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RNA-binding proteins (RBPs) are essential for regulating RNA metabolism,

stability, and translation within cells. Recent studies have shown that RBPs are

not restricted to intracellular functions and can be found in extracellular vesicles

(EVs) in different mammalian cells. EVs released by fungi contain a variety of

proteins involved in RNA metabolism. These include RNA helicases, which play

essential roles in RNA synthesis, folding, and degradation. Aminoacyl-tRNA

synthetases, responsible for acetylating tRNA molecules, are also enriched in

EVs, suggesting a possible link between these enzymes and tRNA fragments

detected in EVs. Proteins with canonical RNA-binding domains interact with

proteins and RNA, such as the RNA Recognition Motif (RRM), Zinc finger, and

hnRNP K-homology (KH) domains. Polyadenylate-binding protein (PABP) plays a

critical role in the regulation of gene expression by binding the poly(A) tail of

messenger RNA (mRNA) and facilitating its translation, stability, and localization,

making it a key factor in post-transcriptional control of gene expression. The

presence of proteins related to the RNA life cycle in EVs from different fungal

species suggests a conserved mechanism of EV cargo packing. Various models

have been proposed for selecting RNA molecules for release into EVs. Still, the

actual loading processes are unknown, and further molecular characterization of

these proteins may provide insight into the mechanism of RNA sorting into EVs.

This work reviews the current knowledge of RBPs and proteins related to RNA

metabolism in EVs derived from distinct fungi species, and presents an analysis of

proteomic datasets through GO term and orthology analysis, Our investigation

identified orthologous proteins in fungal EVs on different fungal species.

KEYWORDS

extracellular vesicles, RNA-Binding Proteins, RNA metabolism, proteomic data,
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Introduction

Cell-to-cell communication involves distinct pathways, such as

direct contact, secretion of diverse molecules, and the transfer of

information through extracellular vesicles (EVs) (Raposo and Stahl,

2019). EVs are particles limited by a double lipid layer, unable to

replicate, and able to carry several functional molecules (Tkach and

Théry, 2016). EVs have been described in all domains of life, from

prokaryotes to mammals and plants (Yáñez-Mó et al., 2015;

Munhoz da Rocha et al., 2020). There are two main groups of

EVs: microvesicles that bud out of the plasma membrane and

exosomes that originate from the endosomal pathway within

multivesicular bodies (Yáñez-Mó et al., 2015; Raposo and Stahl,

2019). The apoptotic bodies consist on another type of EV, that are

derived from the disassembly cell undergoing apoptosis (Yáñez-Mó

et al., 2015; Raposo and Stahl, 2019).

The main functions of EVs related to cellular communication

include the transfer of molecules, changing gene expression

patterns, and surface rearrangements (Fang et al., 2022). In

addition, they can also deliver virulence factors, act in the antigen

presentation process, stimulate an immune response or tolerogenic

effect, and promote immunosuppression, angiogenesis, and tumor

progression (van Niel et al., 2018). In some microorganisms, EV

secretion is also used to promote microbial survival and

pathogenesis (Munhoz da Rocha et al., 2020). Pathogens utilize

EV traffic to manipulate the host, induce the recruitment of specific

immune cells, and contribute to their life cycle and reproduction

(Dong et al., 2019).

A remarkably diverse array of proteins has been identified in the

EVs of different fungal species. For example, the most abundant

proteins identified in four fungi species are the elongation factor 1

alpha, nuclear proteins such as Histone H4.2, and other proteins

related to stress response, carbohydrate, lipid, and protein

metabolism (Rodrigues et al., 2011; Rodrigues et al., 2014; Vallejo

et al., 2012). The most ubiquitous ortholog proteins present in all

species studied to date are the heat shock Hsp70 protein (PF00012),

a chaperone-encoding gene, the nucleoside diphosphate kinase, and

the ribosomal S17 protein (Parreira et al., 2021).

EVs containing RNA molecules were first described in

murine and human cells in 2007 raising the assumption that

these structures participate in cell-to-cell communication and

modulate protein expression in recipient cells (Valadi

et al., 2007).

Fungal EVs from ascomycetes and basidiomycetes contain a

plethora of molecules, including proteins, glycans, lipids, and

nucleic acids (Rodrigues et al., 2007; Albuquerque et al., 2008).

RNA molecules have been characterized in diverse fungal species,

such as Cryptococcus neoformans, Candida albicans, Paracoccidiodes

brasiliensis, Saccharomyces cerevisiae, Malassezia sympodialis, and

Histoplasma capsulatum (Peres da Silva et al., 2015; Rayner et al.,

2017; Alves et al., 2019). Recently, the interaction between diverse

plant species and pathogens has been studied, and EV’s containing

different cargoes, including RNA molecules (Kwon et al., 2021; He

et al., 2023), have been described (Bleackley et al., 2020; Hill and

Solomon, 2020). The RNAs described in fungal EVs include

messenger RNA (mRNAs), transfer RNA (tRNAs), ribosomal RNA
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(rRNAs), and small non-coding RNAs (sncRNAs), and these RNA

types play essential roles in post-transcriptional regulation, protein

translation, RNA processing, and stability (Turchinovich et al., 2019).

Addressing molecules for loading into the EVs is a regulated

process that responds to disruptions in cellular homeostasis, but the

mechanisms involved are poorly understood, especially regarding

RNA cargo. Recent studies in mammalian cell models and also

plant models have hypothesized that sorting and addressing RNA

molecules to EVs involve RNA-binding proteins (Santangelo et al.,

2016; Fabbiano et al., 2020; Groot and Lee, 2020; He et al., 2021).

Some authors have found evidence that link the sorting of RNA

molecules towards EV’s with RNA binding proteins, such as: the

Heterogeneous nuclear ribonucleoprotein A2B1 (Villarroya-Beltri

et al., 2013); Argonaute 2 protein (McKenzie et al., 2016), the Major

Vault Protein (Teng et al., 2017).

To shed light on EV biology, this review aims to extensively

characterize the EV proteomic datasets derived from fungi to

identify RNA binding proteins and other proteins involved in

RNA metabolism.
Pathogenic fungi

Fungal diseases affect nearly a billion people worldwide, ranging

from hair or nail infections to highly lethal systemic fungal diseases.

A plasma membrane and a complex cell wall structure delimit

fungal cells. Despite this additional barrier, these cells can secrete

extracellular vesicles (Rodrigues et al., 2016). Most fungal diseases

affect both immunocompromised and immunocompetent

individuals, though morbidity and mortality typically markedly

increase in the setting of immune dysfunction. Examples are H.

capsulatum, which causes fungal pneumonia (Allen and Deepe,

2005); C. neoformans and Cryptococcus deuterogattii, which cause

cryptococcosis, a meningoencephalitis (Perfect and Casadevall,

2002); Aspergillus fumigatus, which causes invasive pulmonary

infection or aspergillosis (Patterson et al., 2000); and C. albicans,

which can cause superficial mucosal or dermal infections, as well as

disseminated candidiasis (Pfaller and Diekema, 2007; Kullberg and

Arendrup, 2015). In addition, Sporothrix schenkii and Sporothrix

brasiliensis cause sporotrichosis in felines and humans, leading to

lesions on the skin and subcutaneous cellular tissue (Barros et al.,

2011; Rodrigues et al., 2020).

Besides affecting humans, pathogenic fungi can cause disease on

different plant species (Li et al., 2020). The Fusarium oxysporum f.

sp. vasinfectum. is a pathogen that affects cotton leaves causing

phytotoxic response (Bleackley et al., 2019); Zymoseptoria tritici

affects wheat (Hill and Solomon, 2020) and Ustilago maydis affects

maize (Kwon et al., 2021), both plant-pathogens causing yield

reductions in crops (Hill and Solomon, 2020; Kwon et al., 2021).
RNA metabolism

RNA-binding proteins (RBPs) are essential in cellular processes

involved in RNA metabolism, from transcription to decay. During

transcription, RBPs associate with RNA to protect it from
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degradation and regulate its fate in the cell. RNA processing,

including splicing, alternative splicing, and trans-splicing, relies

on the proper recognition and exposure of RNA sequences to the

splicing machinery (Lee and Rio, 2015). After processing, mature

mRNAs are transported to the cytoplasm (Björk and Wieslander,

2017),, directed to translation or stored in RNA granules for

silencing or degradation. RBPs associate with mRNAs and

assemble in ribonucleoprotein complexes (mRNPs) and mediate

RNA processing, transport, and localization within the cell, thereby

determining mRNA fate based on the composition of each mRNP

complex (Gerstberger et al., 2014; Re et al., 2014).

The arrangement and assembly of RBPs in mRNP complexes

are highly dynamic (Müller-McNicoll et al., 2016; Buchan, 2014).

Different sets of RBPs associate with mRNA to enable its

functionality. The combinatorial arrangement of proteins onto a

given mRNP complex remains elusive and is a significant challenge

for researchers. In addition to the genetic and histone code, an RBP

code may exist, given the number of known RBPs and proteins that

function as RBPs. This code is complex and ultimately determines

gene expression.

Numerous studies and databases describe the presence of RBPs

in EVs of different organisms, including pathogens (Vesiclepedia

[http://microvesicles.org]; (Kalra et al., 2012; Pathan et al., 2019).

This analysis of fungal RBPs is based on an extensive analysis of EV

proteomic data publicly available.
Results

Proteomic data

We systematically analyzed available proteomic datasets aiming

to identify proteins involved in RNA metabolism present in fungal

EVs. The species with available proteomic data were C. albicans, C.

neoformans, C. deuterogattii, H. caspsulatum, P. brasiliensis, S.

cerevisiae, A. fumigatus, S. brasiliensis, and S. schenckii. The most

applied method to isolate fungal EVs has been through differential

centrifugation followed by filtration with porosity limits varying from

0.45 mm to 1.2 mm (Albuquerque et al., 2008; Rodrigues et al., 2008;

Oliveira et al., 2010; Vallejo et al., 2012;Wolf et al., 2014; Gil-Bona et al.,

2015; Vargas et al., 2015; Wolf et al., 2014; Matos Baltazar et al., 2016;

Ikeda et al., 2018; Zarnowski et al., 2018; Rizzo et al., 2020a; Rizzo et al.,

2020b). This method allows for isolating a broader range of EVs with

different sizes (Supplemental Table 1).

Based on the available EV proteomic datasets (Parreira et al.,

2021), we identified that around 7% of the total proteins in fungal

EVs relate to RNA metabolism (Figure 1; Supplemental Table 2).

Furthermore, after removing the redundancy of the distinct strains

from the same species, we identified 687 proteins associated with

different steps of RNA metabolism, which we discuss in detail in

this work.

The RNA life cycle is highly regulated and dynamic, with each

step playing a critical role in determining the fate, functionality, and

abundance of RNA molecules within a cell. In the datasets we
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analyzed, proteins involved in various processes that regulate the

RNA molecules were identified in the EVs.

Among the proteins in EVs related to transcription, Sm-like

proteins were observed. Proteins belonging to this family can

form small nuclear ribonucleoprotein complexes (snRNPs) by

assembling with snRNAs during nuclear mRNA splicing, the

process of removing introns from pre-mRNA. Various complexes

can be formed depending on the protein family bound to the

snRNA molecules (Will and Luhrmann, 2011). As snRNAs and

snoRNAs are significantly enriched in EVs, the presence of Sm-like

proteins reinforces the important role of these snRNP complexes in

the EVs (Table 1).

Translation initiation factors are a group of proteins crucial for

initiating protein synthesis. EVs derived from human and mouse

cells also contain translation initiation factors, such as eIF4E and

eIF4G, and some are used as biomarkers for certain cancer types

(Dong et al., 2020). We also identified eukaryotic translation

initiation factors (eIFs) in EVs from different fungal species. We

observed the presence of eIF3H, eIF5A, eIF2A, and eIF6 in most of

the fungal EVs species we analyzed (Table 2). This finding is

consistent with other proteomic studies in various cell models

where many eIFs have been identified (Kalra et al., 2012; Pathan

et al., 2019).

Another group of proteins related to translation identified in the

EVs are elongation factors 1 (EF1) and 2 (EF2). They are vital

proteins involved in the elongation phase of translation. EF2 is a

very abundant protein in the cell and is also the top protein

identified in EVs derived from proteomic studies in distinct

species (Kalra et al., 2012; Pathan et al., 2019).

Helicases are another class of proteins involved in RNA

metabolism (Linder and Jankowsky, 2011). The DEAD/DEAH

protein family, found in all kingdoms, is the largest family of

RNA helicases and is involved in various RNA metabolic steps

such as RNA synthesis and folding, RNA-RNA interactions, RNA

degradation, and localization (Gilman et al., 2017). Several RNA

helicases have been described in fungal EVs, listed in Table 3.
FIGURE 1

Pie chart with the total number of proteins in fungal EVs identified
(11433 proteins); from this amount, the proteins related to RNA
metabolism (687 proteins). The second graph is related to the 687
proteins RNA related divided by species in which the proteins were
identified.
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RNA-binding proteins

RNA-binding proteins are essential in most, if not all, stages of

the RNA life cycle. Distinct structural features and RNA-binding

mechanisms characterize several types of RNA-binding domains.

The RRM domain is the most common RNA binding domain, with

each domain being specific for RNA sequences and interacting with

single-stranded RNA molecules. Proteins with RRM domains are

involved in all steps of RNA metabolism. Many fungal species have

RNA-binding proteins with RRM domains enclosed in EVs,
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as listed in Table 4. One example is the polyadenylate-binding

protein (PABP), a conserved protein that plays a crucial role in

RNA metabolism.

Zinc finger proteins constitute a large family of proteins

primarily associated with DNA binding but also capable of

binding to RNA and small molecules, such as the CCCH zinc

finger proteins involved in regulating RNA metabolism. Proteomics

data in Table 4 lists zinc finger domain-containing proteins found

in EVs derived from the pathogens reviewed in this study, with

functions related to RNA binding, RNA metabolic processes, and
TABLE 1 List of Sm-like proteins found on extracellular vesicles from fungi species.

Protein name C. neoformans C. deuterogattii A. fumigatus H. capsulatum

U6 snRNA-associated Sm-like protein LSm1 • •

U6 snRNA-associated Sm-like protein LSm2 • • •

U6 snRNA-associated Sm-like protein LSm3 • • •

U6 snRNA-associated Sm-like protein LSm4 • • •

U6 snRNA-associated Sm-like protein LSm5 • • •

U6 snRNA-associated Sm-like protein LSm6 • •

U6 snRNA-associated Sm-like protein LSm7 • •

U3 small nucleolar RNA-associated protein 22 •
TABLE 2 List of translation initiation factors identified in fungal EVs.

A. fumigatus C. albicans C. deuterogattii C. neoformans H. capsulatum

Recognition of the mRNA cap structure: eIF4F complex

Eukaryotic translation initiation factor eIF-4A •

Eukaryotic translation initiation factor 4G • • •

Eukaryotic translation initiation factor 4E • • •

Recruitment of the ribosome to the mRNA

Eukaryotic translation initiation factor eIF-1A • •

Eukaryotic translation initiation factor 3 subunit A • • •

Eukaryotic translation initiation factor 3 subunit B •

Eukaryotic translation initiation factor 3 subunit C • • • •

Eukaryotic translation initiation factor 3 subunit D • • •

Eukaryotic translation initiation factor 3 subunit E •

Eukaryotic translation initiation factor 3 subunit F • • • •

Eukaryotic translation initiation factor 3 subunit G • • •

Eukaryotic translation initiation factor 3 subunit H • • • • •

Eukaryotic translation initiation factor 3 subunit I • • •

Eukaryotic translation initiation factor 3 subunit J • • •

Eukaryotic translation initiation factor 3 subunit K • • •

Eukaryotic translation initiation factor 3 subunit L • • •

Eukaryotic translation initiation factor 3 subunit M • • • •

(Continued)
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rRNA binding. The RNA polymerase II transcription factor

contains a zinc finger RNA binding domain. This protein

modulates DNA-templated transcription and participates in the

assembly of RNA polymerase II preinitiation complex, forming the

first bonds in the RNA chain.

The hnRNP K-homology (KH) domain is one of the most prevalent

RNA binding domains and is found in proteins responsible for

regulating gene expression in prokaryotes and eukaryotes. In addition,

this domain binds specific sequences on nucleic acids (Table 4).
GO term analysis

To determine the RNA pathways enriched in fungal EVs and to

compare them among the species, we performed a gene ontology (GO)

term analysis with each proteomic dataset (Figure 2). Proteins related

to translation were the most prominent category, followed by proteins

functioning as translation initiation factors and proteins involved in
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translation elongation. Interestingly, the subsets showed no enrichment

of proteins involved in non-coding RNA (ncRNA) biosynthesis or

processing machinery. However, most RNA molecules present in the

EVs belong to the ncRNA class (Peres da Silva et al., 2015).
Orthology analysis

Next, we conducted a comparative analysis of the proteins

present in the EVs of various fungal species, aiming to identify

orthologs. Through this analysis, we observed the formation of

forty-nine protein clusters, each comprising at least three species

(Supplemental Table 3). A total of 22 proteins were present in at

least five species studied (Figure 3). Among the proteins with the

highest number of orthologs, we identified: the Elongation factor

1-alpha, with a total of 10 orthologs in C. albicans, H. capsulatum,

C. neoformans, C. deuterogattii, P. brasiliensis, and A. fumigatus,

with at least 84% similarity among them; the ATP-dependent RNA
TABLE 3 List of helicase proteins found on extracellular vesicles from fungi species.

Pathogen Protein type Proteins names

C. neoformans

DEAD/DEAH box ATP-dependent RNA helicase DBP5 DED1

ATP-dependent RNA helicase SUB2 FAL1 DBP10

C. deuterogattii

DEAD/DEAH box ATP-dependent RNA helicase DBP5 DED1 DHH1

ATP-dependent RNA helicase SUB2 EIF4A

C. albicans

DEAD/DEAH box ATP-dependent RNA helicase DBP5

ATP-dependent RNA helicase SUB2 FAL1

H. capsulatum

DEAD/DEAH box ATP-dependent RNA helicase DBP5 DED1 DHH1

ATP-dependent RNA helicase SUB2 FAL1

A. fumigatus

DEAD/DEAH box ATP-dependent RNA helicase DBP5 DHH1 ROK1 DBP9

ATP-dependent RNA helicase SUB2 DSR1 PRP5

S. brasiliensis ATP-dependent RNA helicase MAK5
TABLE 2 Continued

A. fumigatus C. albicans C. deuterogattii C. neoformans H. capsulatum

Eukaryotic translation initiation factor 5A • • • • •

Joining of the initiator tRNA to the mRNA

Eukaryotic translation initiation factor 2A • • • • •

Translation initiation factor eIF-2B alpha subunit • •

Translation initiation factor eiF-2B delta subunit • •

Translation initiation factor eIF-2B epsilon subunit • •

Dissociation of initiation factors and ribosome scanning

Translation initiation factor 4B • • •

Translation initiation factor eIF5 •

80S formation regulation

Eukaryotic translation initiation factor 6 • • • • •
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helicase eIF4A/Helicase FAL1 with eight orthologs in H.

capsulatum, C. neoformans, C. deuterogattii, C. albicans, and A.

fumigatus, with at least 68% similarity; and Elongation Factor 2 with

seven orthologs in C. albicans, A. fumigatus, C. neoformans, C.

deuterogattii, H. capsulatum, and P. brasiliensis, with at least 75%

similarity among the proteins. The top clusters are listed in Table 5.

The relevant finding is that many proteins participating in

different steps of RNA metabolism were conserved among other

fungal species, such as eukaryotic translation initiation factors,

helicases, elongation factors, and tRNA synthetases. Among the

proteins containing known RNA binding domains, we observed the

Polyadenylate-binding protein (PAB1), RRM-containing protein,

KH domain RNA-binding protein, and nuclear and cytoplasmic

polyadenylated RNA-binding protein (pub1).
Frontiers in Cellular and Infection Microbiology 06
These observations reinforce the hypothesis that RBPs, or even

mRNPs, drive the selection and direction of RNA to the EVs, as

many of them are conserved in phylogenetically distant fungal

species. A summary of the RNA life cycle, the main proteins

identified in the EVs, and the connection between the RNA

metabolism and extracellular vesicles is depicted in Figure 4.
Discussion

The biogenesis of EVs is complex and involves distinct

pathways. Exosomes are produced in endosomes and later

secreted upon fusion with the cell surface, while microvesicles are

formed by outward budding from the plasma membrane (van Niel
TABLE 4 List of RNA binding proteins divided by domains found in the different fungal EVs.

Protein Pathogen

RRM domain

Glycine-rich RNA binding protein

C. neoformans

RNA binding protein (J9VH85)

RNA-binding protein Musashi

RNA-binding protein with a serine-rich domain

Pre-mRNA branch site protein p14

Pre-mRNA-splicing factor SLT11

mRNA binding protein (A0A095CI41)

C. deuterogattii
RNA binding protein (A0A095ES51)

RNA binding protein (A0A095CIW0)

glycine-rich RNA binding protein

RNA-binding protein (A0A1D8PK11) C. albicans

RNA binding protein Rnp24 S. schenckii

mRNA binding post-transcriptional regulator

A. fumigatusPre-mRNA splicing factor

RNA binding proteins

Nuclear and cytoplasmic polyadenylated RNA-binding protein pub1

H. capsulatum
RNA binding domain-containing protein (C0NSY4)

RNA binding domain-containing protein (C0P155)

RNA binding protein (C0NB22)

Polyadenylate-binding protein pub1 A. fumigatus

Polyadenylate-binding protein pub1 H. capsulatum

Zinc finger domain

RNA binding protein containing a zinc finger A. fumigatus

RNA polymerase II transcription factor C. neoformans

RNA polymerase II transcription factor C. deuterogattii

KH domain

KH domain RNA binding proteins C0NUH0
H. capsulatum

KH domain RNA binding proteins C0NCT3

KH domain RNA binding protein B0XU88
A. fumigatus

KH domain RNA binding protein B0XVE5
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et al., 2018). In both EV types, the cargo is transferred or displayed

to target cells, causing a specific biological effect (Sork et al., 2018).

The mechanism by which the EVs cargo is selected remains unclear.

However, recent research has promoted advances in knowledge,

such as the description that proteins associated with autophagy
Frontiers in Cellular and Infection Microbiology 07
(ATG8) and microtubule (LC3) form a complex LC3/ATG8, which

can mediate the loading of protein and RNA into EVs of HEK-293T

cells (Gardner et al., 2023). Furthermore, other studies suggested

the association between RNA-binding proteins and EVs through

the formation of complexes to transport the RNA molecules

(Statello et al., 2018; Anand et al., 2019; Fabbiano et al., 2020). In

addition, the RNA binding proteins hnRNPA2B1, Ago2, YBX-1,

MEX3C, MVP, and La may participate in the selection and transfer

of miRNA into EVs (Groot and Lee, 2020).

However, this literature primarily focuses on mammalian EVs,

and our knowledge of RNA associations with fungal EVs is limited.

Our orthology analysis reveals that conserved proteins participate

in RNA metabolism among different fungi species. For example,

two of the proteins with the highest number of orthologous matches

among the top 100 most identified proteins are the eukaryotic

translation elongation factor 1 alpha 1 (EEF1A1) and elongation

factor 2. The presence of full-length mRNA transcript on exosomes-

like vesicles of Toxoplasma-infected cells has been observed, and

among the most highly represented mRNA was the EEF1A1 (Pope

and Lässer, 2013). This protein has also been previously found on

exosomes secreted by adipose-derived stem cells (Kuo et al., 2021);

and on small EVs isolated from patients with non-small cell lung

cancer (Bui et al., 2022).

Among the proteins found in our analysis, there were many

ribosomal proteins, which are a variety of proteins that compose the
FIGURE 2

Chart with the gene ontology terms related to biological processes
in EVs identified for each fungal species. The numbers refer to the
total count of proteins for each category. The color code refers to
the adjusted p-value of Fisher’s exact test.
FIGURE 3

Orthology analysis. The Venn diagram illustrates the number of orthologous proteins identified in the EVs of the analyzed fungal species. Each
overlapping region represents proteins shared between the respective species. The 22 common proteins are highlighted in green in the Table S2.
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ribosome and participate in the folding of rRNA molecules into a

structure that is required for the interaction of mRNA codons and

tRNA anticodons (Landry-Voyer et al., 2023). We excluded this

class of proteins to avoid bias toward translation.

RNA helicases are regulators of multiple pathways of RNA

metabolism (Sloan and Bohnsack, 2018). DEAD-box helicases are

on EVs of the plant Arabidopsis, among other RNA-binding proteins

contributing to the sRNA loading into EVs (He et al., 2021).

Interestingly, the DEAD-box RNA helicase Dbp5, which is a

critical mRNA export factor, shuttling between the nucleus and

cytoplasm (Bleackley et al., 2019; Lari et al., 2019), was detected in

EVs in four of the fungi we analyzed. The RNA helicase DHH1

(DDX6 in humans) is an essential protein for RNA granule

formation, including processing bodies (p-bodies) and stress
Frontiers in Cellular and Infection Microbiology 08
granules. These structures are formed by dozens of proteins

interacting with mRNA and assembled under certain conditions to

store or degrade RNA (Decker and Parker, 2012; Riggs et al., 2020).

DHH1, a core nucleator of these granules, was identified in EVs from

mammalian cells. A recent study showed a possible link between p-

bodies and EV cargo as the RNA-binding protein YBX1 was

necessary to direct miR-223 to EVs with YBX1 associating with p-

bodies and colocalizing with DHH1 in the cell, and both are found in

EVs. Therefore, it is possible to speculate that p-bodies could work as

a site to sort the RNA-protein cargo directed to EVs (Liu et al., 2021).

Another group of enriched proteins in EVs are the aminoacyl-

tRNA synthetases, enzymes responsible for the acetylation of tRNA

molecules by the cognate amino acid, participating in the first step of

protein synthesis (Mirande, 2017). Besides their primary function,
TABLE 5 Top protein clusters identified in the fungal EVs.

Uniprot ID Similarity Species Uniprot ID Similarity Species

Elongation factor 1-alpha Seryl-tRNA synthetase

B0XPK2 * A. fumigatus B0Y360 68.14% A. fumigatus

C4YDJ3 88.43% C. albicans Q9HGT6 57.79% C. albicans

A0A095DDT6 85.19% C. deuterogattii A0A095DHL3 50.11% C. deuterogattii

J9W2J0 84.78% C. neoformans J9VKD0 50.33% C. neoformans

A6RGN1 89.57% H. capsulatum C0NE91 * H. capsulatum

C1G1F2 89.13% P. brasiliensis

ATP-dependent RNA helicase eIF4A/Helicase FAL1 Isoleucyl-tRNA synthetase

B0XYH6 * A. fumigatus B0XRM5 55.64% A. fumigatus

P87206 70.78% C. albicans Q59RI1 55.61% C. albicans

A0A095ECV2 72.57% C. deuterogattii A0A095CYT6 * C. deuterogattii

J9VHS2 72.57% C. neoformans J9VDL3 98.08% C. neoformans

A6R3R5 90.91% H. capsulatum C0NL66 53.89% H. capsulatum

Eukaryotic translation initiation factor 3 subunit I Polyadenylate-binding protein, PABP

B0XYC8 60.88% A. fumigatus B0XND2 68.39% A. fumigatus

Q5AI86 * C. albicans A6RAN8 82.24% C. albicans

J9VEG9 50.15% C. deuterogattii C0NSS5 88.27% C. deuterogattii

A6R3Z8 59.71% C. neoformans C1GL98 * C. neoformans

C0NAW2 59.71% H. capsulatum A0A0C2FSY1 58.99% H. capsulatum

ATP-dependent RNA helicase DED1 ATP-dependent RNA helicase DHH1

B0Y5V9 67.21% A. fumigatus B0XZ91 65.29% A. fumigatus

Q5A4E2 54.02% C. albicans Q5AAW3 62.66% C. albicans

A0A095C6F2 58.45% C. deuterogattii A0A095CDG4 92.52% C. deuterogattii

J9VMP7 58.24% C. neoformans Q58Z64 * C. neoformans

C0NAF4 * H. capsulatum C0NIX7 64.77% H. capsulatum
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they also support RNA splicing, regulate transcription and

translation, and participate in cell signaling (Pang et al., 2014).

Interestingly, tRNA fragments are among the most common RNA

molecules detected in EVs in all organisms characterized to date

(Peres da Silva et al., 2015; Weng et al., 2022). Therefore, it is possible

to speculate that the tRNA-half fragments are associated with the

aminoacyl-tRNA synthetases and addressed to EVs. Aminoacyl-

tRNA synthetases are also enriched in the exosomes derived from

Jurkat cells (Wang et al., 2013). The aminoacyl-tRNA synthetases:

leucyl-, isoleucyl-, arginyl- and valyl-tRNA synthetases were found

with glycyl-tRNA synthetase 1 (GARS1) in EV derived from

macrophages, under glucose starvation (Goughnour et al., 2020).

Additionally, GARS1 is secreted via specific EVs and promotes

cancer cell apoptosis. These GARS1-containing EVs, enriched with

unique proteins, including insulin-like growth factor II receptor and

vimentin, contribute to the immunological defense against

tumorigenesis (Goughnour et al., 2020). Cancer cells secrete lysyl-

tRNA synthetase (KRS) within exosomes. These KRS-containing

exosomes induce inflammation and macrophage migration,

potentially contributing to tumor progression (Kim et al., 2017).

Several models have been proposed to explain the mechanism

of RNA molecule selection for release into EVs, in which RNA-

binding proteins select RNA molecules through RNA-binding
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domains (Villarroya-Beltri et al., 2014; Santangelo et al., 2016;

Shurtleff et al., 2017; Zietzer et al., 2018; Temoche-Diaz et al.,

2019; Mosbach et al., 2021). Our findings on the presence of

orthologous proteins in fungal EVs, such as tRNA synthetases,

helicases, translation initiation, and elongation factors, suggest that

there might be similar mechanisms for EV cargo packing among

different fungal species. Our data provide a descriptive analysis of

proteins related to RNA metabolism in EVs derived from

pathogenic fungi. With the further molecular characterization of

these proteins, clues to the RNA sorting mechanism into fungal and

potentially other species’ EVs may be elucidated.
Materials and methods

Data collection and analysis

The data analyzed in this work was collected by the database

that gathered EV proteomics from nine fungal species (Parreira

et al., 2021). We selected the proteins annotated with the following

terms: RNA-binding protein, RNA metabolism, translation,

transcription, RNA helicase, and RRM. Next, we performed an

alignment for the proteins with unknown functions using BLASTp
FIGURE 4

The RNA life cycle encompasses various stages, including transcription, processing, and degradation. Within this cycle are several distinct classes of
RNA molecules, such as mRNA, miRNA, snoRNA, snRNA, tRNA, and lncRNA. Throughout RNA metabolism, different RNA-binding proteins play
crucial roles in various steps. Additionally, the mechanism by which RNAs and proteins are directed to extracellular vesicles (EVs) remains unknown.
However, our study focused on identifying and highlighting the key proteins found in fungal EVs. Created with BioRender.com.
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to identify proteins with RNA-related roles (Altschul et al., 1997).

We removed the ribosomal proteins from the analysis to avoid bias

toward translation. We used the Uniprot and GeneDB databases to

analyze function prediction and other features. For the proteins

annotated as hypothetical or uncharacterized, we also searched for

conserved domains at Uniprot, PFAM, and Interpro that could be

associated with RNA metabolism. We also performed a protein

BLAST analysis using the default parameters (Altschul et al., 1990).
GO analysis

The GO term analysis was carried out in the database: FungiFun

v. 2.2.8, available at: https://elbe.hki-jena.de/fungifun/. Using the

parameters: significance test – hypergeometric distribution, test

gene for category associations – over representation; adjustment

method – Benjamimi-Hochberg procedure; annotation type – use

Only directed annotated associations; GO advanced options – all;

filter by evidence code – select all evidence codes. We then selected

the terms with an FDR (Benjamimi-Hochberg) below 5%.
Orthology

We used the CD-HIT v.4.8.1 software tool to cluster protein

sequences from our dataset (Li and Godzik, 2006). The input file,

containing all protein sequences, was formatted in FASTA, and

clustering was performed with an identity threshold of 50%, a

coverage cutoff of 80%, and a word size of 3. Finally, the cluster

representative proteins were isolated using a custom Python script.

The resulting non-redundant protein sequence set effectively

represents the distinct clusters obtained from the clustering process.
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