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Explore the changes of
intestinal flora in patients
with coronavirus disease
2019 based on bioinformatics

Gangding Huang*, Yanning Mao, Weiwei Zhang, Qi Luo,
Rong Xie, Dongmei Huang and Yumei Liang

Department of Gastroenterology, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
Background: Studies have revealed that there were significant changes in

intestinal flora composition in patients with coronavirus disease 2019 (COVID-

19) compared to non-COVID-19 patients, regardless of whether they were

treated with medication. Therefore, a comprehensive study of the intestinal

flora of COVID-19 patients is needed to further understand the mechanisms of

COVID-19 development.

Methods: In total, 20 healthy samples and 20 COVID-19 samples were collected

in this study. Firstly, alpha diversity and beta diversity were analyzed to assess

whether there were difference in species richness and diversity as well as species

composition between COVID-19 and control groups. The observed features

index, Evenness index, PD index, and Shannon index were utilized to measure

alpha diversity. The principal coordinates analysis (PCoA) and non-metric

multidimensional scaling (NMDS) were performed to analyzed beta diversity.

Linear discriminant analysis Effect Size (LEfSe) was utilized to analyze the

variability in the abundance of bacterial taxa from different classification levels.

The random forest (RF), Least absolute shrinkage and selection operator (LASSO),

and univariate logistic regression were utilized to identify key Amplicon

Sequence Variant (ASVs). Finally, the relevant networks of bacterial taxa were

created in COVID-19 and control groups, separately.

Results: There were more species in the control group than in COVID-19 group.

The observed features index, Shannon index, and Evenness index in the control

groups weremarkedly higher than in the COVID-19 group. Therefore, there were

marked variations in bacterial taxa composition between the COVID-19 and

control groups. The nine bacterial taxa were significantly more abundant in the

COVID-19 group, such as g-Streptococcus, f-Streptococcaceae, o-

Lactobacillales, c-Bacilli and so on. In the control group, 26 bacterial taxa were

significantly more abundant, such as c-Clostrjdia, o-Oscillospirales, f-

Ruminococcaceae, etc. The 5 key ASVs were obtained through taking the

intersection of the characteristic ASVs obtained by the three algorithms,

namely ASV6, ASV53, ASV92, ASV96, and ASV105, which had diagnostic value
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for COVID-19. The relevance network in the control group was more complex

compared to the COVID-19 group.

Conclusion: Our findings provide five key ASVs for diagnosis of COVID-19,

providing a scientific reference for further studies of COVID-19.
KEYWORDS

COVID-19, 16S rRNA gene sequencing, intestinal flora, bioinformatics analysis,
amplicon sequence variant
1 Introduction

Coronavirus disease 2019 (COVID-19) is a severe acute

respiratory syndrome caused by coronavirus 2 (SARS-CoV-2).

SARS-CoV-2 primarily infects the lungs, and can cause fever with

cough and dyspnea, which are the most common manifestations in

patients (Guan et al., 2020). Although most cases of COVID-19 are

mild, severe cases can lead to respiratory failure or death (Onder et al.,

2020). Further, COVID-19 is extremely harmful, spreads quickly and

is highly pathogenic (Yang et al., 2022). According to the World

Health Organization (WHO), as of February 1, 2022, there have been

379,223,560 COVID-19 infections and 5,693,245 deaths worldwide

(Alharbi et al., 2022). It is found that COVID-19 can lead to

dysbacteriosis of respiratory flora. For example, tract microbiota

dysbiosis of the upper respiratory tract in critically ill patients with

COVID-19 is more severe than in patients without COVID-19, and

the oropharyngeal microbiome in COVID-19 patients is significantly

disrupted and is associated with disease severity. And meanwhile,

intubated patients with COVID-19 have low diversity in endotracheal

samples and show frequent growth of potential respiratory

pathogens, particularly staphylococcic (Merenstein et al., 2022).

It is worth that the initial symptoms of COVID-19 patients are

mainly fever, fatigue, and dry cough, but clinical studies have also

found that SARS-CoV-2 can also cause gastrointestinal symptoms such

as diarrhea, abdominal pain, nausea, and vomiting (Du et al., 2020).

Further, diarrhea is detected as a common extrapulmonary symptom

in people with COVID-19, and infectious SARS-CoV-2 has been

detected in stool samples as well (Gu et al., 2020). Among about 50

percent of patients, SARS-CoV-2 RNA can still be detected in stool

samples when the virus is no longer detected in the respiratory tract

(Xiao et al., 2020). This suggests that the gastrointestinal tract may be

the site of active viral replication, and that viruses may directly interfere

with local ecosystems in the gut, leading to disturbances in the gut flora.

Intestinal flora is an important factor in regulating intestinal

homeostasis (Peters et al., 2018; Park et al., 2019). Microbial

imbalances in the body can lead to a variety of diseases and immune

responses (Johnson et al., 2016; Golonka et al., 2019). The COVID-19

pandemic-related studies have shown that, compared with non-

COVID-19 patients, the composition of the gut microbiota of

COVID-19 patients changed significantly, regardless of whether the

patients received medication (Gaibani et al., 2021; Yeoh et al., 2021),

indicating a potential relationship between gut microbiota and SARS-
02
CoV-2 infection (Cao et al., 2021). Besides, enrichment of certain

bacteria, such as Coenobacterium and Clostridium, is considered

positively correlated with the severity of COVID-19 through shotgun

sequencing (Yeoh et al., 2021). Considering previous studies have

found an association between certain respiratory diseases and diseases

of the digestive tract (Keely et al., 2012), while, the diagnostic potential

of the microbiota profiles for predicting COVID-19 and healthy

controls has not been systematically explored yet. Therefore, the

study of intestinal flora in patients with COVID-19 diagnosis may be

a new breakthrough point.

Given that the concerns regarding the 20% false negative rate

associated with RT-PCR-based nucleic acid detection and the

promising possibilities of bioinformatics analysis in the identification

of biomarkers as non-invasive diagnostic tools for diagnosing COVID-

19 (Ren et al., 2021; Aishwarya and Gunasekaran, 2022), on the basis of

twenty patients with confirmed COVID-19 and 20 non-COVID-19

patients, we assessed the differences in gut microbiome as well as

functional characteristics of bacterial taxa between the two by 16S rRNA

sequencing, and further screened the key diagnostic ASVs using three

machine algorithms, in order to provide a new theoretical basis for the

diagnosis and prevention of COVID-19. Themicrobiota diversity of the

control group was higher than that of the COVID-19 group. Results of

KEGG pathway predictions differed between COVID-19 and control

groups as well. Further, a model was constructed by five critical ASVs

with COVID-19 diagnostic values. Moreover, the correlation between

bacterial taxa in the control group was more complex compared to that

in the COVID-19 group. This study comprehensively studies the

relationship between intestinal flora and COVID-19, and provides

new diagnostic ideas for further understanding of the mechanism of

COVID-19 occurrence and development.
2 Materials and methods

2.1 Subject recruitment and sample
collection

Our study included 20 healthy samples and 20 COVID-19

samples. The healthy peoples and COVID-19 patients were collected

at Nanning First People’s Hospital. A total of 20 COVID-19 patients

hospitalized in Nanning First People’s Hospital from December 2022

to January 2023 were selected, and data collection included symptoms,
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signs, laboratory tests and chest CT examination. The throat swab test

was positive for the new coronavirus nucleic acid, and the patients had

typical symptoms such as cough and fever, and the clinical

classification was mild or medium according to China’s “Diagnosis

and Treatment Plan for Novel Coronavirus Infection (Trial Version

10)”. In the control group, 20 healthy people were selected with

negative throat swabs for novel coronavirus, no respiratory

symptoms, no serious cardiovascular and cerebrovascular diseases,

impaired liver and kidney function, diarrhea or constipation. To

collect the feces in the middle of the feces, place the container

containing the feces in an airtight bag and refrigerate at 4°C. The

bag and stool samples are marked with the name and the time the

sample was collected. If DNA is extracted on the same day, it can be put

at 4°C, extracted within a week, can be put at -20°C, long-term storage

needs to be quickly put into liquid nitrogen, and then immediately put

into -80°C storage. The study was approved by Medical Ethics

Committee of the Fifth Affiliated Hospital of Guangxi Medical

University. All patients had signed an informed consent form.

Information on the collection, storage and preparation of

samples: collect the feces in the middle of the feces, place the

container containing the feces in an airtight bag, and refrigerate at

4°C. The bag and stool samples are marked with the name and the

time the sample was collected. If DNA is extracted on the same day,

it can be put at 4°C, extracted within a week, can be put at -20°C,

long-term storage needs to be quickly put into liquid nitrogen, and

then immediately put into -80°C storage.
2.2 Microbial 16S rRNA gene
sequence analysis

Nucleic acids were extracted using the Surbiopure Fecal Nucleic

Acid Extraction Kit (magnetic bead method) (Guangzhou Cybex

Biotechnology Co., Ltd.). QubitTM4.0 (Thermo Fisher Scientifi) was

used for the extracted DNA, the TransStartFastPfu Fly DNA

Polymerase kit (Beijing TransGen Biotech Co., Ltd.) was used by the

amplifier MiniAmp Plus Thermal Cycler (Thermo Fisher Scientifi)

amplified the V3-V4 region of the bacterial 16S rRNA gene, and the

primer group was 341F5’-TCGTCGGCAGGTCAGATGTG

TATAAGAGAGAGCCTACGGGGGGWGCAG-3’ and 805R5’-

GTCTCGTGGTCGGCGGAGATGTATAAGAGAGGACT

ACHVGGGTATCTAATCC-3’, Reaction systems and amplification

procedures. The product was purified using magnetic DNA Beads

(Beijing TransGen Biotech Co., Ltd.). The purified products were

quantified using the bioanalyzers Agilent 2100 (Agilent Technologies)

and QubitTM4.0 (Thermo Fisher Scientifi). The combined library was

sequenced using the Illumina MiSeq instrument, which was packaged

using MiSeq Reagent Kit v3 (Illumina, Inc., San Diego, CA, USA).
2.3 Bioinformatics analysis

Based on the 16S rRNA sequencing data, the valid sequences of

the samples were clustered and grouped into Amplicon Sequence

Variant (ASVs) via DATA2 in the QIIME2. The ASVs with relative

abundance greater than 0.01% in all samples were used for
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subsequent analysis. Alpha diversity and beta diversity were

analyzed to assess whether there was difference in species richness

and diversity as well as species composition between COVID-19

and control groups. Alpha diversity was assessed through the

observed features index, Evenness index, PD index, and Shannon

index. The beta diversity analysis was performed using principal

coordinates analysis (PCoA) and non-metric multidimensional

scaling (NMDS). The analysis of similarities (ANOSIM) was

utilized to compare different groups. At the phylum and genus

levels, the abundance of bacterial taxa between COVID-19 and

control groups was compared via Wilcoxon test. Linear

discriminant analysis Effect Size (LEfSe) was utilized to analyze

the variability in the abundance of bacterial taxa from different

classification levels. The screening criteria were LDA score > 2 and

P < 0.05. The PICRUSt2 was utilized to perform the enrichment

analysis. The differences of enriched pathways between COVID-19

and control groups were compared via Wilcoxon test. Afterwards,

three machine learning algorithms, namely random forest (RF),

least absolute shrinkage and selection operator (LASSO), and

univariate logistic regression, were utilized to identify key ASVs.

The effectiveness of the three models and diagnostic value of key

ASVs for COVID-19 were assessed via receiver operating

characteristic (ROC) curves. Finally, at the genus level, the

correlation of the top30 bacterial taxa was calculated in COVID-

19 and control groups using Spearman algorithm, respectively. And

the relevant networks were created with |r| > 0.6 and P < 0.05 by

GgClusterNet (version 0.1.0).
2.4 Statistical analysis

Statistical analysis was carried out through R software (version

4.1.1, https://www.r-project.org/). Differences between groups were

analyzed via the Wilcoxon test. P < 0.05 represented a

significant difference.
3 Results

3.1 Taxonomic analysis of intestinal flora in
COVID-19 and control groups

In total, 303 ASVs were shared between COVID-19 and control

groups, such as ASV1, ASV2, ASV3, etc. (Supplementary Table 1;

Figure 1A). There were 47 ASVs that were specific to the COVID-19

group, such as ASV5, ASV8, ASV9, etc. (Supplementary Table 1;

Figure 1A). There were 72 ASVs that were specific to the control

group, such as ASV6, ASV10, ASV29, etc. (Supplementary Table 1;

Figure 1A). The results of alpha diversity analysis showed that the

observed features and Shannon dilution curves of the sequencing

data had leveled off, indicating that the majority of species had been

captured (Figure 1B). Furthermore, there were more species in the

control group than in COVID-19 group (Figure 1C). To further

compare the differences in species richness between COVID-19 and

control groups, we measured the alpha diversity of species by

observed features index, Evenness index, PD index, and Shannon
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index. The results indicated that the Shannon index, observed

features index, and Evenness index in the control groups were

markedly higher than in the COVID-19 group (Figure 1D). In order

to analyze whether there were different in the composition of the

bacterial taxa between COVID-19 and control groups, we
Frontiers in Cellular and Infection Microbiology 04
performed PCoA and NMDS. The results suggested that there

were markedly different in bacterial taxa composition between the

COVID-19 and control groups (Figure 1E).

At the phylum level, top10 bacterial taxa in terms of relative

abundance were shown (Figure 2A). The relative abundance of
A B

D

E

C

FIGURE 1

Taxonomic annotation of Intestinal Flora in COVID-19 and control groups. (A) Venn diagram for the common Amplicon Sequence Variant (ASVs) in
COVID-19 and control groups. (B) Analysis of alpha diversity based on the observed features and the Shannon index dilution curves in COVID-19
groups. (C) Analysis of alpha diversity based on the observed features and the Shannon index dilution curves in control groups. (D) Violin plots for
differences of observed features index, Evenness index, PD index, and Shannon index between COVID-19 and control groups. (E) Analysis of beta
diversity based on principal coordinates analysis (PCoA) and nonmetric multidimensional scaling (NMDS), COVID-19 and control subjects were
denoted with black and red nodes, respectively.
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Bacteroidota was higher in control group. The relative abundance of

Actinobacteriota, Proteobacteria, and Verrucomicrobiota was

higher in the COVID-19 group. However, the differences of

bacterial taxa between COVID-19 and control groups were not

significant (Figure 2B).

At the genus level, top12 bacterial taxa in terms of relative

abundance were shown (Figure 3A). The relative abundance of

[Eubacterium] eligens group, Bacteroides, Lachnospira, and

Faecalibacterium was higher in control group. The relative

abundance of Streptococcus, Bifidobacterium, Clostridium

sensu stricto 1, and Akkermansia was higher in COVID-19

group. Additionally , the results of statistical analysis
Frontiers in Cellular and Infection Microbiology 05
demonstrated that the relative abundance of Faecalibacterium,

Streptococcus, Lachnospira, and [Eubacterium] eligens group

between COVID-19 and normal groups was markedly

different (Figure 3B).

In order to further analyze whether there were differences of

specific dominant bacterial taxa between the COVID-19 and

control groups, LEfSe was performed. The results showed the

nine bacterial taxa were significantly more abundant in the

COVID-19 group, such as g-Streptococcus, f-Streptococcaceae, o-

Lactobacillales, c-Bacilli, and so on (Figures 4A, B). In the control

group, 26 bacterial taxa were significantly more abundant, such as c-

Clostrjdia, o-Oscillospirales, f-Ruminococcaceae, etc. (Figures 4A, B).
A

B

FIGURE 2

Analysis of species composition diversity at the phylum levels. (A) Stacked bar chart for the releative aboundances of the top10 bacterial taxa at the
phylum level. (B) Box plots for differences of the relative abundance of ten bacterial taxa between COVID-19 and control groups.
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3.2 Enrichment analysis

To explore the differences in functional characteristics of bacterial

taxa between COVID-19 and control groups, we performed KEGG

pathways prediction. As shown in Figure 5, unclassified: signaling

and cellular processes, cell growth and death, endocrine system,

immune system, and nervous system were markedly enriched in

the control group, while the transcription, aging, and signal

transduction were significantly enriched in COVID-19 group.
Frontiers in Cellular and Infection Microbiology 06
3.3 Acquisition of key ASVs

To further filter the key ASVs, we randomly selected 20 samples

from the 40 samples as the training set and the remaining 20

samples as the validation set. For the RF algorithm, we obtained 16

characteristic ASVs, namely ASV57, ASV53, ASV50, ASV92,

ASV93, ASV142, ASV96, ASV83, ASV105, ASV64, ASV48,

ASV43, ASV208, ASV128, ASV9, and ASV6 (Figure 6A). There

were 9 characteristic ASVs via LASSO algorithm, containing
A

B

FIGURE 3

Analysis of species composition diversity at the genus levels. (A) Stacked bar chart for the releative aboundances of the top12 bacterial taxa at the
genus level. (B) Box plots for differences of the relative abundance of 12 bacterial taxa between COVID-19 and control groups.
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ASV105, ASV96, ASV181, ASV53, ASV142, ASV92, ASV6,

ASV111, and ASV208 (Figure 6B). The results of univariate

logistic regression demonstrated that the 5 ASVs were protective

factors for COVID-19, namely ASV6, ASV53, ASV92, ASV96, and

ASV105 (Figure 6C). AUC values of three models were greater than

0.85 for both the training and validation sets, suggesting that three

models all had good accuracy (Figures 6D, E). The 5 key ASVs were

obtained through taking the intersection of the characteristic ASVs

obtained by the three algorithms, namely ASV6, ASV53, ASV92,
Frontiers in Cellular and Infection Microbiology 07
ASV96, and ASV105 (Figure 6F). Details of the 5 key ASVs were

shown in Table 1. The AUC values of all key ASVs were greater than

0.7 for both the training and validation sets, indicating that 5 key

ASVs had diagnostic value for COVID-19 (Figures 6G, H).
3.4 Creation of relevance networks

To further assess the correlation between bacterial taxa, we

constructed relevance networks in COVID-19 and control groups,

separately. The relevance network in the control group contained 28

nodes and 58 edges (Figure 7A). The g-Lachnospiraceae NK4A136

group associated with multiple bacterial taxa. For instance, it was

negatively correlated with g-Bacteroides and g-Flavonifractor, but

positively correlated with g-Faecalibacterium and g-Lachnospira,

etc. In the COVID-19 group, the relevance network contained 23

nodes and 34 edges (Figure 7B). The g-Romboutsia was positively

relevant to multiple bacterial taxa, such as g-Blautia, g-Monoblobus,

g-Coprococeus, and so on. In conclusion, the relevance network in

the control group was more complex compared to the COVID-

19 group.
4 Discussion

Since December 2019, coronavirus disease 2019 (COVID-19),

caused by severe acute respiratory syndrome coronavirus type 2

(SARS-CoV-2), has spread rapidly globally and evolved into the

worst pandemic in the last 100 years. In previous studies, it has been

confirmed that the intestinal flora has an influence and regulating

effect on respiratory disease (Ichinohe et al., 2011; Fagundes et al.,

2012). In animal models, the gut microbiota affects the prognosis of

infectious lung disease (Schuijt et al., 2016), and similarly, lung

infections affect the gut microbiota (Wang et al., 2014), suggesting a

two-way crosstalk between the gut and lungs (Sencio et al., 2021).

Previous studies have found that respiratory viral infections

affect systemic microbiota dynamics and lead to quantitative

intestinal dysbiosis (Yildiz et al., 2018). For example,

In a study for the K18-hACE2 transgenic mouse model infected

with SARS-CoV-2, the cecal microbiome showed a decrease in the

Shannon index, and the degree of reduction correlated with the dose

of SARS-CoV-2 infection (Seibert et al., 2021). Tatiana et al.

compared the gut microbiota profile of COVID-19 individuals at

day 0 (inclusion) and day 7 using 16S metagenomics data, and

revealed that although similar at inclusion, Shannon alpha diversity

index significantly decreased in COVID-19 and non-COVID-19

groups than in the control group at day 7 (Galperine et al., 2023).

Another study conducted using shotgun sequencing showed that,

though the overall gut microbiota composition differed between

COVID-19 patients and non-subjects, there were no significant

differences in species richness and Shannon diversity (Yeoh et al.,

2021). Besides, 16S rRNA sequencing data of the intestinal

microbiome of patients with active SARS-CoV-2 infection were

analyzed and compared with those of recovered patients and

uninfected healthy controls. The results showed that except for

the Pielou evenness of COVID-19 positive patients, the use of
A

B

FIGURE 4

The linear discriminant analysis (LDA) effect size (LEFSe) analysis to
screen specific dominant bacterial taxa of the two groups. (A)
Cladogram of LEFSe analysis demonstrated microbiome differences of
the two groups at various phylogenic levels. Circles from the inside
out indicate the phylogenetic levels from the phylum to genus. (B)
Distribution histogram based on LDA analysis (LDA score > 2 and P <
0.05). The abscissa represents the LDA score, and the ordinate
represents the differential bacterial taxa.
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antibiotics was associated with a moderate decrease in OTUs and

Shannon index (p = 0.05) (Yin et al., 2022). It was reported that

vaccination could significantly inhibit the shannon, pielou

evenness, simpson and invsimpson index, as characterized by

COVID-19 infection, which may benefit the host immune

response to prevent COVID-19 (Jiao et al., 2022).

In our study, the control group exhibited higher microbiota

diversity and richness than the COVID-19 group, there were higher

values on the a diversity analysis, the observation characteristic

index, Shannon index and uniformity index in the control group

compared to the COVID-19 group. This is consistent with previous

research. It is worth that, although one study indicated that ethnic,

regional factors, and socioeconomic characteristics are considered

as independent major factors influencing the gut microbiome

(Brooks et al., 2018), and the regional factors have the greatest

influence on gut microbiome composition (Ghosh et al., 2020),

several studies from both Europe and Asia suggest that the diversity

of gut microbial in COVID-19 patients is significantly reduced, and

there are significant differences in gut microbiome composition

compared to controls. For example, in a cohort of European

populations consisting mainly of patients of Caucasian ethnicity,

it was found that the gut microbiota of patients infected with SARS-

CoV-2 was significantly different from that of patients with SARS-

CoV-2 negative (Reinold et al., 2021). A study from Portugal has

proposed for the first time that gut microbiota diversity is a risk

prognostic biomarker for COVID-19 severity with moderate and

severe COVID-19 inpatients having a lower Shannon diversity

index (Moreira-Rosário et al., 2021). Besides, a Chinese study also

found that patients suffering COVID-19 infection had significantly

lower gut microbiota diversity compared to healthy controls or

seasonal influenza patients, and changes in gut microbiota

composition could lead to cytokine storms (Tao et al., 2020).

Next, we performed PCoA andNMDS and observed that there were

significant differences in bacterial taxa composition between the
Frontiers in Cellular and Infection Microbiology 08
COVID-19 and control groups. Specifically speaking, at the phylum

levels, the controls had a higher relative abundance of Bacteroides, and

the relative abundance of actinobacillus, proteus, and verrucous

microbiota was higher in the COVID-19 group. At the genus level,

the relative abundance of [EuBacteroides] eligens group, Bacteroides,

Lactobacillus, and Faecal bacillus was higher in the control group.

Relative abundance was higher in the COVID-19 group of

streptococci, bifidobacteria, Clostridium strict-sensitizer1, and

Akmancia. Several literature have extended the theoretical basis for

these results. In Zuo’s study, the abundance of fecal bacilli is inversely

correlated with disease severity (Zuo et al., 2020), consistent with the

lower expression of fecal bacteria in the COVID-19 group compared to

controls. And meanwhile, according to the findings of Yeoh and

Reinold, at the phylum level, members of Bacteroides were relatively

abundant in COVID-19 patients compared to non-COVID-19

individuals, while Actinomycetes were relatively abundant in non-

COVID-19 individuals. In the absence of controlled antibiotic use,

differences in the composition of the COVID-19 gut microbiota are

mainly enriched by species including Bifidobacterium juveniles and

Faecalella przewalski (Reinold et al., 2021; Yeoh et al., 2021).

Considering that not enough non-COVID-19 samples were collected

for analysis in this study, these studies provide us with more perspectives

targeting the comparing of bacterial taxa composition among controls,

COVID-19, and non-COVID-19 individuals. In general, Bacteroideswas

the most abundant in the control group, followed by COVID patients,

and finally non-COVID patients. The abundance of Actinomycetes in

COVID and non-COVID patients was higher than that in the control

group, and the abundance of non-COVID patients increased the most.

In order to analyze the difference in functional characteristics

between different groups, we used PICRUSt2 to predict the function

of the microbial community. The results of the functional difference

analysis of the two groups showed that a total of 8 KEGG pathways

were significantly different between the disease and the control group,

among which transcription, aging, and signal transduction entries were
FIGURE 5

KEGG enriched pathways analysis between COVID-19 and control groups, Data in different groups was analyzed with Wilcoxon test.
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highly expressed in the disease group, and not classified: signal and cell

processes, cell growth and death, endocrine system, immune system,

and nervous system were highly expressed in the control group. There

are currently few studies on the functional characteristics of COVID-

19, and our study is consistent with the Koo H study, which does not

share a KEGG metabolic pathway between COVID-19 patients and

controls (Koo andMorrow, 2022). While, considering the mechanisms

responsible for the high expression of these pathways in COVID-19

patients are unclear, further study was required. Besides, it is as
Frontiers in Cellular and Infection Microbiology 09
expected that the microbial network in the control group was more

complex than in the disease group, and the number of edges and nodes

of the microbial network in the control group was greater than that in

the disease group.

On the other hands, LASSO, RF, and GLM algorithms were used

to screen the five key ASVs. as the best model: ASV6, ASV53,

ASV92, ASV96, ASV105 belonged to the Firmicutes phylum,

belonging to the genera g-Faecalibacterium, g-Coprococcus and g-

Lachnospiraceae_ND3007_group. The Firmicutes/Bacteroides (F/B)
A

B

D E

F G H

C

FIGURE 6

Five key ASVs were screened using three machine learning algorithms. (A) Variable importance plot of the random forest (RF) algorithm. (B) Least
absolute shrinkage and selection operator (LASSO) regression analysis and cross-validation for tuning parameter selection were displayed. (C) Forest
plot for univariate logistic regression. Receiver operating characteristic (ROC) curves of three models in the training (n= 20, D) and validation sets (n=
20, E). (F) Venn diagram for five key ASVs among in three algorithms. Receiver operating characteristic (ROC) curves of five key ASVs in the training
(G) and validation (H) sets.
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ratio is an important indicator of structural changes in the gut

microbiota (Mir et al., 2019). Some studies have found high levels of

certain gut flora belong to the firmicutes in COVID-19 patients. For

example, in a study characterizing the entero-mammary microbiota of

women with the presence of the virus during childbirth, several

bacterial taxa were high in maternal rectal swab (MRS) positive for

SARS-CoV-2 RNA. Most of these bacteria belong to the phylum

Firmicutes, such as bifidobacteriaceae, oscoprospirae, and

microbacilliae (Juárez-Castelán et al., 2022). Besides, in the gut of

patients with acute post-COVID-19 syndrome, high levels of Rumen

gunavis have been detected (Liu et al., 2022). Other studies that do not

agree with our findings have shown that stool samples with low or zero

infectious characteristics of SARS-CoV-1 have a high level of

Spirochetidae bacteria 1_57 (Zuo et al., 2021). In another study, in

COVID-19-positive patients, consumption of the Rumen family was

observed (Yin et al., 2022). These studies have shown the operability of

the above diagnostic markers for the detection of intestinal microbiome

changes and even COVID-19 infection.

This study comprehensively investigated the relationship between

the intestinal microbiota and COVID-19 infection using the 16S rRNA

sequencing. The relationship between the abundance and diversity of

gut flora and COVID-19 were confirmed, and the dominant flora in
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the intestines of COVID-19 patients were analyzed, as well as the

function prediction of these intestinal flora in COVID-19 was also

carried out. Further, five diagnostic ASVs were screened for predicting

COVID-19 well. All of this provides new ideas for further

understanding of the mechanisms by which COVID-19 occurs.

However, our research needs to go further to investigate the

mechanisms affecting the function of the gut microbiota, and to

analyze it in combination with other groups to further explore the

mechanism of COVID-19 development and development. At present,

the literature information related to COVID-19 of various flora and the

literature of various functional enrichment pathways related to

COVID-19 are relatively lacking. It is necessary to verify the exact

mechanisms of the enrichment of dominant bacterial taxa in COVID-

19 patients through more in-depth in vivo and in vivo functional

experiments. As a single-center study with a limited sample size, the gut

microbiota of patients is affected by many factors, such as a decrease in

the gut microbiome of the elderly population (Kim et al.,

2019).Coinfection and superinfection are common in respiratory

viral infections (Zimmermann and Curtis, 2020). When conducting

research, it is not possible to completely avoid the different microbiota

caused by factors such as different ages, underlying diseases, co-

infections, and severity of the disease. Further multicentre studies
TABLE 1 Details for the phylogenetic levels of 5 key ASVs in COVID-19.

OUT Kingdom Phylum Class Order Family Genus Species

ASV6 d Bacteria p Firmicutes c Clostridia o Oscillospirales f Ruminococcaceae g Faecalibacterium

ASV53 d Bacteria p Firmicutes c Clostridia o Lachnospirales f Lachnospiraceae g Coprococcus

ASV92 d Bacteria p Firmicutes c Clostridia o Oscillospirales f Oscillospiraceae

ASV96 d Bacteria p Firmicutes c Clostridia o Lachnospirales f Lachnospiraceae g Lachnospiraceae_ND3007_group s metagenome

ASV105 d Bacteria p Firmicutes c Clostridia o Lachnospirales f Lachnospiraceae
A B

FIGURE 7

The spearman correlation networks of the top30 bacterial taxa in different groups at the genus level. (A) Control group, (B) COVID-19 group.
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with the larger size and longer duration and more key factors are

warranted in future studies. Last but not least, considering the use of

healthy samples can be more focused on the impact of COVID-19

infection on normal biological status and investigate the biology and

mechanisms of COVID-19 infection, and due to data availability

limitations, we were temporarily unable to obtain a sufficient

number of samples from non-COVID-19 infection for analysis. We

will try to obtain more samples of non-COVID-19 infection depending

on the cooperation of other research institutions, hospitals or clinical

trials for a more comprehensive comparative analysis in follow-

up studies.
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