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Objective: Nocardia is clinically rare but highly pathogenic in clinical practice.

Due to the lack of Nocardia screening methods, Nocardia is often missed in

diagnosis, leading to worsening the condition. Therefore, this paper proposes a

Nocardia screening method based on neural networks, aiming at quick Nocardia

detection in sputum specimens with low costs and thereby reducing the missed

diagnosis rate.

Methods: Firstly, sputum specimens were collected from patients who were

infected with Nocardia, and a part of the specimens were mixed with new

sputum specimens from patients without Nocardia infection to enhance the data

diversity. Secondly, the specimens were converted into smears with Gram

staining. Images were captured under a microscope and subsequently

annotated by experts, creating two datasets. Thirdly, each dataset was divided

into three subsets: the training set, the validation set and the test set. The training

and validation sets were used for training networks, while the test set was used

for evaluating the effeteness of the trained networks. Finally, a neural network

model was trained on this dataset, with an image of Gram-stained sputum smear

as input, this model determines the presence and locations of Nocardia instances

within the image.

Results: After training, the detection network was evaluated on two datasets,

resulting in classification accuracies of 97.3% and 98.3%, respectively. This

network can identify Nocardia instances in about 24 milliseconds per image on

a personal computer. The detection metrics of mAP50 on both datasets were

0.780 and 0.841, respectively.

Conclusion: The Nocardia screening method can accurately and efficiently

determine whether Nocardia exists in the images of Gram-stained sputum

smears. Additionally, it can precisely locate the Nocardia instances, assisting

doctors in confirming the presence of Nocardia.

KEYWORDS

Nocardia, Nocardia screening, neural network, sputum specimen, Nocardia
infection, nocardiosis
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1 Introduction

The Nocardia genus is a kind of aerobic, Gram-positive, weakly

acid-fast, branching filamentous bacteria (Lerner, 1996; Fatahi-

Bafghi, 2018). In the past decades, our understanding of the

pathogenicity of Nocardia is continually deepening. In an early

stage, Nocardia was believed to only infect immunocompromised

patients (Paige and Spelman, 2019; Zia et al., 2019; Traxler et al.,

2022). However, as research progressed, it has been discovered that

Nocardia can also infect immunocompetent individuals (Fujita et al.,

2016; Abe et al., 2021; Margalit et al., 2021). Nocardia infections can

arise on multiple organs, including the skin (Akasaka et al., 2011;

Chen et al., 2020), lungs (Abe et al., 2021; Li et al., 2022; Chen and

Hu, 2023), brain (Song et al., 2021), etc. Among them, the lungs have

the highest infection rate (Margalit et al., 2020; Yetmar et al., 2023),

accounting for approximately 50-70% of Nocardia infections

(Ambrosioni et al., 2010). This can lead to pneumonia, lung

abscesses, bronchiectasis, chronic obstructive pulmonary diseases,

etc. (Saubolle and Sussland, 2003) More critically, when Nocardia

spreads into the bloodstream, it can cause brain infections or even

death (Filice, 2001; Song et al., 2021). There is no specific

characteristic in radiology of Nocardial pulmonary diseases. It can

present as pulmonary nodules, consolidations, cavitary masses,

pleural effusions, etc., making it difficult to be distinguished from

other infections (Traxler et al., 2022).

Nocardia infection is not commonly encountered in clinical

practice. Over a span of six years, from 2001 to 2006, a large
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teaching hospital in Miami recorded the incidence of Nocardia

cases. Among the 25 reported cases, 21 involved pulmonary

infections, with nine cases detected from sputum (Castro and

Espinoza, 2007). On average, less than four cases were identified

annually. Ercibengoa et al. (Ercibengoa et al., 2020) conducted a

multicenter analysis of Nocardia pneumonia in Spain, specifically

studying 55 cases from five hospitals between 2010 and 2016. The

average number of infections per hospital per year was less

than two.

The gold standard for diagnosing Nocardial pulmonary disease

is bacterial culture (Jiao et al., 2021). However, Nocardia has a slow

growth rate in culturing, most cultures become positive in 2-7 days,

but the duration must be extended to 2-3 weeks due to slow-

growing species (Rouzaud et al., 2018). In Figure 1, the conditions of

the bacterial culture from Day 1 to Day 6 are demonstrated, and the

Nocardia colonies are marked with bounding boxes. Note that the

proposed method does not include the step of bacterial culturing

and Figure 1 is provided merely to show Nocardia’s low growth rate.

Because of the slow growth rate, Nocardia infections are difficult to

be discovered in an early stage. Current laboratory diagnostic

methods for Nocardia include Matrix-Assisted Laser Desorption

Ionization-Time Of Flight (MALDI-TOF) (Carrasco et al., 2016),

real-time Polymerase Chain Reaction (PCR) (Wang et al., 2023b),

Next-Generation Sequencing (NGS) (Saubolle and Sussland, 2003),

etc. However, these methods are costly and require a high level of

skill from the operator, making them unsuitable for large-

scale screening.
B C

D E F

A

FIGURE 1

Images of the blood agar plate captured from Day 1 to Day 6 (A-F) during bacterial culture. Due to the low growth rate, Nocardia colonies were
indistinguishable in the first 3 days, leading to missed misdiagnosis. The cultivation conditions for this bacterial culture include aerobic conditions, 35
degrees Celsius, and a 5% concentration of carbon dioxide.
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One of the most commonly used method for Nocardia

screening is manual identification based on the morphology in

Gram-stained sputum smears under a microscope (Brown-Elliott

et al., 2006). However, the manual identification method suffers

from low efficiency and unreliability. Additionally, laboratory

technicians are usually unfamiliar with Nocardia due to its rarity,

resulting in missed diagnoses (Mehta and Shamoo, 2020).

In recent years, deep neural networks have been widely used in

various fields, including medical engineering (Anwar et al., 2018;

Boveiri et al., 2020; Kulkarni et al., 2021; Abdou, 2022;

Sarvamangala and Kulkarni, 2022). They have been proven to

have the advantages of reliability, efficiency and cost-effectiveness

compared to traditional methods. Specifically, in medical

engineering, they have been adopted for blood cell detection

(Liang et al., 2018; Acevedo et al., 2019), mycobacterium

tuberculosis identification (Xiong et al., 2018; Kuok et al., 2019),

and many other medical applications (Rahman et al., 2020;

Malhotra et al., 2022; Rho et al., 2022). However, neural networks

have never been adopted for Nocardia detection, which poses new

challenges: 1) the irregular morphology of Nocardia presents high

diversity, making it difficult for neural networks to identify; 2)

Nocardia infection is not commonly encountered in medical

practice, making it difficult to collect sufficient data for network

training; 3) the sputum specimens contain various cocci, bacilli,

fungi, white blood cells, epithelial cells, etc., making it difficult to

identify Nocardia instances. In the next section, we will illustrate

how to address these challenges and demonstrate the procedures of

the neural network-based Nocardia screening method.
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2 Materials and methods

This study was approved by the Ethical Committee of Tongde

Hospital of Zhejiang Province with approval number of 2023-077-

JY. The whole pipeline of the proposed Nocardia screening method

is depicted in Figure 2.
2.1 Materials

During the period from 2020 to 2023, we collected two

Nocardia strains obtained from sputum specimens from two

patients. The Nocardia strains were identified as Nocardia puris

andNocardia terpenica through 16S rRNA sequencing analysis. The

sputum smears from the patients were Gram-stained, and then

microscopic images of the smears were captured under an

OLYMPUS CX23 microscope with a magnification of 1000. The

images were captured using the cameras of two smartphones, Apple

iPhone 12 and OnePlus 10 Pro, and saved in color mode as JPEG

format. All the experiments related to neural networks were

conducted on a personal computer equipped with an Intel i7-

10700K CPU, 16 GB RAM and an NVIDIA GTX 2070 super

GPU with 8 GB VRAM.

2.1.1 Data diversity
In this section, we introduce the methods for enhancing the

diversity in both the foreground and background of the images.

According to our observation, the diversity of the foreground
FIGURE 2

An illustration of the pipeline of the proposed Nocardia screening method, which consists of three steps: (A) data acquisition, (B) data processing,
and (C) network training & screening. Note that the combined dataset contains both original and mixed images.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1270289
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fcimb.2023.1270289
depends primarily on the morphology of Nocardia, rather than

Nocardia strains. Therefore, it is effective to enhance it by increasing

the quantity of images. For the background, the Nocardia-positive

sputum specimens were mixed with new sputum specimens from

patients without Nocardia infection. As a result, a total of 10 mixed

sputum specimens were generated, including 2 cases of mucous

sputum, 2 cases of saliva sputum, 2 cases of blood sputum, and 4

cases of caseous sputum. With this mixture strategy, many new

types of bacteria were incorporated, significantly enhancing the

diversity of the image background.

2.1.2 Datasets
A total of 1721 images were captured in our study. Among

them, 797 images were identified as Nocardia positive, including

326 originating from the original sputum specimens and 471 from

the mixed ones. The remaining 924 images were identified as

Nocardia negative, including 766 from the original sputum

specimens and 158 from the mixed ones. The composition of

these images is also detailed in Table 1. These images made up

two datasets: the combined dataset containing all 1721 images and

the original dataset containing 1092 images captured from the

original sputum smears. For each dataset, all the images were

randomly divided into three sets: the training set (70%), the

validation set (15%), and the test set (15%). The same division

configuration was employed for both classification and detection.
2.2 Data processing

As depicted in the cropped image in Figure 2B, the pixels

outside the microscope field view provide irrelevant information,

making it reasonable to crop the image and retain only the content

within the field view. It is unwise to crop thousands of images

manually; therefore, we propose automatically cropping the images

with the OpenCV library (https://docs.opencv.org/3.4/d6/d00/

tutorial_py_root.html), as shown in Figure 3.

The principal idea of the algorithm is to detect an ellipse for the

bright circle and crop the image with its bounding box. Firstly, we

convert the image into grayscale. In normal cases, the pixel values of

the grayscale image are the weighted average of the RGB values.

However, we found that extracting the maximum values in the RGB

channels yields better performance. Secondly, we identify contours

and fit them to ellipses. Note that contours with few points or small

bounding boxes should be dropped. Due to the significant variation

in image brightness, using multiple thresholds for contour finding is
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necessary and crucial for success. Thirdly, the final ellipse is selected

based on the largest cropping metric value, where the cropping

metric is defined as the ratio of the length of the semi-minor axis to

that of the semi-major axis. Finally, we fill the region outside the

ellipse with black and crop the original image, preserving only the

content inside the bounding box. The algorithm’s pseudo code,

written in Python-style, is presented in Algorithm 1.

The results showed that more than 99% of the images in the

dataset were cropped correctly. After cropping, an average of 40.9%

of the pixels were removed, greatly enhancing the ratio of valid

pixels, and thereby improving the performance of the networks.

The cropped images were then annotated by three clinical

microbiology experts with more than 10 years of experience, using

an open-source annotation software named “labelImg” (https://

github.com/HumanSignal/labelImg). One of the experts annotated

all the sets as the ground truth, while the other two carefully reviewed

the annotation results to eliminate potential errors.When performing

annotation for detection, a rectangle was manually drawn on the

image for each Nocardia instance found in the image, as shown in the

annotated image in Figure 2B, and the meta-information of the

rectangles was stored in text files. After annotation, the detection

results could be easily converted to classification annotations.

Specifically, an image was classified as positive if it contained at

least Nocardia instance; otherwise, it was considered negative.
2.3 Network training

2.3.1 Network architecture
In the proposed Nocardia screening method, the network

architecture of YOLOv8 (You Only Look Once version 8)

(Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon and

Farhadi, 2018; Jiang et al., 2022; Wang et al., 2023a) was adopted for

Nocardia detection, namely, marking Nocardia instances with

bounding rectangles in the images. Unlike previous detection

networks, e.g., R-CNN (Girshick et al., 2014), Fast R-CNN

(Girshick, 2015), Faster R-CNN (Ren et al., 2015), and Mask R-

CNN (He et al., 2017), that perform multiple predictions for various

regions, YOLO performs only one prediction to get all bounding

boxes, significantly improving the training and inference efficiency.

Meanwhile, it can achieve comparable or even better detection

performance than previous methods. The network architecture of

YOLOv8 is complicated, and we depict its backbone in Figure 4. For

more details, we recommend referring to the homepage of YOLOv8

(https://ultralytics.com/yolov8).
TABLE 1 The composition of the datasets.

Subset original + original - mixed + mixed - total

train 218 520 331 109 1178

valid 55 126 75 28 284

test 53 120 65 21 259

total 326 766 471 158 1721
+, Nocardia positive; -, Nocardia negative.
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Fron
1 function cropImage(image, thresholdList):2 gray =

convertWithMaxValue(image)3 ellipses = []4 for

threshold in thresholdList:5 contours = findContours

(gray, threshold)6 contours = getValidContours

(contours)7 ellipses += [fitEllipse(contour) for

contour in contours]8 bestEllipse = getBestEllipse

(ellipses)9 fillBlackOutOfEllipse(image, bestEllipse)

10 boundingBox = getBoundingBox(bestEllipse)11

finalImage = cropWithBoundingBox(image, boundingBox)

12 return finalImage
Algorithm 1. The pseudo code for image cropping using OpenCV.

2.3.2 Data augmentation
To improve the performance of the neural network, data

augmentation was involved in the pipeline. We applied several

different image transformations to the images, including image

flipping, rotation, cropping and color changing, which significantly

improved the diversity and size of the dataset.
2.3.3 Pre-training
The adopted network can be divided into two functional parts,

one for feature extraction, and the other for detection. Researchers

found that the feature extraction part has a very strong

generalization ability, which can be shared among networks for

different tasks, whereas the latter part is to detect specific objects,

which should be retrained for each task. Therefore, we started our

training process by loading a neural network model which was pre-

trained on the large-scale COCO dataset (Lin et al., 2014), which

consists of 164k images. This pre-training skill imbues the trained

network with powerful feature extraction capabilities.
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2.3.4 Training
All the images were resized to 640 pixels for both width and

height before being used for training, validation, and testing. The

YOLO detection network was trained using Stochastic Gradient

Descent (SGD) (Bottou, 2010) with a momentum of 0.937 and a

batch size of 16. The training process was carried out within 300

epochs, and it would terminate earlier if the fitness didn’t increase

for 50 consecutive epochs (for example, see Figure 5). The fitness is

defined in the following formula, where mAP50 and mAP will be

introduced in Section 3.2. Other parameters were all kept the same

as YOLOv8 recommended. The training times were 5.6 and 7.0

hours on the original and combined datasets, respectively.

fitness = mAP50� 0:1 +mAP � 0:9
2.4 Evaluation

The performances of the trained networks were evaluated on

the test sets by comparing the predictions with the ground truth

annotation results. The evaluation metrics were accuracy,

sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), and F-Score, which are calculated with

the following formulas:

accuracy = (TP + TN)=(TP + TN + FP + FN)

sensitive = recall = TP=(TP + FN)

specif icity = TN=(TN + FP)

PPV = TP=(TP + NP)
FIGURE 3

The image cropping pipeline using OpenCV.
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FIGURE 4

The backbone of the YOLOv8 detection network.
FIGURE 5

The curve of fitness changing with epoch during the training process on the mixed dataset.
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NPV = NP=(TN + FN)

precision = TP=(TP + FP)

F − Score = 2� precision� recall=(precision + recall)

where TP, TN, FP, and FN are abbreviations for true positive,

true negative, false positive, and false negative, respectively.

3 Results

3.1 Classification

The primary goal of the proposed screening method is to classify

whether an image contains Nocardia. For comparison, we conducted

experiments with the YOLOv8 detection network (YOLO-det), the

YOLOv8 classification network (YOLO-cls), Faster R-CNN, and

manual annotation. Note that both YOLO-det and Faster R-CNN are

detection networks, but their detection results could be easily converted

to classification results. In our experiments, if at least one Nocardia

region was detected in an image with a sufficient confidence score, the

image would be classified as positive for Nocardia, and vice versa. The

distribution of confidence scores is shown in Figure 6. Manual

annotation was performed by two clinical microbiology experts, and

their average metrics were compared with the other methods.

The classification results are compared in Figures 7 and 8, and

detailed data are recorded in Table 2. YOLO-det achieved

accuracies of 98.3% and 97.3% on the original and combined

datasets, respectively, which were the highest among all the

methods on both datasets. The inference times are shown in

Figure 9, which demonstrates that the classification of YOLO-det

was 304 times faster than manual annotation.
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3.2 Detection

The secondary goal of the screening method is to detect

Nocardia instances within the images and display the detected

locations with bounding boxes, assisting doctors in confirming

the presence of Nocardia. The detection results for YOLO-det

and Faster R-CNN are visualized in Figure 10, and they appear

quite similar. To quantify the detection performance, we utilized

two metrics: mAP (mean Average Precision) and mAP50 (Lin et al.,

2014). These two metrics are both defined based on IoU

(intersection over union), which is a common metric measuring

the overlap between the predicted bounding box and the ground-

truth bounding box. mAP50 corresponds to the precision of

matched predictions, where a prediction is considered a match if

the IoU is not lower than a threshold of 50%. Similarly, mAP

computes the mean prediction with multiple thresholding values

ranging from 0.5 to 0.95 with a step size of 0.05. These two metrics

measure the quality of detection at different levels, with higher

values indicating better detection performance. In Table 3, the

results show that YOLO-det achieved higher mAP on both

datasets, higher mAP50 on the combined dataset, and nearly

identical mAP50 on the original dataset, demonstrating superior

detection performance over Faster R-CNN.
3.3 Model generalization

In this section, we assessed the generalization ability of the

neural networks under consideration. Each network was trained on

the training sets from both the original and combined datasets and

subsequently tested on the corresponding test set. As a result, we

obtained four different configurations: “o-o”, “o-c”, “c-o”, and “c-c”.
FIGURE 6

The distribution of confidence scores. Each label x along the horizontal axis represents a range from x-0.05 to x+0.05.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1270289
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fcimb.2023.1270289
FIGURE 8

Comparison of classification metrics on the combined dataset.
FIGURE 7

Comparison of classification metrics on the original dataset.
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Here, “o-c” indicates that the network was trained on the original

dataset and tested on the combined dataset, and similar conventions

apply to other configurations.

The classification accuracies for YOLO-det, YOLO-cls, and

Faster R-CNN based on these four configurations are illustrated

in Figure 11. By comparing the accuracies in “o-o” and “o-c”, a

substantial accuracy drop is observed for YOLO-cls, whereas the

accuracy drops are much slighter for both detection methods. This

comparison demonstrates that the detection methods exhibit

s ignificantly stronger general izat ion abi l i ty than the

classification method.

To validate the generalization ability among different Nocardia

strains, we conducted an additional experiment by applying the

model trained with two strains directly on a dataset containing a

new strain. 74 images were captured from two smears from two

patients, including 28 positives and 46 negatives. The Nocardia

strains in both smears were identified as Nocardia cyriacigeorgica.

Because of the differences in morphology, there was a certain

decrease in the confidence scores, so we lowered the thresholding
Frontiers in Cellular and Infection Microbiology 09
confidence score to 0.1. The results showed that 50% of the positives

and 100% of the negatives were correctly classified, yielding an

overall accuracy of 81.1%. This result was consistent with

experiences in the field of neural networks. Since the model had

not encountered instances of the new strain in the training set, it

might classify them as negatives, but it would not misclassify

negatives as positives. The results of this experiment indicated

that the model trained on two strains was able to detect certain

instances of a new strain, but with reduced accuracy. Therefore, the

model should be trained with more Nocardia strains before being

applied in medical practice.
3.4 Failure cases

In this section, we present a comprehensive analysis of all seven

failure cases corresponding to YOLO-det on the combined dataset,

including 3 false positives and 4 false negatives, as illustrated

in Figure 12.
TABLE 2 The classification metrics for 4 methods on the original and combined datasets.

Dataset Method Accuracy Sensitive (Recall) Specificity PPV NPV Precision F-Score

original

YOLO-det 98.3% 96.2% 99.2% 98.1% 98.3% 98.1% 97.1%

YOLO-cls 97.7% 92.5% 100.0% 100.0% 96.8% 100.0% 96.1%

Faster
R-CNN

93.6% 94.3% 93.3% 86.2% 97.4% 86.2% 90.1%

manual annotation 94.5% 94.3% 94.6% 89.1% 97.4% 88.5% 91.3%

combined

YOLO-det 97.3% 96.6% 97.9% 97.4% 97.2% 97.4% 97.0%

YOLO-cls 89.2% 83.9% 93.6% 91.7% 87.4% 91.7% 87.6%

Faster
R-CNN

95.0% 95.8% 94.3% 93.4% 96.4% 93.4% 94.6%

manual annotation 94.4% 93.2% 95.4% 94.5% 94.4% 94.4% 93.8%
fro
The bold values show the results of the proposed method (YOLO-det).
FIGURE 9

Logarithmic classification times for four methods.
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For the false positives, in image (A), the morphology of the

detected bacteria is quite similar to Nocardia, resulting in

misclassification. In image (B), the confidence score from the

network output was on the boundary between positive and

negative, resulting in ambiguous classification. However, image

(C) presents a case of clear misclassification. Among the 4 false

negatives, the Nocardia instances are challenging to identify because

their appearances are difficult to distinguish from the background.

As is common in the field of artificial intelligence, accuracy could be

further improved by training networks on a larger and more diverse

dataset, which we plan to explore in the future.
B C D

E F G H

I J K L

M N O P

A

FIGURE 10

Visualization of the detection results of YOLO-det (A-H) and Faster R-CNN (I-P).
TABLE 3 The detection metrics for YOLO-det and Faster R-CNN on the
original and combined datasets.

Metric Dataset YOLO-det Faster R-CNN

mAP
original 0.425 0.385

combined 0.469 0.462

mAP50
original 0.780 0.781

combined 0.841 0.817
The bold values show the results of the proposed method (YOLO-det).
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4 Discussion

In this study, we present a novel Nocardia screening method

based on the YOLO detection network. To the best of our

knowledge, this is the first time neural networks have been

applied for Nocardia detection in the field of laboratory testing.

The experiments indicated outstanding accuracies of 98.3% and

97.3% on the original and combined datasets, respectively, thereby

demonstrating the remarkable effectiveness of the screening

method. Notably, the accuracies also surpassed those of manual
Frontiers in Cellular and Infection Microbiology 11
annotations in the experiments, as illustrated in Figures 7 and 8.

Beyond the advantage of classification accuracy, the inference time

of the network-based method was two magnitudes less than manual

annotation, demonstrating the high efficiency of the screening

method. Compared to existing laboratory testing methods, such

as MALDI-TOF, PCR, and NGS, the proposed network-based

method has the advantages of both efficiency and low cost. In

conclusion, taking effectiveness, efficiency, and cost-effectiveness

into consideration, the neural network-based screening method

presents substantial advantages in Nocardia screening over other
FIGURE 11

Accuracy comparisons for three methods on different training and testing datasets. “o” stands for the “original dataset”, and “c” stands for the
“combined dataset”. The configuration of “o-c” stands for training on the original dataset and testing on the combined dataset. Other configurations
are defined similarly.
B C

D E F G

A

FIGURE 12

Failure cases of YOLO-det on the combined dataset. The first three cases (A-C) are false positives, while the others (D-G) are false negatives.
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methods. Its potential to reduce the missed diagnosis rate and

improve timeliness can contribute to improving the overall

cure rate.

Although most previous works have adopted neural

classification networks to determine whether a specific pathogen

was present in an image (Zhang et al., 2019; Cai et al., 2020; Kang

et al., 2020; Khan et al., 2021; Momeny et al., 2022; Poomrittigul

et al., 2022; Trivedi et al., 2023), we propose that it can achieve

comparable or even better performance to adopt a detection

network, rather than a classification network, in certain scenarios.

This assertion is based on three reasons.

1) In the “Classification” section, the results reveal that YOLO-

det achieved the highest accuracies among all the methods on

both datasets.

2) Beyond accuracy, model generalization ability is a crucial

metric. It is well-known that a neural network trained on one dataset

may perform poorly on other datasets because of the so called

“domain gap” phenomenon. As demonstrated in the “Model

Generalization” section, when YOLO-cls was trained on the

original dataset but tested on the combined dataset, the accuracy

decreased significantly to 74.1%, much lower than those of other

configurations. This phenomenon suggests that this network learned

specific knowledge from the original dataset, which could not be

applied to new images outside the dataset. In contrast, the detection

networks exhibited much stronger generalization abilities, making

them more practical for Nocardia screening. The enhanced

generalization ability could be attributed to their focus on

informative parts with different locations and scales, observing a

wider range of variances and, consequently, stronger robustness.

3) The detection networks not only determine whether the

input image contains Nocardia instances, but also locate them to

assist doctors in diagnosis.

Besides YOLO-det, we also tested Faster R-CNN for comparison.

In terms of classification accuracy, YOLO-det outperformed Faster

R-CNN on both the original and combined datasets. For detection

performances, among all the 4 configurations, YOLO-det achieved

higher metric values in 3 configurations and nearly identical metric

values in the 4th configuration. Overall, YOLO-det showed better

results than Faster R-CNN in both classification and detection tasks

on our datasets. Nevertheless, one network may not achieve the best

performances in all scenarios, and other network architectures (Ren

et al., 2015; Liu et al., 2016; Lin et al., 2017; Carion et al., 2020) could

also be considered to use, depending on the application scenarios.

Although Nocardia infection is uncommon in patients, we made

efforts to capture plenty of images, ensuring sufficient diversity in the

morphology of Nocardia instances. Additionally, by mixing the

original sputum specimens with new ones from patients without

Nocardia infection, the diversity of the background pathogens was

significantly enhanced. In Figure 11, we can see that the accuracies of

the group “c-c” were significantly higher than those of the group of

“o-c”, demonstrating the effectiveness of the mixture strategy.

This paper acknowledges several limitations that we plan to

address in future research. Firstly, different Nocardia strains exhibit

slight variations in morphography. Our neural network model was

trained with only two of them, and it did not generalize well to other

strains, leading to decreased accuracy. It is recommended to train
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models on larger datasets that include more strains in order to

enhance the models’ generalization ability before applying them in

medical practice. Secondly, the quantity of the available Nocardia

sputum specimens was limited. Although we alleviated the

limitation by capturing plenty of images and introducing a

mixture strategy, it is possible to achieve more conclusive results

with a larger number of sputum specimens with Nocardia infection.

Thirdly, we have not compared YOLO-det with methods other than

YOLO-cls, Faster R-CNN and manual annotation. It could be more

comprehensive if more neural network architectures were tested for

comparison. Lastly, the proposed method should be adopted for

screening purposes to reduce missed diagnosis rate, and the results

should be further tested with diagnosis techniques before

guiding clinicians.

While our study focused on Nocardia screening, the proposed

methods, strategies, and conclusions can be extended to other

studies. For the screening of pathogens other than Nocardia,

neural network-based methods could be applied, due to their

demonstrated effectiveness, efficiency, and cost-effectiveness. For a

classification task, a detection network could also be considered,

which may have higher performance and stronger generalization

ability. Additionally, it is effective in improving data diversity by

mixing specimens with new ones without the specific pathogens,

ultimately enhancing the robustness of the trained networks.

5 Conclusion

In this paper, we propose a neural network-based Nocardia

screening method. This method adopts the YOLOv8 detection

network to identify Nocardia instances in images which are

captured from Gram-stained sputum smears under a microscope.

The results demonstrates that the proposed method achieves high

accuracies of 98.3% and 97.3% on the original and combined datasets,

respectively. Our study also reveals that detection networks may

outperform classification networks in terms of accuracy and

generalization ability in certain scenarios, which could be extended

to studies beyond Nocardia screening. Additionally, we also prove

that a mixture strategy can effectively enhance data diversity, leading

to improved performance of the trained networks.
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