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Introduction: Emerging preclinical and clinical studies suggest that altered gut

microbiome composition and functions are associated with coronavirus 2019

(COVID- 19) severity and its long-term complications. We hypothesize that

COVID-19 outcome is associated with gut microbiome status in population-

based settings.

Methods: Gut metagenomic data of the adult population consisting of 2871

subjects from 16 countries were obtained from ExperimentHub through R, while

the dynamic death data of COVID-19 patients between January 22, 2020 and

December 8, 2020 in each country was acquired from Johns Hopkins

Coronavirus Resource Center. An adjusted stable mortality rate (SMR) was

used to represent these countries’ mortality and correlated with the mean

relative abundance (mRA) of healthy adult gut microbiome species.

Results: After excluding bacterial species with low prevalence (prevalence <0.2 in

the included countries), the b-diversity was significantly higher in the countries

with high SMR when compared with those with median or low SMR (p <0.001).

We then identified the mRA of two butyrate producers, Eubacterium rectale and

Roseburia intestinalis, that were negatively correlated with SMR during the study

period. And the reduction of these species was associated with severer COVID-

19 manifestation.

Conclusion: Population-based microbiome signatures with the stable mortality

rate of COVID-19 in different countries suggest that altered gut microbiome

composition and functions are associated with mortality of COVID-19.

KEYWORDS
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Abbreviations: COVID-19, Coronavirus Disease 2019; CXCL10, C-X-C motif ligand 10; CD, Crohn’s

disease; mRA, Mean relative abundance; SMR, Stable mortality rate; TNF-a, Tumor necrosis factor-alpha;

PWY, Pathway.
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Main text

A previous cohort study showed that the gut microbial diversity

was altered in COVID-19-infected subjects (Zhang et al., 2023).

Likewise, a previous study suggested that the microbiome change in

COVID-19 patients was driven by the enrichment of Ruminococcus

gnavus, Ruminococcus torques, and Bacteroides dorei, and the

depletion of beneficial bacterial species, including Bifidobacterium

adolescentis, Faecalibacterium prausnitzii, and Eubacterium rectale

(E. rectale) (Yeoh et al., 2021). However, whether COVID-19

outcome is associated with pre-existing gut microbiome status in

population-based settings is unknown. Herein, gut metagenomic

data of the adult population consisting of 2,871 subjects from 16

countries were obtained from ExperimentHub (STable 1,

SFigure 1A), and the dynamic incidence and mortality of

COVID-19 between January 22, 2020 and December 8, 2020 in

each country were obtained from Johns Hopkins Coronavirus

Resource Center (SFigure 1A) (Pasolli et al., 2017; Dong et al.,

2020). An adjusted stable mortality rate (SMR, SFigure 1A) was

used to indicate the mortality rate in these countries (SFigure 1B),

and we correlated mortality data with the mean relative abundance

(mRA) of healthy adult gut bacterial species. We chose the longest

duration of the stable period before the introduction of the

vaccination programme for all countries to calculate SMR,

through which we uncovered the relationship between microbiota

profiles and the SMR of COVID-19 (SFigure 1A).

Overall, although the a-diversity of the gut microbiota did not

show any difference, the inverse Simpson (1-Simpson) had a

marginal p-value (p = 0.054) (SFigure 1C). b-diversity was

significantly higher in the countries with high SMR when

compared with those with median or low SMR (p <0.001)

(SFigure 1D). Importantly, after excluding bacterial species with

low prevalence rates (<0.2 in the above countries), half of the top 20

bacteria (STable 2) that showed negative correlations with SMR

were butyrate producers (highlighted in green).

The Omicron variant has caused an unprecedented pandemic

with distinct phenotypes, and COVID-related mortality has

dropped significantly with an explosion in infection rate

(STable 3) (Hoffmann et al., 2022; Nyberg et al., 2022). Therefore,

we applied the same analytic strategy to the Omicron pandemic to

determine the replicability of our findings. Four overlapped species

among the top-20s were identified, namely E. rectale, Roseburia

intestinalis (R. intestinalis), Bifidobacterium angulatum, and

Parabacteroides unclassified (Figure 1A, STable 2). It should be

noted that a well-known beneficial butyrate producer, E. rectale, was

the only species that was correlated significantly with the mortality

outcome of all SARS-CoV-2 variants, i.e., the Alpha, Beta, Gamma

variants, and the Omicron variant (STable 2) (Louis and Flint, 2009;

Zhang et al., 2022). To validate the findings generated from the

public dataset, we determined the relative abundance of the four

species in the published Hong Kong COVID-19 cohorts that was

conducted before the introduction of Hong Kong’s vaccination

programme (Zuo et al., 2020; Yeoh et al., 2021; Zhang et al., 2022).

From Figure 1B we found that the relative abundance of E. rectale

and R. intestinalis was much lower in patients with severe
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COVID-19 compared to the control subjects or COVID-19

patients with mild or moderate symptoms.

Moreover, we identified 181 functional pathways and eleven

bacteria species that were significantly correlated with SMR

(STables 2, 4). To pinpoint the associated features between these

bacterial species or functional pathways related to SMR, we

performed all-against-all association testing to identify the

adjusted correlations. Figure 1C presents the association between

the differential species and pathways. Interestingly, the species

negatively correlated with SMR were significantly positively

correlated with the depleted pathways under the superclasses of

1) carbohydrate degradation (PWY-6737, P124-PWY, and PWY-

6527); 2) cofactor, carrier, and vitamin biosynthesis (PWY-6151,

PWY-7357) (Figure 1C), indicating that these functional

deficiencies of the gut microbiota at the baseline might be linked

to higher COVID-19 mortality.
Discussion

In this study, for the first time, we identified a pre-existence

mRA of E. rectale and R. intestinalis in a healthy population before

the COVID-19 pandemic are associated with lower COVID-19

regional mortality in a population-based gut microbiota study. The

depletion of both identified species, E. rectale and R. intestinalis

have been reported not only in COVID-19 (Zuo et al., 2020; Cao

et al., 2021; Yeoh et al., 2021; Zhang et al., 2022) but also in

ulcerative colitis patients (Pittayanon et al., 2020; Shen et al., 2022)

and is possibly linked to the reduction of host inflammatory

response. The diminished abundance of E. rectale comes with the

negative correlation to C-X-C motif ligand 10 (CXCL10) and tumor

necrosis factor-alpha (TNF-a), two inflammation markers that

indicate the origination of immune response at the early stage of

COVID-19 (Yeoh et al., 2021). R. intestinalis inhibits the

development of Crohn’s disease (CD) by increasing the

differentiation of anti-inflammatory Tregs, which may provide

the basis of new therapeutic strategies for CD (Shen et al., 2022).

Such a decrease of butyrate-producing taxa, such as Blautia and

Eubacterium (rectale), in influenza A virus infection was proven in

the previous 16s studies (Fuentes et al., 2021; Bhar et al., 2022).

Strikingly, in the pathway analysis, results displayed a strong

association between the depleted species and reduced pathways,

implying that the protective role of the gut microbiome in the

population could be caused by their biosynthesis functions. Of

them, the carbohydrate degradation pathways could be mainly

contributed by butyrate-producing species (Flint et al., 2012) with

the fermentation of carbohydrates.

There were several limitations of this study. First, the mechanism

between gut microorganisms and immune functions was not further

explored in the study, and it would be beneficial to understand how

microbiota derive metabolites or immune activation against infection

for future applications in medication or prevention. In addition, due to

the limitation of the online metagenomic database, the study did not

consider antibiotic usage at an individual or regional level, which could

mask the metagenomic profiling and mortality rate in a country. The
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alteration of the bacterial community structure after antibiotic

treatment has been reported (Hill et al., 2010). On the other hand,

long-term antibiotic exposure may be a risk factor for all-cause

mortality (Heianza et al., 2020; Verdecchia et al., 2020). Another

disadvantage is that the study applied an imbalanced sample size

from different countries to represent the populational species’ relative

abundance. Unlike epidemiology-based cohorts, due to the
Frontiers in Cellular and Infection Microbiology 03
heterogeneity of each country and individual, metagenomic-based

cohorts, restricted by their expense and feasibility, could only serve

as a nation miniature. As a compromise, we conducted the validation

cohort in the Hong Kong population to confirm our findings. Yet, a

more extensive study with larger sample sizes is required to validate the

predictive capability of these two butyrate producers. Third, this study

considered COVID-19 mortality as the only outcome, which may
B

C

A

FIGURE 1

The bacterial species that correlate with SMR amongst different countries Significance level: *p-value <0.05, **p-value <0.01. (A) Correlation
between mRA and SMR in E. rectale and R. intestinalis, two-sided Spearman correlation test has been performed. (B) The validation cohort from
Hong Kong COVID-19 cohort (Severe N = 16, moderate N = 18, mild = 42, control = 70). The relative abundance of E. rectale and R. intestinalis
from the fecal metagenomic data were compared with the Kruskal−Wallis test and post-hoc tested with Wilcox rank-sum test amongst each
disease/control group. The reduction of relative abundance of E. rectale in human fecal samples was reported in COVID-19 patients from the same
cohort (Yeoh et al., 2021) (C) The correlations between SMR-correlated functional pathways and bacteria species were conducted using Hierarchical
All-against-All association testing (HAllA), and only species/pathways with at least one significant correlation were shown.
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neglect that the low abundance of E. rectale may also imply the

association with other disease conditions (Vermeiren et al., 2012;

Zhu et al., 2018; Su et al., 2022). Therefore, although the metadata

from the public datasets was limited, all the included subjects were

labelled as a healthy condition to eliminate the potential bias. To our

best knowledge, there are lack of comparative metagenomic-based gut

microbiome-related studies related to other emerging infectious

diseases at the time of our study endpoint. However, the reduction

of beneficial microbial products, especially butyrate, in influenza A

virus infection and sepsis has been described (Adelman et al., 2020;

Sencio et al., 2020).

Presenting the negative association between the populational

gut abundance of two butyrate producers and the COVID-19

regional mortality, our study offered hope that microbiota

modulation could be one of the keys to reducing COVID-19-

related mortality. In particular, to develop butyrate-producing

probiotics with high-fibber diet may assist the enrichment of such

beneficial species (Kasahara et al., 2018). Nonetheless, future

assessment of these potential next-generation probiotics in animal

models of COVID-19 and clinical trials in humans is warranted.
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