

Morphogenesis, Cell wall gene
regulation

(Wu et al., 2020; Araújo
et al., 2022)

Hyphal gene regulation (Sahni et al., 2010;
Shareck et al., 2011;
Mishra et al., 2017)

Cell wall integrity (Martinez, 2004)

Morphogenesis, adhesion,
covalent cross-linking between
host and Candida

(Maras et al., 2021)

Cell wall integrity (Zeng et al., 2023)

Adhesion (Hosseini et al., 2019;
Deng et al., 2021)

Hyphal growth, drug tolerance (Hameed et al., 2020)

Hyphal elongation and germ
tube formation

(Shao et al., 2022)
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1 SFL2 Sfl2 −

2 SFL1 Sfl1 +

3 EFG1 Efg1 +

4 TEC1 Tec1 +

5 PIR1 Pir1 +

6 HWP1 Hwp1 +

78 CHT2 Cht2 +

9 ALS3 Als3 +

10 IHD1 Ihd1 +

11 UME6 Ume6 +
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TABLE 3 Continued

Virulence Reference
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M
A
P
K
 P
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w
ay

Filamentous growth and biofilm
formation

(Wang et al., 2022)

Morphogenesis (Nikoomanesh et al.,
2019)

Morphogenesis, cell wall
integrity

(Mottola et al., 2021)

Colonization, activation of
hyphal growth

(Wakade et al., 2023)

Hyphal growth (Jin et al., 2023)

Multidrug resistance (Thomas et al., 2022)

Filamentous growth and biofilm
formation

(Cantero and Ernst,
2011)

Cell wall integrity, adhesion (Dutton et al., 2014;
Gómez-Gaviria et al.,
2021)

Hyphal growth (Gómez-Gaviria et al.,
2021)

Cell wall integrity, adhesion,
hyphal growth

(Gómez-Gaviria et al.,
2021)
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12 CSR1 Csr1 +

13 RIM101 Rim101 +

14 CZF1 Czf1 +

15 CPH2 Cph2 +

16 FLO8 Flo8 +

17 NDT80 Ndt80 +

18 ADR1 Adr1 +

19 PMT1 Pmt1 +

20 MNT1 Mnt1 +

21 CWH41 Cwh41 +
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TABLE 3 Continued

Virulence Reference
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Cell wall integrity, adhesion,
hyphal growth

(Dean et al., 2022)

Cell wall integrity, adhesion,
hyphal growth

(Ivanov et al., 2020)

Multidrug resistance (Román et al., 2023)

Osmotic stress, oxidative stress,
and heavy metal stress

(Román et al., 2023)

Cell wall integrity; adhesion (Cavalheiro and Teixeira,
2018)

Cell wall integrity; adhesion (Umemura et al., 2003)

Filamentation (Oberdorfer et al., 2012)

Filamentation (Cheah et al., 2014)

Cell wall integrity; adhesion (Moriyama et al., 2014)

+ Morphogenesis (Baxter et al., 2011)

Regulation of azole susceptibility (Bruno and Mitchell,
2005)

Morphogenesis (Zameitat et al., 2006)
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22 ROT2 Rot2 +

23 OCH1 Och1 +

24 CDR1 Cdr1 +

25 HOG1 Hog1 +

26 GWP1 Gwp1 +

27 GWT1 Gwt1 +

28 CHS2 Chs2 +

29 ICL1 Icl1 +

30 CYP51 Cyp51 +

31 PDK1 Pdk1

32 CKA1 Cka1 +

33 URA1 Ura1 +

'+' indicates upregulation and '-' indicates downregulation of the protein expression.
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TABLE 4 Current inhibitors of the plausible pharmacological targets and biological pathways that are being directly and indirectly targeted. .

Sl no. Drug targets Existing inhibitors Affected pathways Virulence Reference
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Morphogenesis; adhesion (Baxter et al., 2011)

Adhesion, invasion, and cytotoxicity (Yang et al., 2020)

Adhesion, invasion, and cytotoxicity (Yang et al., 2020)

Morphogenesis, cell wall gene regulation (Wu et al., 2020; Araújo et al., 2022)
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Adhesion (Hosseini et al., 2019; Marc et al., 2018)

Morphogenesis (Oliver et al., 2016)
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Filamentation (Didehdar et al., 2022)

Morphogenesis (DeJarnette et al., 2020)

Hyphal elongation and germ tube formation (Park et al., 2021)

Filamentous growth and biofilm formation (Parua et al., 2010)

Cell wall integrity, adhesion (Orchard et al., 2004)
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Filamentation (Herrero-de-Dios et al., 2020)
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1 Gwp1 E1210

2 Gwt1 Gepinacin; AX001

3 Chitin synthase Nikkomycins

4 Isocitrate lyase Mohangamide

5 Cyp51 VT-1598, VT-1129, and VT-1161

6 Pdk1 KP-372-1

7 Sfl2 Cis-2-dodecenoic acid

8 Sfl1 Cis-2-dodecenoic acid

9 Efg1 2′-OMethylRNA oligomers; sodium new houttuyfonate (SNH)

10 Hwp1 Allicin

11 Als3 Zinc oxide nanoparticles; N-(oxazolyl methyl)-thiazolidinedione; silibinin

12 Dihydroorotate dehydrogenase F901318

13 Glucan synthase Ibrexafungerp

14 Erg1 Eugenol

15 DHFR Benzbromarone

16 Ume6 Carbazole derivatives

17 Adr1 14-3-3 (Bmh) Proteins

18 Pmt1 Rhodanine-3-acetic acid

19 Cwh41 Magnoflorine

20 Cdr1 Apigenin; Apigetrin

21 Hog1 Histatin 5

▬ Repressed ▬ Enhanced ▬ No Influence.
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6 Vaginal drug delivery systems

Systems for delivering organ (vagina)-specific medications offer

a promising alternative for treating vaginal candidiasis (Pandey

et al., 2020). Antifungal drugs, such as topical creams or oral tablets,

are used in traditional treatment methods for vaginal candidiasis.

These techniques might have limitations, like low patient

compliance, systemic adverse effects, and the potential for

antifungal resistance (Lıŕio et al., 2019). Advancements in drug

delivery have an array of advantages over traditional approaches

and the advancement is the direct delivery of antifungal drugs to the

infection site, which enhances local drug concentrations while

minimizing systemic exposure (Figure 2). Their focused and

localized strategy and formulations with sustained release

enhance therapy effectiveness, patient comfort, and acceptance

(Garg et al., 2020). Drugs administered via vaginal routes are

absorbed in three main ways: (1) transcellular, via concentration-

dependent gradient; (2) paracellularly, through tight junctions

present in between the cells; and (3) vesicular or receptor-
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mediated transport. The breakdown of drugs in the vaginal lumen

and membrane penetration are the two primary phases in drug

absorption from the vagina. Therefore, any factor affecting the

physiology of the vagina and formulation elements like drug

dissolution and membrane transport may change how a drug will

be absorbed from vaginal drug delivery devices (Richardson and

Illum, 1992). Different physiological factors influencing drug

absorption in the vaginal cavity include physiological factors like

epithelial thickness of the vagina, vaginal fluid, mucus, pH, and

physiochemical factors like lipophilicity, molecular weight,

solubility, and degree of ionization (Hussain and Ahsan, 2005).

Using bio-adhesive, nanoparticle-based, and other new delivery

systems for vaginal drug delivery is a novel concept (Table 5). Bio-

adhesive formulations can speed up the healing of fungal infections

by administering medications for a longer duration at a steady rate.

Using time-release additives can achieve controlled-release

medication delivery systems (Osmałek et al., 2021). Other new

delivery techniques include phase change polymers, thermoplastic

polymers, and mucoadhesive thermo-sensitive gels. Researchers
FIGURE 2

Conventional and advanced vaginal drug delivery systems (created using BioRender.com).
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have recently made advancements with hydrogels made with

mucoadhesive polymers because of their capacity to interact with

the mucus layer and epithelial cells, extending the duration of the

drug’s residence time in the vaginal cavity and enhancing drug

absorption, thereby achieving good patient compliance (Aka-Any-

Grah et al., 2010; Fan et al., 2022).

Development of novel drugs with a suitable drug delivery

system can only be successful from in vitro and, importantly, in

vivo studies. Most of the drugs and treatment strategies fail in the

preclinical validation. Thus, testing and proving these medications

in appropriate animal models closely related to the human host can

be a better way to reach the beneficiaries.
7 In vivo models for VVC

The evaluation of the efficacy and safety of a new drug candidate

includes in vitro and in vivo studies that can be carried out

throughout all stages of drug development. Studies in vitro

concentrate on key factors that could affect medication release in
Frontiers in Cellular and Infection Microbiology 15
vivo (Rayner et al . , 2021) . Basic knowledge of drug

pharmacodynamics must be provided, and the selection and

application of the right models, as well as accurate data

interpretation, are crucial for decision-making and the successful

advancement of drug candidates for clinical trials. Understanding a

drug’s properties and effects on a living organism requires the use of

in vivo investigations before the medicine is made available for

purchase (Gallo, 2010).

The infectious mammalian models are used to understand the

pathogenicity, pharmacokinetics, vaccination attempts involving

immunization, and immune responses. Thus, mammalian species

would seem most logical to simulate a human host; mice, rats, and

rabbits are the earliest recognized animal models (Table 6) (Conti

et al., 2014). Since the 19th century, these animal models have been

explored for C. albicans-mediated vaginal candidiasis (Naglik et al.,

2008; Conti et al., 2014; Cassone and Sobel, 2016). The mouse

model exhibits various benefits, including its inexpensive cost, rapid

reproduction, short generation time, and general acceptance in

biological and genetic research. Although the mouse ’s

macroscopic anatomy differs from the humans, both have similar
TABLE 5 Vaginal drug delivery systems.

Sl.
no.

Dosage
form

Active
ingredient

Polymer used Mode of
drug
release

Route of
administration

Reference

1 Mucoadhesive gel Calcitermin Poloxamer 407 and xanthan gum Sustained Vaginal (Bellotti et al.,
2023)

2 Bioadhesive
hydrogels

Miconazole Hydroxypropyl cellulose (HPC), Carbopol® 71G-NF or
Polycarbophil®

Sustained Vaginal (Kenechukwu
et al., 2022)

3 Nanoformulations Clotrimazole N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl
chitosan

Sustained Vaginal (FacChinatto
et al., 2021)

4 Liposomes Sertaconazole Soy phosphatidylcholine, cholesterol, and the cationic
surfactant (DDAB)

Sustained Vaginal (Abdellatif
et al., 2020)

5 Terpesomes Fenticonazole
nitrate

terpenes Sustained Vaginal (Albash et al.,
2020)

6 Liposomes Farnesol &
Fluconazole

DPPC and DPPS Sustained Vaginal (Bezerra et al.,
2020)

7 Nanoformulation
(SLN)

Clotrimazole Gliceryloleate/Tween 20 Sustained Vaginal (Carbone
et al., 2020)

8 Microemulsion AmB and
miltefosine

Non-aqueous Sustained Vaginal (de Bastiani
et al., 2020)

9 Nanoformulations Tioconazol
and Econazole

Chitosan Sustained Vaginal (Calvo et al.,
2019)

10 Bioadhesive
tablets

Curcumin Hydroxypropylmethylcellulose, xanthan gum, and guar gum Sustained Vaginal (Hani et al.,
2016)

11 Bioadhesive
tablets

Itraconazole Hydroxypropylmethylcellulose, xanthan gum, and carbopol Immediate Vaginal (Cevher et al.,
2014)

12 Bioadhesive
tablets

Ketoconazole Carbomer, hydroxypropylmethylcellulose (HPMC), and
hydroxypropyl cellulose (HPC)

Immediate Vaginal (Wang and
Tang, 2008)

13 Bioadhesive
tablets

Ketoconazole Sodium carboxymethyl cellulose or polyvinylpyrrolidone or
hydroxypropylmethylcellulose (HPMC-E50)

Sustained Vaginal (Karasulu
et al., 2004)

14 Vaginal cream Terconazole Butylated hydroxyanisole, cetyl alcohol, isopropyl myristate,
polysorbate 60, polysorbate 80, propylene glycol, purified
water, and stearyl alcohol

Vaginal (Sood et al.,
2000)
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histological characteristics, cyclic estrus/menstrual cycles, and

fundamental functions. Also, the murine vaginal microbiota is

notably like humans, and although there may be differences

between strains, Staphylococcus, Enterococcus, and Lactobacillus

appear to be present consistently (Grasso et al., 1998; Vrbanac

et al., 2018). Similarly, like the mouse model, rats have the potential

to be an effective vaginal model since they are simple to procure, are

inexpensive, and have a reproductive cycle that is similar to that of

humans. Wistar and Sprague Dawley female rats are used in many

current studies to study the vaginal environment. While the estrus

cycle affects the vaginal flora in rats like that in humans, certain

bacteria, such as Gram-negative rods, Streptococci, and members of

the Bacteroidaceae family, may not be present. Generally, a less

diversified vaginal microbiome is thought to be more stable and,

therefore, healthier in people (Moalli et al., 2005; Levy et al., 2020).

For FDA-mandated preclinical assessments of vaginal irritation,

the rabbit serves as the gold standard model; as a result, these

investigations frequently use rabbit vaginal tissue models. European

(O. cuniculus) and New Zealand White rabbits are frequent breeds

used in these experiments. Compared to some other animal models,

the rabbit’s reproductive system and vaginal environment are

similar to those of humans, making it a valuable model for

researching vaginal candidiasis. Also, the microbial composition

of the rabbit’s vagina is like that of humans (Acartürk and

Robinson, 1996; Shi et al., 2022). Other large animals like rhesus

macaques (Macaca mulatta) are also being used for vaginal

infection studies. However, these models’ cost, maintenance, and

ethical clearance make it difficult (Steele et al., 1999).
8 Conclusion and future prospects

Establishing efficient therapies for VVC requires a thorough

understanding of the risk factors, pathophysiology, and treatment

that can limit the resistance generated. To overcome drug resistance
Frontiers in Cellular and Infection Microbiology 16
and improve the results for people with VVC, it may be necessary to

identify new therapeutic targets and investigate suitable drug delivery

modalities. Furthermore, personalized medicine approaches hold

promise in the management of VVC. Considering individual

genetic susceptibility and host-specific factors, tailored treatment

strategies can be developed to improve therapeutic outcomes. The

therapeutic measures may involve probiotics, immunomodulatory

agents, or combination therapies targeting multiple virulence factors

and associated pathways without developing resistance.
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TABLE 6 Standard in vivo models for vaginal candidiasis.

Sl.
no.

Animal
model

Mode of
inducing
infection

Quantification
of infection

Mode of
administration
of drug

Efficacy of treatment Reference

1 Female New
Zealand rabbits

Intravaginal
inoculation

CFU enumeration Intravaginally CFU and histopathological studies (Yang et al., 2023)

2 Female mice
(C57BL/6)

Intravaginal
inoculation

CFU enumeration Local CFU and histopathological studies (de Araújo et al.,
2021)

3 Female BALB/c
mice

Intravaginal
inoculation

CFU enumeration Local CFU and histopathological studies (de Bastiani et al.,
2020)

4 Sprague-Dawley
rats

Intravaginal
inoculation

CFU enumeration Intravaginally Immunological analysis And Histopathology
studies

(Abdellatif et al.,
2020)

5 Female Wistar
rats

Intravaginal
inoculation

CFU enumeration Topical, local,
intravaginal

CFU and histopathological studies (de Oliveira Neto
et al., 2021;
Permana et al.,
2021)

6 M. mulatta
(rhesus; 4–13
years old)
macaques

Intravaginal
inoculation

CFU enumeration Immunological screening, cytokine analysis
in vaginal lavage fluid, total antibody
analysis in vaginal lavage fluid

(Steele et al., 1999)
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