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Performance of mNGS in
bronchoalveolar lavage fluid for
the diagnosis of invasive
pulmonary aspergillosis in
non-neutropenic patients

Ning Zhu †, Daibing Zhou †, Wanfeng Xiong,
Xiujuan Zhang and Shengqing Li*

Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University,
Shanghai, China
The diagnosis of invasive pulmonary aspergillosis (IPA) diseases in non-

neutropenic patients remains challenging. It is essential to develop optimal

non-invasive or minimally invasive detection methods for the rapid and reliable

diagnosis of IPA. Metagenomic next-generation sequencing (mNGS) in

bronchoalveolar lavage fluid (BALF) can be a valuable tool for identifying the

microorganism. Our study aims to evaluate the performance of mNGS in BALF in

suspected IPA patients and compare it with other detection tests, including

serum/BALF galactomannan antigen (GM) and traditional microbiological tests

(BALF fungal culture and smear and lung biopsy histopathology). Ninety-four

patients with suspicion of IPA were finally enrolled in our study. Thirty-nine

patients were diagnosed with IPA, and 55 patients were non-IPA. There was

significance between the IPA and non-IPA groups, such as BALF GM (P < 0.001),

history of glucocorticoid use (P = 0.004), and pulmonary comorbidities

(P = 0.002), as well as no significance of the other demographic data including

age, sex, BMI, history of cigarette, blood GM assay, T-SPOT.TB, and NEUT#/

LYMPH#. The sensitivity of the BALF mNGS was 92.31%, which was higher than

that of the traditional tests or the GM assays. The specificity of BALF mNGS was

92.73%, which was relatively similar to that of the traditional tests. The AUC of

BALF mNGS was 0.925, which presented an excellent performance compared

with other traditional tests or GM assays. Our study demonstrated the important

role of BALF detection by the mNGS platform for pathogen identification in IPA

patients with non-neutropenic states, which may provide an optimal way to

diagnose suspected IPA disease.

KEYWORDS

invasive pulmonary aspergillosis, traditional tests, metagenomic next-generation
sequencing, diagnosis, bronchoalveolar lavage fluid
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Introduction

Aspergillosis may cause a spectrum of pulmonary diseases

depending on the characteristics of the individual host, including

invasive pulmonary aspergillosis (IPA), chronic pulmonary

aspergillosis, and allergic bronchopulmonary aspergillosis (Gao

and Soubani, 2019). Approximately 250,000 cases of invasive

aspergillosis occur annually with a higher mortality (Cornely

et al., 2017; Hoenigl et al., 2018). IPA mainly occurs in

neutropenic patients and usually increases severe infection. Due

to the extensive use of antibiotics, corticosteroids, and

immunosuppressants, the prevalence of IPA in patients with non-

neutropenia and underlying respiratory disorders, including COPD

and interstitial lung disease, has increased in recent years (Dobias

et al., 2018; Dai et al., 2021). Thus, the early diagnosis and timely

treatment of IPA is a unique challenge.

Although the gold diagnostic standard of IPA is the positive culture

of Aspergillus spp. from the biopsy species (Kousha et al., 2011), the

sensitivity of the fungal smear and the lagof the fungal culture are limited

for early pulmonary aspergillosis diagnosis. Meanwhile, patients with

suspected IPA often have a pulmonary structural disease, severe

thrombocytopenia, and severe clinical conditions. The risk of

histopathological examination through CT-guided percutaneous or

bronchoscopy biopsy is high or intolerable. Serum and

bronchoalveolar lavage fluid (BALF) galactomannan antigen (GM)

tests are recognized as a biomarker of Aspergillus, widely applied in

aspergillosis diagnosis. The GM test is easily affected by antifungal

treatment and neutrophil count, leading to a false negative. Therefore,

it is essential to develop optimal non-invasive or minimally invasive

detection markers, allowing the rapid and reliable diagnosis of IPA.

Metagenomic next-generation sequencing (mNGS) is a new

technology for detecting microorganisms that can independently

sequence thousands to billions of DNA fragments simultaneously.

Compared with traditional tests, mNGS is fast and accurate and has

high throughput. mNGS can detect pathological organisms from

specimens such as BALF (Li et al., 2020; Zhu et al., 2021), cavity

effusion, cerebrospinal fluid, urine, and blood (Ai et al., 2018; Xing

et al., 2020). mNGS has been performed in the microbial detection

of infectious diseases, including pneumonia (Schlaberg et al., 2017;

Huang et al., 2020), bloodstream infection (Blauwkamp et al., 2019),

meningitis, and encephalitis (Wilson et al., 2019; Xing et al., 2020;

Ramchandar et al., 2021). The application of mNGS shows

immense advantages over traditional detection in identifying

pathogens (Zinter et al., 2019; Gu et al., 2021; Zhu et al., 2021).

However, there are few studies on the diagnostic value of mNGS in

non-neutropenia patients with IPA. In this study, we explored the

diagnostic accuracy of mNGS in BALF to diagnose suspected IPA in

non-neutropenic patients.
Materials and methods

Subject

All patients with suspected pulmonary aspergillosis at Huashan

Hospital, Fudan University were enrolled and retrospectively
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investigated from 1 January 2018 to 30 August 2021. The Ethics

Committee of Huashan Hospital, Fudan University approved this

study, and informed written consent was obtained from each

patient’s guardian. The inclusion criteria of suspected IPA were as

follows (at least one): a) immunocompromised patients, b)

abnormal chest radiographic images suggestive of pulmonary

aspergillosis, c) identification of Aspergillus genera or species in

sputum culture or smear-positive, and d) positive GM test in serum

or BALF. All patients were diagnosed and excluded from invasive

pulmonary aspergillosis based on the European Organization for

the Treatment of Cancer/Mycoses Study Group (EORTC/MSG)

guideline (Donnelly et al., 2020). Patients were recognized to have a

non-IPA disease if the lesion did not absorb following a course of

regular antifungals for 3 months. Patients were excluded if clinical

data or informed written consent could not be obtained.
BALF and lung biopsy specimen

All patients underwent bronchoscopy or lung puncture biopsy,

and samples collected from the lesion sites were sent to pathology

and culture, respectively. Bronchoscopic alveolar lavage was

performed on each patient. If tolerable, histological biopsy in the

lung lesions was performed through bronchoscopy or CT-guided

percutaneous lung biopsy. Each specimen was divided into two

parts for mNGS analysis and conventional tests. All enrolled

patients signed an informed consent before undergoing

bronchoscopy tests or lung punctures. BALF was obtained

through bronchoscopy from the lung lesions according to the

standard procedure. Briefly, 60–100 ml saline was injected into

the segmental bronchus and withdrawn after a brief wash. An

average of 20 ml of BALF samples was divided into two parts and

then separately sent to the BGI Genomics (Shenzhen, China) for

mNGS analysis and conventional microbiological tests like

pathogenic smear and culture. Similarly, lung biopsy specimens

were obtained by CT-guided percutaneous fine needle aspiration

lung biopsy and were tested by pathology and smear/culture tests.

The fungal smear and culture of either BALF or lung biopsy were

classified as conventional tests as well as fungal histopathology. If

one of them was positive, the patient was considered positive for

fungal infection, and no positive results were deemed to be negative.
Metagenomic next-generation sequencing
and bioinformatics analyses

The sampling and detection process is shown in Figure S1.

According to the manufacturer’s instructions, DNA was extracted

from all samples using a QIAamp® UCP Pathogen DNA Kit

(Qiagen, Germantown, MD, USA) following the manufacturer’s

instructions. Human DNA was removed using Benzonase (Qiagen,

Germantown, MD, USA) and Tween 20 (Sigma, St. Louis, MO,

USA) (Amar et al., 2021). Total RNA was extracted with a

QIAamp® Viral RNA Kit (Qiagen, Germantown, MD, USA), and

ribosomal RNA was removed by a Ribo-Zero rRNA Removal Kit

(Illumina, San Diego, CA, USA). cDNA was generated using reverse
frontiersin.org
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transcriptase and dNTPs (Thermo Fisher, MA, USA). Libraries of

DNA and cDNA samples were constructed using a Nextera XT

DNA Library Prep Kit (Illumina, San Diego, CA, USA) (Miller et al.,

2019). The quality of the library was assessed by a Qubit dsDNA HS

Assay kit followed by a High Sensitivity DNA kit (Agilent, Santa

Clara, CA, USA) on an Agilent 2100 Bioanalyzer. Library pools

were then loaded onto an Illumina NextSeq CN500 sequencer for 75

cycles of single-end sequencing to generate approximately 20

million reads for each library.

Trimmomatic was used to remove low-quality reads, adapter

contamination, duplicate reads, and those shorter than 50 bp.

Kcomplexity removed low-complexity reads with default parameters.

Human sequence data were identified and excluded by mapping to a

human reference genome (hg38) using the Burrows–Wheeler Aligner

software.We designed a set of criteria similar to the National Center for

Biotechnology Information (NCBI) criteria for selecting the

representative assembly for microorganisms (bacteria, viruses, fungi,

protozoa, and othermulticellular eukaryotic pathogens) from theNCBI

Nucleotide and Genome databases (https://www.ncbi.nlm.nih.gov/

assembly/help/anomnotrefseq/, Accessed March 2021). Pathogen lists

were selected according to three references: 1) Johns Hopkins ABX

Guide (https://www.hopkinsguides.com/hopkins/index/

Johns_Hopkins_ABX_Guide/Pathogens), 2) Manual of Clinical

Microbiology, and 3) clinical case reports or research articles

published in current peer-reviewed journals (Fiorini et al., 2017). The

final database consisted of approximately 13,000 genomes. Microbial

readswerealignedto thedatabasewithSNAPv1.0beta.18.Virus-positive

detection results (DNA or RNA viruses) were defined as covering three

or more non-overlapping regions on the genome. A positive detection

was reported for a given species or genus if the reads per million (RPM)

ratio or RPM-r was ≥5, where the RPM-r was defined as the RPMsample/

RPMNC (i.e., the RPM corresponding to a given species or genus in the

clinical sample divided by the RPM in the NC/negative control) (Miller

et al., 2019). In addition, to minimize cross-species misalignments

among closely related microorganisms, we penalized (reduced) the

RPM of microorganisms sharing a genus or family designation if the

species or genus appeared innon-template controls.Apenalty of 5%was

used for the species (Gu et al., 2021).
GM antigen assay

The AspergillusGM antigen assay in BALF and peripheral blood

was quantified using a Platelia Aspergillus double sandwich enzyme-

linked immunosorbent assay kit (Bio-Rad, USA). The optical

density index (ODI) of GM was calculated. ODI in serum or

BALF refers to the sample/standard value according to the

manufacturer’s protocol. The ODI of GM <0.5 is negative, and

≥0.5 is regarded as positive. In this study, we defined the ODI

≥0.717 as the optimal cutoff value.
Statistical analysis

The enrolledpatientsweredivided into IPAandnon-IPA infection

groups according to the final clinical diagnosis and microbiological
Frontiers in Cellular and Infection Microbiology 03
etiology. The Student’s t-test and chi-squared test or Fisher’s exact test

were used to identify group differences. Continuous variables were

reported asmean and standarddeviation (SD) and calculated using the

Student’s t-test. To determine the sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV), 2 × 2

contingency tables were derived. Comparison of sensitivity, specificity,

AUC, and ROC curve analysis between groups was performed by the

MedCalc software (MedCalc Software Ltd: Ostend, Belgium). The

other statistical analyses were performed using SPSS 22.0 (IBMCorp.,

Armonk,NY,USA).All statistics have been reported as absolute values

with their 95% confidence interval (95% CI). A two-sided P-value less

than 0.05 was considered to be statistically significant.
Results

Patient demographics

One hundred and seven patients with suspected IPA were

initially enrolled in our study from 1 January 2018 to 30 August

2021. Eight patients were excluded for refusing to undergo

bronchoscopy to obtain BALF, two for refusing to publish their

clinical data, and three for missing clinical data. Ninety-four

patients were finally enrolled in this study. Thirty-nine patients

were diagnosed with IPA, consisting of 4 proven patients, 33

probable patients, and 2 possible patients. The classification of

Aspergillus sp. in IPA patients included 29 Aspergillus fumigatus, 4

Aspergillus flavus, 1 Aspergillus terricola, 1 Aspergillus nidulans, and

4 unclassified-type Aspergillus spp. Fifty-five patients were definitely

diagnosed with non-IPA (Figure 1A).

The primary characteristics of all the eligible patients are presented

in Table 1. There was no significant difference between the IPA and

non-IPA groups in most of the demographic data [including gender,

age, BMI, serum GM, T-SPOT.TB assay, and the ratio of neutrophil

(NEUT#)/lymphocyte (LYMPH#)]. However, we observed that

patients with a history of cigarette smoking, glucocorticoid usage,

and underlying pulmonary comorbidities were preferential to suffer

from IPA (P < 0.01). Patients who presented with underlying

pulmonary diseases (23/33), especially COPD, pulmonary

tuberculosis, lung cancer, etc., were more susceptible to IPA (Table

S1). Among the 39 IPA patients, 43.59% of patients were positive both

in the mNGS and traditional tests, 5.13% were negative both in the

mNGS and traditional tests, 48.72% were positive only in the mNGS,

and 2.56% were positive only in the traditional test (Figure 1B). We

further analyzed the number of unique reads in themNGSbetween the

IPA and non-IPA groups. The number of unique reads was

significantly higher in the IPA group than that in the non-IPA group

(P=0.0043) (Figure1C).Comparedwith thenon-IPAgroup,we found

no significance of GM in the serum between the IPA and non-IPA

groups (P= 0.436).However, BALFGMwas significantly higher in the

IPA group (1.01 ± 0.81 vs. 0.47 ± 0.46; P<0.001), which indicated that

the BALF GM assay might be an optional diagnostic assay for IPA

(Figure 2). Although imaging findings were not prominent, including

multiple nodules, patchy shadows, emphysema, and bullae caused by

to the non-IPA infection, cavities and bronchiectasis were most
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prevalent in IPA infection based on a retrospective review of

radiological images (Table S2).
Comparison of sensitivity and specificity
in serum/BALF GM, traditional test, and
BALF mNGS

An optical density (OD) index of ≥0.5 in the serum GM assay

(serum GM 0.5) is recommended for the suspected IPA diagnosis.

As shown in Table 2, when the OD ratio cutoff value of the GM test

in the serum was set to 0.5, the sensitivity, specificity, PPV, and

NPV were 17.95% (95% CI: 7.50, 33.50), 85.45% (95% CI: 73.30,

93.50), 46.67% (95% CI: 25.70, 68.90), and 59.49% (95% CI: 55.00,

63.80), respectively. Then, we evaluated the diagnostic efficiency of

the traditional tests, and the sensitivity, specificity, PPV, and NPV

were 46.15% (95% CI: 30.10, 62.80), 98.18% (95% CI: 90.30, 100.0),

94.70% (95% CI: 71.50, 99.20), 72.00% (95% CI: 65.70, 77.50),

respectively. Furthermore, it showed higher sensitivity and
Frontiers in Cellular and Infection Microbiology 04
specificity when compared with those of serum GM [P = 0.019,

95% CI (8.17, 48.24); P = 0.016, 95% CI (3.92, 21.54)] (Figure 3).

Because the concentrationofGMinBALFmaybehigher than that

in the serum,we further evaluated thediagnostic valueofBALFGMfor

IPA.When the threshold value of theGMassaywas 0.5, the sensitivity,

specificity, PPV, and NPV of BALF GM were 66.67% (95% CI: 49.80,

80.90), 74.55% (95%CI: 61.0, 85.30), 65.0% (95%CI: 52.90, 75.50), and

75.90% (95% CI: 66.30, 83.50), respectively (Table 2). These results

showed that the BALF GM assay might have a higher diagnostic

efficiency of IPA than the serum GM or traditional tests.

Our study found that the optimal cutoff value in BALF GM

obtained was 0.717 by ROC (Figure 4). When the cutoff value

reached 0.717, the sensitivity, specificity, PPV, and NPV were

66.67% (95% CI: 49.80, 80.90), 85.45% (95% CI: 73.30, 93.50),

76.50% (95% CI: 62.30, 86.50), and 78.30% (95% CI: 69.60, 85.10),

respectively (Table 2). As presented in Figure 3, although there was no

significant difference between the sensitivity of the two BALF GM

levels (P = 1.00), the specificity of BALF GM (≥0.717) significantly

increased [P = 0.031, 95% CI (2.67, 19.15)]. It suggested that when the
B C

A

FIGURE 1

Study workflow and data analysis. (A) Schedule of all enrolled patients: 107 suspected patients were initially enrolled in this retrospective study, and
94 patients were finally included in the analysis. Fifty-five patients were diagnosed as non-invasive pulmonary aspergillosis (IPA), and 39 patients
were diagnosed as IPA. (B) Concordance between metagenomic next-generation sequencing (mNGS) and traditional detection methods in the
diagnosis of IPA. The pie chart shows the positive rate of mNGS and traditional detection methods. Among the 39 IPA patients, 43.59% were positive
for both mNGS and traditional tests, and 5.13% were negative for mNGS and traditional tests. Meanwhile, only mNGS was positive in 48.72% of
patients, and 2.56% were positive by traditional test methods. (C) Comparison of the number of unique reads between the IPA group and the non-
IPA group. The number of unique reads was significantly higher in the IPA group than that in the non-IPA group.
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cutoff value increased from 0.5 to 0.717, BALF GM assays could

significantly reduce the false-positive rate. Similarly, the sensitivity of

BALF GM (≥0.717) was similar to that of traditional tests [P = 0.115,

95% CI (−1.02, 42.05)], but the specificity of BALF GM (≥0.717) was

significantly higher [P = 0.039, 95% CI (2.58, 22.88)].
Performance of mNGS in BALF
outperforming the traditional test
and GM assay

As provided in Table 2, the sensitivity, specificity, PPV, and

NPV of BALF mNGS were 92.31% (95% CI: 79.10, 98.40), 92.73%
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(95% CI: 82.40, 98.00), 90.0% (95% CI: 77.70, 95.90), and 94.40%

(95% CI: 85.10, 98.10). The ROC curves also evaluated the

diagnostic accuracy of these several detection assays. The ROC

curves of the GM assay, traditional test, and mNGS are shown in

Figure 3. When the cutoff value was set to 0.5, the AUC of serum

GM was 0.517, with a 95% confidence index (0.412, 0.621). The

AUC of BALF GM (≥0.5) was 0.706 (95% CI: 0.603, 0.796), which

was much higher than the AUC of serum GM. Meanwhile, it was

pretty similar to the AUC of the traditional test (0.722, 95% CI:

0.620, 0.809), without significant difference (P = 0.803). When the

cutoff value reached up to 0.717, the ROC curves showed the

superiority of the diagnostic accuracy of BALF GM (≥0.717) to be

significantly increased (0.761, 95% CI: 0.662, 0.843). Furthermore,
TABLE 1 Baseline characteristics of IPA and non-IPA patients.

Characteristic N IPA Non-IPA P-value

No. of patients 94 39 55

Age (years) 57.46 ± 15.52 56.47 ± 15.00 0.757

Sex, n (%) 0.207

Male 53 19 (48.72) 34 (61.82)

Female 41 20 (51.28) 21 (38.18)

BMI 22.42 ± 3.50 22.77 ± 2.99 0.597

Smoking history (≥5 years)

Male 53 0.039

Yes 14 17

No 5 17

Female 41 >0.99

Yes 1 1

No 19 20

Serum GM 0.35 ± 0.33 0.30 ± 0.16 0.436

BALF GM 1.01 ± 0.81 0.47 ± 0.46 <0.001

T-SPOT.TB 0.86

Positive 25 10 15

Negative 69 29 40

Glucocorticoid usage
(≥3 weeks)

0.004

Yes 20 14 6

No 74 25 49

Pulmonary disease 0.002

Yes 47 27 20

No 47 12 35

NEUT#/LYMPH#
(range 0.9~3.1)

0.864

≥3.1 40 17 23

≥0.9, <3.1 54 22 32
fro
a, Independent-samples t-test; b, chi-squared test. BMI, Body Mass Index; NEUT, Neutrophils; LYMPH, Lymphocyte.
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the AUC of BALF mNGS was 0.925 (95% CI: 0.852, 0.969),

significantly higher than the other assays. It indicated that the

diagnostic accuracy of BALF mNGS for suspected IPA was

significantly higher than the other diagnostic assays (Figure 5).
Frontiers in Cellular and Infection Microbiology 06
Discussion

Early recognition and timely diagnosis are crucial to improve

the clinical outcome of patients with IPA. The application of non-
TABLE 2 Diagnostic performance of traditional tests, serum/BALF GM, and mNGS in the diagnosis of suspected IPA.

IPA
Non-
IPA

Sensitivity%
(95% CI)

Specificity%
(95% CI)

PPV% (95%
CI)

NPV% (95%
CI)

Youden
index

P-
value

Serum GM
(≥0.50)

17.95 (7.50, 33.50) 85.45 (73.30, 93.50)
46.67

(25.70, 68.90)
59.49

(55.0, 63.80)
0.034 0.665

Yes 7 8

No 32 47

Traditional
tests

46.15 (30.10, 62.80) 98.18 (90.30, 100.0)
94.70

(71.50, 99.20)
72.0

(65.70, 77.50)
0.443 <0.001

Yes 18 1

No 21 54

BALF GM
(≥0.50)

66.67 (49.80, 80.90) 74.55 (61.0, 85.30)
65.0

(52.90, 75.50)
75.90

(66.30, 83.50)
0.412 <0.001

Yes 26 14

No 13 41

BALF GM
(≥0.717)

66.67 (49.80, 80.90) 85.45 (73.30, 93.50)
76.50

(62.30, 86.50)
78.30

(69.60, 85.10)
0.521 <0.001

Yes 26 8

No 13 47

BALF mNGS 92.31 (79.10, 98.40) 92.73 (82.40, 98.00)
90.0

(77.70, 95.90)
94.40

(85.10, 98.10)
0.850 <0.001

Yes 36 4

No 3 51
fron
FIGURE 2

Comparison of the galactomannan antigen (GM) levels between the IPA group and the non-IPA group. Compared with the BALF GM levels in the
non-IPA group, the BALF GM levels were significantly higher. However, the two groups had no significant difference in serum GM levels.
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invasive biochemical markers, including serum/BAL fungal cell wall

antigens, GM, b-D glucan, and Aspergillus polymerase chain

reaction (PCR), could provide options for the identification of

pulmonary Aspergillus infection (Boch et al., 2018; Hage et al.,

2019; Haydour et al., 2019; Bassetti et al., 2020). Previous studies

found that the BALF GM test is more efficient for IPA than the

serum GM test (Meersseman et al., 2008; Jenks et al., 2020; Lai et al.,

2020). A study revealed that the sensitivity and specificity of the

BALF GM test were only 88% and 87%, respectively, when the

cutoff value of the GM test was 0.5 in patients with non-granulocyte

deficiency. In comparison, the sensitivity of the serum GM test was

only 42% (Meersseman et al., 2008). In our study, we revealed that

the sensitivity and specificity of BALF GM (≥0.717) could reach up

to 66.67% and 85.45%, respectively, and the AUC is 0.761, which

was quite in accordance with other previous studies (Meersseman

et al., 2008; Zhou et al., 2017; Lai et al., 2020). However, antifungal

treatment and neutrophil counts easily affect the GM test. It might

cause false-negative results, especially in non-neutropenic patients.

So, it could not significantly improve the diagnostic accuracy

for aspergillosis.

A positive culture of Aspergillus in biopsy was recommended for

the final diagnosis of pulmonary Aspergillus infection (El-Baba et al.,

2020). However, relying on culture to diagnose a fungal infection
Frontiers in Cellular and Infection Microbiology 07
might lead to a poor outcome due to its limited sensitivity and false

positivity. BALF and lung biopsy are mainly examined in suspected

IPA infection (Nikbakhsh et al., 2015; Li et al., 2018; Khan and

Aladab, 2020; Luo et al., 2020; Yang et al., 2021). In addition, patients

with suspected IPA often have lung structural damage, coagulation

disorders, and severe clinical manifestation. Lung biopsy easily leads

to bleeding or pneumothorax, which is likely life-threatening. BALF

was the optimal specimen for detecting Aspergillus spp. in our study.

mNGS has been widely used in detecting microorganisms for

infectious diseases. Unlike traditional tests, mNGS allows thousands

to billions of DNA fragments to be independently sequenced

simultaneously and is not influenced by genomic mutations or

diversity (Filkins et al., 2020). A study indicated that mNGS could

identify at least one microbial species in nearly 89% of cases of

pulmonary infection and present positive pathogenic results in

94.49% of specimens in pulmonary infection patients who were

negative by traditional tests (Huang et al., 2020). However, for 106

patients with suspected pulmonary fungal infection, lung biopsy

mNGS and BALF mNGS presented no significance in sensitivity

and specificity (Yang et al., 2021). BALF mNGS is still preferred to

lung biopsy mNGS by comprehensive risk assessment. mNGS

provided specific sequencing copies of all microorganisms,

including bacterium, fungi, tuberculosis, Mycoplasma, chlamydia,
FIGURE 4

Comparative analysis of different assays by ROC. ROC curves evaluated the diagnostic efficiency of these several detection assays. The AUC of BALF
mNGS was 0.925 (95% CI: 0.852, 0.969), significantly higher than the other assays.
FIGURE 3

Comparison of the sensitivity and specificity among different diagnostic methods for suspected IPA. P1 and P2 represent the comparative analysis of
sensitivity and specificity between two special groups, respectively.
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and DNA viruses (Gu et al., 2019; Chen et al., 2020; Liu D. et al., 2021;

Zhu et al., 2021), and identified additional pathogens of hematologic

patients with sepsis (Liu WD. et al., 2021). It has a potential role in

non-reported and emerging pathogens (Ngoi et al., 2016; Casto et al.,

2019; Carbo et al., 2021). An mNGS study reported a typical

pathogen infection, which still identified no noticeable pathogens

by traditional methods during 2 years (Thoendel et al., 2017). Our

previous study showed that BALF- or lung biopsy-based mNGS

could improve TB infection’s diagnostic accuracy for sputum-scarce

or smear-negative patients (Zhu et al., 2021). mNGS detection was

recommended as follows (Filkins et al., 2020): i) patients with

suspected unculturable and atypical infection, ii) acquired antibiotic

exposure or persistent immunosuppression, iii) negative results by

conventional methods, and iv) patients with severe infectious diseases

or septic shock. Interestingly, the platform of mNGS detection of lung

biopsy could be applied to examine cancer and pathogens based on

Illumina sequencing for patients with abnormal radiological images,

and the pipeline provided a neophyte perspective toward the mNGS

method (Guo et al., 2021).

The application of mNGS in immunosuppressive patients with

severe community-acquired pneumonia and transplant infection

could be advantageous in detecting mixed pathogenic infections

and guiding decisions on antibiotic prescription (Young et al., 2019;

Sun et al., 2021). However, the value of mNGS in the diagnosis of

IPA is still less explored, especially in non-neutropenic patients. In

our study, we revealed that the sensitivity of BALF mNGS was

92.31% for diagnosing IPA in non-neutropenic patients,

significantly higher than other detection assays. The experimental

principle of mNGS could easily explain it. The specificity of BALF

mNGS was equivalent to conventional culture. The AUC of BALF

mNGS was 0.925. These results indicated that BALF mNGS could

have higher diagnostic accuracy than those of several other assays.

The major advantage of mNGS is its wide detection range and

precise and timely microbial diagnoses (Langelier et al., 2018; Wilson
Frontiers in Cellular and Infection Microbiology 08
et al., 2019), presenting a higher diagnostic sensitivity and specificity

(Li et al., 2020). Despite the encouraging results of our study, there are

still some limitations in our study. Firstly, DNA extraction efficiency is

critical to mNGS results. Due to the thick cell walls of fungi and

intracellular bacteria, wall-breaking treatmentwas applied in theDNA

extraction process. Still, inadequate wall-breaking treatment might

cause false-negative results. Meanwhile, bioinformatics analysis and

interpretation of sequencing results also affect all aspects of the final

results of mNGS. Secondly, the accuracy of mNGS is susceptible to

nucleic acid contamination in the background microbiome and

reaction kit. It was difficult to distinguish infection from colonization

and outside nucleic acid sources. Moreover, it is difficult to determine

the optimal threshold for pathogen identification. Thirdly, our sample

size was relatively limited, whichwould be attributed to the bias. Thus,

it is necessary tomake a further study. Finally,mNGS is not commonly

performed due to high cost and time-consuming data interpretation,

especially in developing countries. The average fee of mNGS is

approximately 3,000 yuan (RMB) per sample, which was still a

substantial economic burden for most patients.

In summary, our study demonstrated the critical role of BALF

detection by the mNGS platform for pathogen identification in IPA

patients with non-neutropenic states. It may provide an optimal

way to diagnose the suspected IPA disease, especially for those hard

to acquire enough candidate samples and present negative results by

traditional methods.
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