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Introduction: The masked palm civet (Paguma larvata) serves as a reservoir in

transmitting pathogens, such as Toxoplasma gondii, to humans. However, the

pathogenesis of T. gondii infection in masked palm civets has not been explored.

We studied the molecular changes in the brain tissue of masked palm civets

chronically infected with T. gondii ME49.

Methods: The differentially expressed proteins in the brain tissue were

investigated using iTRAQ and bioinformatics.

Results: A total of 268 differential proteins were identified, of which 111 were

upregulated and 157 were downregulated. KEGG analysis identified pathways

including PI3K-Akt signaling pathway, proteoglycans in cancer, carbon

metabolism, T-cell receptor signaling pathway. Combing transcriptomic and

proteomics data, we identified 24 genes that were differentially expressed on both

mRNA and protein levels. The top four upregulated proteins were REEP3, REEP4,

TEP1, and EEPD1, whichwas confirmed bywestern blot and immunohistochemistry.

KEGG analysis of these 24 genes identified signaling cascades that were associated

with small cell lung cancer, breast cancer, Toll-like receptor signaling pathway, Wnt

signaling pathways among others. To understand the mechanism of the observed

alteration, we conducted immune infiltration analysis using TIMER databases which

identified immune cells that are associated with the upregulation of these proteins.

Protein network analysis identified 44 proteins that were in close relation to all four

proteins. These proteins were significantly enriched in immunoregulation and

cancer pathways including PI3K-Akt signaling pathway, Notch signaling pathway,

chemokine signaling pathway, cell cycle, breast cancer, and prostate cancer.
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Bioinformatics utilizing two cancer databases (TCGA and GEPIA) revealed that the

four genes were upregulated in many cancer types including glioblastoma (GBM). In

addition, higher expression of REEP3 and EEPD1 was associated with better

prognosis, while higher expression of REEP4 and TEP1 was associated with poor

prognosis in GBM patients.

Discussion:We identified the differentially expressed genes in the brain of T. gondii

infected masked palm civets. These genes were associated with various cellular

signaling pathways including those that are immune- and cancer-related.
KEYWORDS
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1 Introduction

Toxoplasma gondii can invade virtually any organs in animals

and humans, and its preferred sites are the brain, eyes, heart, lungs

and muscles (Kochanowsky and Koshy, 2018). Under the attack of

the host immune system, T. gondii retreats to neural and muscular

tissues and forms tissue cysts, which remain for the duration of host

lifespan (Menard et al., 2019). T. gondii can invade the host’s central

nervous system (CNS) and cause encephalitis (Feustel et al., 2012).

T. gondii infection of the CNS has been associated with Alzheimer’s

disease, paralysis, epilepsy, glioblastoma, brain tumors, and other

common neurological disorders (Schlüter and Barragan, 2019;

Hodge et al., 2021; Nayeri et al., 2021; Virus et al., 2021). Likely

due to infection of CNS, hosts exhibit behavioral changes, such as

decreased locomotor activity, impaired learning and memory

abilities, and reduced awareness of felids in the case of rodents

(Markus et al., 2021). The current known entry routes of T. gondii

into the brain are crossing the blood-brain barrier and the Trojan

Horse mechanism (Feustel et al., 2012). Felids are the sole definitive

hosts of T. gondii. Felids release oocysts into the environment which

contributes to the infection in a variety of intermediate hosts

(Desmettre, 2020).

The masked palm civet (Paguma larvata, Mammalia:

Carnivora: Viverridae) mainly inhabits forests, caves, and tree

caves. In the wild, masked palm civets feed on wild fruits and

grains, insects, frogs, birds, eggs, and mice (Wang and Eaton, 2007;

Liu et al., 2022). Due to its wide range of food sources, masked palm

civet can harbor a wide array of infectious diseases. Because of its

valuable fur and exotic meat, the masked palm civet is poached in

many economically underdeveloped areas (Li et al., 2003; Hou

et al., 2016).

After the outbreak of SARS in Asian countries in 2003,

researchers isolated SARS-CoV from masked palm civets,

confirming that masked palm civets are a direct source of SARS-

CoV in humans (Li et al., 2005; Shi and Hu, 2008). In addition, the

masked palm civet is a reservoir of numerous harmful viruses,

bacteria, and parasites, including, reoviruses, rabies virus,

Toxoplasma gondii, Yersinia pseudotuberculosis, and Salmonella

enterica (Lee et al., 2011; Matsumoto et al., 2011; Li et al., 2015; Hou
02
et al., 2016). In areas where the animal is hunted, masked palm

civets serve as an important vehicle for disease transmission to

humans. Understanding the disease pathogenesis in masked palm

civets is a priority of curtailing disease transmission to humans.

In our previous study, we took the brain tissues of T. gondii

infected masked palm civets and conducted transcriptomic studies

(Yuan et al., 2022). We identified differentially expressed genes (e.g.,

CCL28, CCL23, TLR1, TLR4, CCL5, CASP8) that were enriched in

immune regulatory pathways, including chemokine signaling

pathway, TLR signaling pathway, and PI3K-Akt signaling

pathway. Here, we conducted proteomics and incorporated

previous published transcriptomic data to comprehensively

analyze the molecular changes in the brains of infected mask

palm civets. The differentially expressed proteins (DEPs) were

identified in T. gondii infected masked palm civets. Notably,

GBM associated DEPs were identified. Immune infiltration and a

protein network analysis were conducted to explore immune cells

and proteins that are directly associated with these DEPs.
2 Materials and methods

2.1 Experimental animals and
T. gondii strain

The six, 3 to 4-month-old masked palm civets were provided by

the special breeding base in Shaoguan (Guangdong, China) and

kept under controlled conditions in an animal facility in South

China Agricultural University. Prior to T. gondii infection, animal

sera were screened via ELISA for feline panleukopenia virus, feline

immunodeficiency virus, and feline coronavirus. All serological

tests showed negative results.

The animals were separated into the experimental group (n=5)

and control group (n=1). T. gondii ME49 was acquired from the

South China Agricultural University’s Parasitology Lab (Guangdong,

China). Kunming mice were intraperitoneally injected with ME49

tachyzoites and 10 days later, brains were harvested for cyst

preparation. The cysts were enumerated under the microscope

using a hemacytometer and diluted to 103 cysts per microliter in
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PBS. The experimental group was inoculated with 1mL of 103 cysts

via intraperitoneal injection, and the control group was inoculated

with 1 mL of sterile PBS via the same infection route. A modified

agglutination test (MAT) was performed to confirm T. gondii

infection in the masked palm civets. After 90 days, brain tissues

were collected aseptically from the experimental and control groups

and stored at -80°C.
2.2 Amplification of T. gondii genes and
protein extraction

DNA was extracted from the collected brain tissues of masked

palm civets, T. gondii infection was detected targeting B1 gene

(194bp) and repeated sequence Rep-529 (529bp) using primers (F:

5 ’-TCTTTAAAGCGTTCGTGTC-3 ’ , R: 5 ’-GGAACTGCA

TCCGTTCATGAG - 3 ’ ) a n d ( F : 5 ’ - CGCTGCAGG

GAGGAAGACGAAAGTTG-3’, R: 5’-CGCTGCAGACACA

GTGCATCTGGATT-3’), respectively.

For protein extraction, 100mg of brain tissue was taken and

grinded in liquid nitrogen. A RIPA lysis buffer was added (50mM

Tris, 150 mMNaCl, 1% TritonX-100, 1%SDS) and incubated at 4°C

for 30mins. The mixture was centrifuged at 4°C, at 15,000 rpm for

15min. Supernatant was taken and stored at -80°C.
2.3 iTRAQ labeling and strong cation-
exchange fractionation

One hundred milligram of brain tissue was pulverized in liquid

nitrogen. Tissue proteins were then isolated using lysate buffer and

radioimmunoprecipitation (RIPA). The suspension was sonicated

10 times at 20 watts and centrifuged at 12000 rpm for 20 min at 4°C.

One hundred microgram of protein was digested with trypsin

(trypsin to protein ratio 1:100) at 37°C for 4 hours and centrifuged

at 12000 rpm. After centrifugation, the protein was solubilized

using 0.5 M tetraethylammonium bromide and labeled with 6-plex

iTRAQ reagent. Robust cation exchange chromatography was

analyzed using a Prominence Nexera UHPLC LC-30A System.

Four milliliters of the iTRAQ-labeled peptide mixture were added

to buffer A (25 mM NaH2PO4 in 25% ACN, pH 2.7) and

transferred to a 4.6×250 mm Ultremex substantial cation

exchange column (Phenomenex) and eluted with different

concentrations. The elution flow rate was set at 2 mL/min. The

elution process is monitored using 214 nm of UV light.
2.4 Liquid chromatography tandem-mass
spectrometry analysis

Three brain samples per animal (3 × 5 samples from the

experimental animals and 3 samples from the control) were

obtained and subjected to LC-MS/MS. The mixture of iTRAQ-

labeled peptides was resuspended in buffer A (5% Acetonitrile, 0.1%

Formic acid), and the concentration of the peptides was adjusted to
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0.5 mg/mL. Approximately ten microliter of the resuspension was

added via autosampler to a 2 cmUHPLC LC-30A System. The assay

samples were loaded at 8 mL/min for 4min and then analyzed with a

gradient concentration of buffer B (90% Acetonitrile, 0.2% Formic

acid) at a rate of 250 NL/min for 35 min. The gradient elution

program using buffer B was as follows: 0%-5% for 5min, 5%-15% for

10min, 15%-35% for 60min, 35%-80% for 45min. The peptide

fragments were detected at 214 nm of absorbance during the

elution process.

Data acquisition and analysis were performed with the

TripleTOF 6600 system (AB SCIEX, Concord, ON) and the

Nanospray III (AB SCIEX, Concord, ON). Peptide data was

obtained with an iron spray voltage of 2.5 kV, a dry gas pressure of

30 psi, a spray gas pressure of 15 psi, and a surface temperature of

150°C. The mass spectrometry was performed at a resolution of over

30,000 FWHM with a time-of-flight mass spectrometry (TOFMS).
2.5 Bioinformatic analysis

Differential protein analysis was performed by searching the

Uniprot database with Mascot software. The quantification of

differentially expressed proteins (DEPs) was calculated using the

algorithm included in the Mascot software. The criteria for

differential proteins screening were p-value < 0.05 and multiple of

difference more than 1.5 times.

GO and KEGG analysis of differential proteins was performed

using R language package (Goseq) and KO-BAS3.0 to understand

the biological activities involving proteins with significant alteration

of expression (Chloe et al., 2022). The software employs

authoritative databases in bioinformatic research to create gene

symbols, functional annotation of proteins, and pathway

enrichment information.

We evaluated the mRNA levels of DEPs using a combined

proteomic and transcriptomic approach. The transcriptome data is

previously published and available on NCBI (NCBI accession no:

PRJNA760987) (Yuan et al., 2022).
2.6 Western blotting and
immunohistochemistry staining

The iTRAQ data was validated using western blot. Four

upregulated (REEP3, REEP4, TEP1, and EEPD1) and one

downregulated (GRB2) DEPs were chosen for validation. The

protein samples were separated on a 10% SDS-PAGE at 120 volt

and transferred to a nylon membrane at 45 mA for 120 minutes.

The proteins were incubated with primary antibodies including

Rabbit anti-REEP3 (Invitrogen, 1:150), Rabbit anti-REEP4

(Invitrogen, 1:150), Rabbit anti-TEP1 (Invitrogen, 1:150), Rabbit

anti-EEPD1 (Invitrogen, 1:150), Rabbit anti-GRB2 (Invitrogen,

1:150). HRP-conjugated goat anti-rabbit IgG was used as a

secondary antibody at 1:500. The membrane was visualized using

a diaminobenzidine (DAB) substrate solution, and the image was

analyzed using western blot detection system.
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In addition, immunohistochemistry was performed to confirm

the iTRAQ data. Tissue was fixed in paraffin and sectioned to 4 mm
for IHC examination. After incubation with methanol followed by

0.75% of hydrogen peroxide, sections were incubated with primary

antibody at 4°C overnight, secondary antibody at 37°C for 40 min.

Anti-body probing followed the same procedure as shown in

western blotting.
2.7 Immune infiltration analysis

TIMER 2.0 (http://timer.cistrome.org) is a web platform used

for systemic analysis of immune infiltrates in various cancer types.

ssGSEA (single-sample gene set enrichment analysis) calculates the

enrichment score which represents the degree of up or

downregulation of genes in a particular gene set. Taking

advantage of the ssGSEA and TIMER, we investigated the

association between the protein expression patterns of REEP3,

REEP4, TEP1, and EEPD1 and immune infiltration in GBM.
2.8 Protein-protein interaction
network analysis

The proteins related to RREP3, REEP4, TEP1 and EEPD1 were

selected using the STRING (http://string-db.org) database, and the

degree of correlation among the proteins was quantified by the

Pearson’s correlation coefficient. We used Cytoscape software to

build a protein PPI network for visualization. The connection

(edge) between nodes represents the protein-protein interaction.

The degree of protein correlation was sorted according to the

Pearson’s correlation coefficient from large to small, and the top

100 proteins with the highest correlation with RREP3, REEP4,

TEP1 and EEPD1 proteins were screened out.
2.9 Cancer database analysis

To better understand the underlying mechanisms of

carcinogenesis, The Cancer Genome Atlas (TCGA) database was

utilized to annotate cancer-related genes and proteins, including

mutations, copy number variants, mRNA expression(Tomczak

et al., 2015).

We downloaded the RNA-seq data of 23 tumor projects from

the TCGA database (https://portal.gdc.cancer.gov) and extracted

the data in TPM format. The total number of samples collected was

11124 (Tumor =7260, Normal =3864). We used the R language

package (ggplot2 [3.3.6], stats [4.2.1], car [3.1-0]) for statistical

analysis and data visualization.

The RNA-Seq data (TPM) of 1846 GBM clinical cases was

downloaded from the TCGA database. R language is used for data

analysis and processing. Using GEPIA (Gene Expression Profiling

Interactive Analysis) dataset (http://gepia.cancer-pku.cn/), we

compared the transcript and protein levels in normal brain tissue

and GBM tumor in 370 samples (Tang et al., 2017).
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3 Results

3.1 Confirmation of T. gondii infection

Sixty days post T. gondii infection, the experimental group of

masked palm civets began to show clinical signs including loss of

appetite and lethargy, the control group remained in good health.

The clinical symptoms lasted for 30 days. Ninety days post

infection, masked palm civets in experimental and control groups

were euthanized and dissected. Brain tissues were removed and

stored at -80°C. A 194 bp fragment of B1 gene and a 529bp repeated

sequence gene were successfully amplified by PCR, confirming the

presence of T. gondii tissue cysts in brain tissues.
3.2 Differential protein preliminary analysis

We used the iTRAQ-based quantitative proteomic method to

identify the proteins and their expression levels in the brain of civet

cats infected with T. gondii. Of the 377,063 total spectra, 252,916

were identified, among which 14,497 were matched to existing

peptides in the database and 5447 were unique peptides

(Supplementary Figure 1A). A total of 268 DEPs were detected

and screened in the brain tissues of masked palm civets, of which

111 were up-regulated, and 157 were down-regulated

(Supplementary Figure 1B). The differential proteins volcano plot

(Supplementary Figure 1C) showed the upregulated and

downregulated DEPs. As shown in SDS-PAGE, differences in the

amount and variety of total, isolated proteins were not observed

(Supplementary Figure 1D).
3.3 Bioinformatics analysis

To identify the biological functions and regulatory pathways the

differentially expressed proteins are enriched in, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses were carried out using R language package (Goseq) and

KO-BAS3.0.

GO analysis was based on three categories, namely biological

process, cellular component, and molecular function (Figure 1A).

The 268 DEPs were mapped to 30 pathways via KEGG enrichment

analysis (Figure 1B). In addition, The GO (Supplementary Figure 2)

and pathway (Supplementary Figure 3) analysis were conducted

separately on the 111 upregulated and 157 downregulated DEPs.

These include immune regulatory and antitumor pathways,

namely, NF-Kappa B signaling pathway, PPAR signaling pathway,

Th17 cell differentiation, chemokine signaling pathway, TNF

signaling pathway, Notch signaling pathway (Bazzoni and

Bentivegna, 2019), MAPK signaling pathway(Lee et al., 2020), p53

signaling pathway (Marei et al., 2021), PI3K-Akt signaling pathway

(Tewari et al., 2022), T cell receptor signaling pathway, Toll-like

receptor signaling pathway.

Based on log2 fold change, the top five of the upregulated

(REEP3, REEP4, TEP1, EEPD1, MYD88) and downregulated
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(CTLA4, PTPRC, CXCR4, CX3CR1, and GRB2) proteins were

compiled in Table 1.
3.4 Western blot

To validate the iTRAQ data, we performed western blot. The

top four most significantly upregulated proteins (REEP3, REEP4,

TEP1 and EEPD1) and one significantly downregulated protein

(GRB2) were selected (Table 1). As shown in Figure 2, REEP3,

REEP4, TEP1, and EEPD1 were upregulated, while GRB2 was

downregulated, consistent with the iTRAQ data.
3.5 Proteomic and transcriptomic analyses
of the infected brain tissue

To understand the expression of different proteins in the brain

of masked palm civet infected with T. gondii at the transcriptional
Frontiers in Cellular and Infection Microbiology 05
and protein levels, we performed proteomics and transcriptomics.

Among the 268 differentially expressed proteins and 2808

differentially expressed genes, twenty-four showed consistent

results (Figure 3A). The regulation patterns of these 24 genes

were shown in Figure 3B. Despite variations in the expression

amount, the two omics showed consistent expression patterns of

these genes (Figure 3B). Noteworthily, REEP3, REEP4, TEP1, and

EEPD1 were upregulated in both methods.

The twenty-four genes of interest were therefore subjected to

functional annotation in categories of biological process, cellular

component, and molecular function (Figure 3C). Gene Ontology

analysis showed that in the biological process category, these 24

genes were involved in signal transduction, B cell activation,

response to tumor necrosis factor, and other similar processes.

These genes were enriched in cellular components such as PCNA-

p21 complex, Toll-like receptor 1, and cyclin D1-CDK4 complex

(Figure 3C). In terms of molecular function, these genes were

involved in Schmidt-Lanterman incisure, MAP kinase activity,

Toll-like receptor binding, among others (Figure 3C).
A

B

FIGURE 1

GO annotation and KEGG pathway analysis of DEPs. (A) GO analysis of the DEPs, including three categories, biological process, cellular component
and molecular function. The x-axis represents the DEPs annotation terms, and the y-axis represents the number of DEPs; (B) Bubble chart of KEGG
pathway analysis showing the top 30 enriched pathways. The x-axis represents DEPs enrichment ratio, and the y-axis is the KEGG pathway.
Enrichment ratio is calculated as the ratio of the number of DEGs to the total number of annotated genes in this pathway. The size of the bubble
correlates with the number of DEG annotated in the pathway. q-value (false discovery rate) ranges from 0.01 to 0.04.
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KEGG pathway enrichment analysis showed that the 24 genes

were involved in pathways such as small-cell lung cancer, breast

cancer, Toll-like receptor signaling pathway (Figure 3D). In

addition to the cancer pathways identified, the 24 genes were

mapped to the following signaling pathways, namely PI3K-Akt,

Wnt, P53, Notch, and NF - Kappa B signaling pathway which were

shown to be the critical pathways (Hellmark and Segelmark, 2014;

Xie et al., 2019).
3.6 Immunohistochemistry analysis of the
brain tissues of infected animals

We used immunohistochemistry to verify the expression levels

of REEP3, REEP4, TEP1, and EEPD1 in the brain of masked palm

civets infected with T. gondii. The results showed that the

expression of REEP3, REEP4, TEP1, and EEPD1 proteins were

higher in T. gondii infected brain tissue than normal tissue
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(Figure 4). This finding confirmed that T. gondii infection altered

the protein expression of REEP3, REEP4, TEP1, and EEPD1 in the

brain of masked palm civets.
3.7 Immune infiltration correlation analysis

We used immune infiltration analysis to identify respective

immune cells that were associated with the expression regulation of

REEP3, REEP4, TEP1, and EEPD1. Data was analyzed using

TIMER 2.0 databases (Li et al., 2017; Ru et al., 2019). The

immune cells that were associated with the up and down

regulation of these four proteins were shown in Figure 5. The

upregulation of REEP3 was associated with T helper cell, T gamma

delta (Tgd) cell, and T central memory (Tcm) cell. The

downregulation of REEP3 was linked to CD56bright NK cell,

Mast cell, and T follicular helper (Tfh) cell. The top three

immune cells that were associated with REEP4 upregulation
TABLE 1 The top five of the upregulated and downregulated DEPs in the brains of T. gondii infected masked civets.

Protein Description Log2(FC) Differential Expression

REEP3 Receptor accessory protein 3 8.46577 Up

REEP4 Receptor accessory protein 4 6.17868 Up

TEP1 Telomerase associated protein 1 5.61362 Up

EEPD1 Endonuclease/exonuclease/phosphatase family domain containing 1 5.43531 Up

MYD88 Myeloid differentiation primary response gene 88 3.45467 Up

CTLA4 Cytotoxic T-lymphocyte-associated protein 4 -1.11099 Down

PTPRC Protein tyrosine phosphate receptor type C -2.09878 Down

CXCR4 C-X-C motif chemokine receptor 4 -4.67890 Down

CX3CR1 C-X3-C motif chemokine receptor 1 -5.19975 Down

GRB2 Growth factor receptor-bound protein 2 -7.68899 Down
A B

FIGURE 2

Western blot analysis of the expression levels of REEP3, REEP4, TEP1, EEPD1 and GRB2. (A) Lane 1 shows the data from the experimental group. Lane 2
shows the data from the control group. Lane 3 and lane 4 are data from a biological replicate. b-Actin is the endogenous control; (B) Quantification of
the results shown in panel A using Gel-Pro Analyzer 4.0 software. No significant difference (p = 0.1) was observed comparing data from western blot
and iTRAQ.
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included macrophage, neutrophil, and eosinophil. In the case of

TEP1, the T helper cell, macrophage, and Tgd were as-sociated with

its upregulation. Tgd cell, plasmacytoid DC (pDC) cell, and CD8 T

cell were related to the upregulation of EEPD1. Our finding suggests

that the elevated expression of REEP3, REEP4, TEP1, and EEPD1

modulates immune cell infiltration in the brain microenvironment.
3.8 Protein-protein interaction analysis and
pathway prediction

To better understand the regulatory mechanism of GBM, we

examined the neighboring proteins that were closely associated with

REEP3, REEP4, TEP1 and EEPD1 in the protein networks. As

shown in Supplementary Figure 4, the STRING database was

utilized to screen the respective, top 100 proteins with close

relation to REEP3, REEP4, TEP1, and EEPD1. The four groups of

related proteins were analyzed collectively and a total of 44 proteins

were found to be linked to all four proteins (Figure 6A). GO

annotation provided functional annotation for the 44 proteins

regarding biological processes, cellular components, and

molecular functions (Figure 6B). The 44 proteins were mapped to

the biological processes including cell division, chromatid
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segregation, and cell cycle phase transition. These proteins were

implicated in cellular components such as spindle, microtubule, and

kinetochore, and molecular function of receptor ligand activity,

microtubule binding, and tubulin binding.

KEGG enrichment analysis identified the pathways involving

the 44 proteins. As shown in Figure 6C, the majority of these

proteins were significantly enriched in immunoregulation and

cancer pathways. These included PI3K-Akt signaling pathway,

cytokine-cytokine receptor interaction, Wnt signaling pathway,

AMPK signaling pathway, breast cancer, prostate cancer, gastric

cancer. This confirmed that REEP3, REEP4, TEP1, and EEPD1 and

their network proteins were involved in immunoregulatory

functions and cancer development.
3.9 Assessment of REEP3, REEP4, TEP1
and EEPD1 mRNA expression in
pan-cancer analysis

To evaluate REEP3, REEP4, TEP1 and EEPD1 mRNA levels in

multiple tumor and normal samples, we downloaded and compiled

data from 11124 samples (Tumor =7260, Normal =3864) from the

TCGA database. As shown in Figure 7, REEP3, REEP4, TEP1 and
A B

DC

FIGURE 3

The transcriptomic, proteomic analysis of brain tissue of masked civet infected with T. gondii; (A) Identification of 24 genes that were differentially
expressed on both mRNA and protein levels. Proteomic data from this study was combined with the transcriptomic data from our previous study;
(B) Gene regulation patterns of the 24 DEGs. The numbers are the log2 (fold change) of up or down regulation; (C) The GO functional annotation of
the 24 DEGs in terms of biological process, cellular component, and molecular function. (D) KEGG pathway enrichment analysis showed that the 24
DEPs were mapped to 28 pathways. The red to purple color gradient shows the FDR (false discovery rate), and the size of the circle represents the
number of proteins.
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EEPD1 was differentially expressed in 14, 17, 14, 13 tumor types,

respectively. REEP4 was upregulated in all 17 types of tumor as

compared to normal tissue while the expression level of the rest of

the efforts is tumor-specific. All four effectors were upregulated in

CHOL (cholangiocarcinoma), GBM (glioblastoma), LIHC (liver

hepatocellular carcinoma), and STAD (stomach adenocarcinoma).

Taking advantage of Gene Expression Profiling Interactive

Analysis (GEPIA) and The Cancer Genome Atlas Program

(TCGA), we compared mRNA expression of REEP3, REEP4,

TEP1, and EEPD1 between GBM tumor and normal brain tissue

(Supplementary Figure 5A). The result showed that the expression

of REEP3, REEP4, TEP1, and EEPD1 was significantly higher in

GBM tumor tissue (Supplementary Figure 5A).

Next, we obtained 1846 GBM samples from the TCGA

database. Of which, 1157 samples were from normal brain tissues

and 689 were from GBM tumor tissues. As shown in

(Supplementary Figure 5B), the REEP3, REEP4, TEP1, and

EEPD1 had significantly higher expression in GBM tumor tissues

compared to normal tissues.
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4 Discussion

In this study, we investigated the proteome of the brain of T.

gondii infected masked palm civets. Consistent with our previous

transcriptomic data, we found that the DEPs were enriched in

immune regulatory pathways including Toll-like receptor (TLR),

NF-Kappa B, T cell receptor, Chemokine, and PI3K-Akt signaling

pathways. The top four most upregulated DEPs were REEP3,

REEP4, TEP1, and EEPD, which were also upregulated on

transcriptional level.

Receptor expression-enhancing proteins (REEPs) are a family

of conserved proteins that is critical to many physiological processes

such as morphogenesis and remodeling of endoplasmic reticulum

(ER). In addition to the functions related to ER and microtubule

skeleton, REEPs contribute to disease development (Fan et al.,

2022). REEP3 and REEP4 are abundant in the brain. REEP3 is

associated with depression, Alzheimer’s disease, obsessive-

compulsive disorder, and autism (Fan et al., 2022). The

disruption of REEP3 expression due to a position effect could
FIGURE 4

The upregulation of REEP3, REEP4, TEP1 and EEPD1 in the brain of masked palm civets infected with T. gondii. E group: experimental group (scale
bar, 100 mm or 50 mm). NC group: control group (scale bar, 100 mm). The second column of the experimental group showed the data in a bigger
magnification. Upon hematoxylin staining, blue color indicates the expression of REEP3, REEP4, TEP1, and EEPD1 proteins in the brain of masked
palm civets infected with T. gondii.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1267629
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yuan et al. 10.3389/fcimb.2023.1267629
lead to autism (Castermans et al., 2007). REEP3 is a prognostic

marker in liver cancer (Wei et al., 2020). REEP4 mutations were

associated with neurological disorders such as Meige syndrome and

blepharospasm (Fan et al., 2022). A study found that in pancreatic

cancer, high expression of REEP4 was associated with tumor

invasion and poor prognosis (Giardiello et al., 2020).

Telomerase-associated protein 1(TEP1) is a constitute of

ribonucleoprotein complex which is responsible for the activity of

telomerase (Duan et al., 2021). In a Drosophila glioma model, the

downregulation of TEP1 reduced the activity of Yki and curtailed

the growth of glioma (Gangwani et al., 2020). Mutations in TEP1

were thought to be responsible for the development of cerebral

palsy (Wang et al., 2021). EEPD1 plays a role in DNA damage

repair, in which it cleaves the stalled replication fork and thus

initiates the homologous recombination repair. EEPD1was thought

to be responsible for mitotic catastrophe in breast cancer cells

(BRCA1 mutant) in the absence of RAD52, suggesting its critical
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role in cancer cell survival (Hromas et al., 2017). As a replication

stress nuclease, EEPD1 was found to be overexpressed in various

malignancies (e.g., brain, breast, kidney, lung) likely owing to its

function of helping cancer cells cope with oncogenic stress (e.g.,

radiation, genotoxins) (Nickoloff et al., 2022). Defect in EEPD1

predisposes cells to cancer due to its role in damage repair

(Nickoloff et al., 2022). EEPD1 thus serves as a biomarker for

stressed cancer cells and a target of cancer therapeutics (Nickoloff

et al., 2022). Taken together, REEP3, REEP4, TEP1, and EEPD1

were related to many cellular functions including cell proliferation,

differentiation, the pathogenesis of neurological disorders and

cancer biology.

The GEPIA and TCGA datasets were used to analyze the

expression patterns of REEP3, REEP4, TEP1, and EEPD1 in

tumor tissue and normal tissue. The expression of these four

proteins was elevated in many cancer types including GBM.

KEGG pathway analysis of the top 155 DEPs revealed pathways
FIGURE 5

Correlation analysis of REEP3, REEP4, TEP1 and EEPD1 expression immune infiltration. The x-axis represents the correlation index. A negative number
indicates a negative correlation between the protein and immune cell, a positive number indicates a positive correlation. The y-axis represents the
immune cells. The circle size shows the correlation degree with a bigger circle representing higher correlation. A red to blue color gradient indicates p-
value (*p < 0.05, **p < 0.01).
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that were crucial in dealing with cellular stresses due to T. gondii

infection. These conserved pathways govern cell proliferation,

apoptosis, cell cycle, and differentiation. The aberrant signaling

due to mutations or abnormal expression of genes is responsible for

oncogenesis. These differentially expressed pathways include the

P53 signaling pathway, Notch signaling pathway, and the PI3K-Akt

signaling pathway.

The P53 signaling pathway was activated when cells were

exposed to genotoxic and cytotoxic stresses, which allowed cells

to turn on transcriptional regulation and lead to cell cycle arrest,

DNA repair, and apoptosis of tumor cells (Marei et al., 2021).

The activation of this pathway offers tumor cells an advantage to

cope with environmental stresses such as lack of nutrients,
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hypoxia, low PH (Tewari et al., 2022). Mutations in TP53, the

gene that encodes P53, were found in various human cancers

(Mao et al., 2012; Marei et al., 2021). The notch signaling

pathway consists of five ligands (Dll1-4, Jagged 1-2) and four

receptors (Notch 1-4). Notch signaling pathway is shown to

regulate neural stem cells and glioma stem cells (GSCs) and

therefore is essential in neurogenesis and carcinogenesis.

Alterations in the notch signaling pathway contribute to

cancers. In fact, genes that are involved in the notch signaling

pathway were found to be upregulated on mRNA and protein

levels in GBM (Bazzoni and Bentivegna, 2019), consistent with

our finding where Notch1 and Dll1 were upregulated

transcriptionally and translationally (Figure 3B). KEGG
A B

C

FIGURE 6

Protein-protein interaction analysis of hub proteins (REEP3, REEP4, TEP1 and EEPD1). (A) Proximity protein correlation analysis. REEP3 was connected to
103 proteins, REEP4 was connected to 104 proteins, TEP1 was connected to 103 proteins, and EEPD1 was also connected to 103 proteins. A total of 44
proteins were co-expressed in REEP3, REEP3, TEP1 and EEPD1; (B) GO annotation of the 44 proteins. The x-axis represents the protein count and
-log10 (p-value), the y-axis represents the protein annotation term; (C) KEGG pathway enrichment analysis. The 44 DEPs were enriched in 31 pathways.
The x-axis represents protein count, and the y-axis shows the KEGG pathways.
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pathway analysis of the 24 DEPs and the 44 network proteins

identified the Wnt signaling pathway. Wnt signaling cascade

along with RAS/MAPK, Notch, Hedgehog, PI3K/Akt pathways

contributed to the stemness in GBM (Latour et al., 2021). WNT

cascade was found to be overactive in GBM allowing GSCs

(glioblastoma stem cells) to replicate aggressively (Latour

et al., 2021).

REEP3 and EEPD1 were positively correlated with T cell

infiltration including CD8+ T cells, Tcm, Tgd. REEP4, and TEP1

were positively correlated with the infiltration of macrophage,

neutrophils, eosinophile, DC, NK cells among others. The

alterations in the expression of these four proteins modulated the

infiltration of innate and adaptive immune cells in the brain. Higher

expression levels of REEP3, REEP4, EEPD1, and TEP1 were found

in oligodendrocyte, monocyte/macrophage, AC-like malignant
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cells, and monocyte/macrophage, respectively, although it should

be noted that the expression levels vary significantly among

different datasets.

T. gondii infection has been associated with increased risk of

glioma development. A study of two cohorts of 360 cases with

approximately the same number of matched controls showed that

people with glioma were more likely to have T. gondii antibodies

(Hodge et al., 2021). In another study, data from 2323 brain tumor

patients and 5131 healthy controls were included in a meta-analysis.

They found that the risk of brain tumor was higher in T. gondii

infected individuals than those without infection (Abdollahi et al.,

2022). Whether T. gondii infection mediates the risk of glioblastoma

is unknown. However, we found that the four proteins that were

upregulated in T. gondii infected brains of the masked palm civets

were also upregulated in glioblastoma patients. MicroRNA-21
FIGURE 7

REEP3, REEP4, TEP1 and EEPD1 TCGA Pan-Cancer Analysis. The mRNA expression levels of 11124 samples (Tumor =7260, Normal = 3864) were
obtained from the TCGA database. The expression amounts of REEP3, REEP4, TEP1, and EEPD1 in the tumor versus normal tissue samples were
plotted. Significance analysis used t-test (*p < 0.05, **p < 0.01, ***p < 0.001).
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derived from T. gondii infected microglial cells promoted the

growth of U86 glioma cells through suppressing antitumoral

genes (FoxO1, PTEN, and PDCD4) (Jung et al., 2022). In general,

T. gondii infection in the CNS caused inflammation and the

inhibition of apoptosis (Jung et al., 2022). Indeed, we found the

upregulation of immune-related effectors and pathways in T. gondii

infected brain tissue.

We went a step further and investigated whether the expression

of the four proteins is associated with GBM outcome. We retrieved

and compiled the clinical data from the TCGA database and

categorized GBM patients into high and low risk groups based on

the expression levels of the four proteins. As shown in

Supplementary Figure 6A, the 50-month overall survival rate

between the high and low expression groups of REEP3 (P =

0.001), REEP4 (P < 0.001), TEP1 (P < 0.001) and EEPD1 (P <

0.001) was significantly different in GBM patients. The high

expression of REEP3 and EEPD1 was associated with increased

the survival time of patients. The high expression of REEP4 and

TEP1 was associated with decreased survival time of patients

(Supplementary Figure 6A).The diagnostic strength of EEP3,

REEP4, TEP1, and EEPD1 in GBM was scored by drawing ROC

curves with R (Proc) software. As shown in Supplementary

Figure 6B, the area under the curve (AUC) for REEP3 was 0.795

(CI: 0.774-0.861), REEP4 0.844 (CI: 0.852-0.863), TEP1 0.817 (CI:

0.786-0.848), and EEPD1 0.963 (CI: 0.952-0.973).
5 Conclusion

Differentially regulated proteins and signaling pathways in T.

gondii-infected masked palm civets were identified by omics and

bioinformatic methods. These genes and proteins were associated

with many physiological processes and cellular signaling pathways

including those that are related to immune response and

cancer associated.
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