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Sepsis is a global health concern accounting for more than 1 in 5 deaths

worldwide. Sepsis is now defined as life-threatening organ dysfunction caused

by a dysregulated host response to infection. Sepsis can develop from bacterial

(gram negative or gram positive), fungal or viral (such as COVID) infections.

However, therapeutics developed in animal models and traditional in vitro sepsis

models have had little success in clinical trials, as these models have failed to fully

replicate the underlying pathophysiology and heterogeneity of the disease. The

current understanding is that the host response to sepsis is highly diverse among

patients, and this heterogeneity impacts immune function and response to

infection. Phenotyping immune function and classifying sepsis patients into

specific endotypes is needed to develop a personalized treatment approach.

Neutrophil-endothelium interactions play a critical role in sepsis progression, and

increased neutrophil influx and endothelial barrier disruption have important

roles in the early course of organ damage. Understanding the mechanism of

neutrophil-endothelium interactions and how immune function impacts this

interaction can help us better manage the disease and lead to the discovery of

new diagnostic and prognosis tools for effective treatments. In this review, we

will discuss the latest research exploring how in silico modeling of a synergistic

combination of new organ-on-chip models incorporating human cells/tissue,

omics analysis and clinical data from sepsis patients will allow us to identify

relevant signaling pathways and characterize specific immune phenotypes in

patients. Emerging technologies such as machine learning can then be leveraged
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to identify druggable therapeutic targets and relate them to immune phenotypes

and underlying infectious agents. This synergistic approach can lead to the

development of new therapeutics and the identification of FDA approved drugs

that can be repurposed for the treatment of sepsis.
KEYWORDS
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Introduction

Sepsis is a critical healthcare problem. According to a meta-

analysis of literature by the World Health Organization (WHO), in

2017 approximately 48.9 million cases of sepsis were identified

worldwide, accounting for 11 million sepsis-related deaths per year

(World Health Organization, 2023). An estimated 20million children

younger than 5 years developed sepsis, resulting in 2.9 million global

deaths in the same year. In the U.S., 1.7 million sepsis cases are

reported annually, resulting in more than 270,000 deaths each year

(Rhee et al., 2017) and is a leading cause of death in hospitals (Singer

et al., 2016; Donnelly et al., 2017). Under the Sepsis-3 definition,

sepsis is now defined as life-threatening organ dysfunction caused by

a dysregulated host response to infection (Singer et al., 2016;

Donnelly et al., 2017). While neutrophils are critical to host

defense, neutrophil dysregulation in sepsis plays a critical role in

sepsis-induced organ failure through interactions with the vascular

endothelium resulting in endothelial cell (EC) damage, increased

vascular barrier permeability, and enhanced neutrophil trafficking

into vital organs (Guimarães-Costa et al., 2014; Lang et al., 2014; Jiao

et al., 2020; Iba et al., 2022; Rosales, 2020; Sakuma et al., 2022). This

neutrophil dysregulation and neutrophil-endothelial cell interactions

in sepsis can lead to extravascular tissue damage and septic shock

resulting in multiple organ dysfunction syndrome (MODS) and

death (Kell and Pretorius, 2018).

Sepsis is a complex and multifaceted medical condition, and its

manifestations can vary considerably among patients. It is not a

uniform disease but rather a syndrome that results from the body’s

overwhelming response to infection. The clinical presentation of

sepsis can range from mild to severe, with some individuals

experiencing subtle symptoms while others face life-threatening

consequences, such as organ dysfunction and septic shock (Singer

et al., 2016; Seymour et al., 2019). Sepsis is also known for its

remarkable heterogeneity in clinical manifestations, and this

diversity is often influenced by both the source of infection and

the unique immune response of the affected individual. For

example, sepsis originating from a respiratory infection, such as

pneumonia, may present with distinctive clinical features as

compared to sepsis triggered by a urinary tract infection (Rudd

et al., 2020). The former may involve respiratory distress, high fever,

and lung-specific complications, while the latter might primarily
02
manifest as urinary symptoms and lower abdominal pain. These

variations in sepsis presentation underscore the significance of

personalized and targeted treatment approaches to address the

diverse clinical trajectories of this life-threatening condition.

Recent research has focused on the heterogeneity of sepsis,

emphasizing the necessity of understanding the source-specific

and patient-specific aspects of sepsis (Seymour et al., 2019).

To date, therapeutic approaches for the treatment of sepsis are

largely supportive, but there are no specific drugs available despite

promising preclinical studies in rodent models (Williams and

Chambers, 2014; Jarczak et al., 2021; Niederman et al., 2021).

Current treatment consists of antibiotic therapy for the

underlying infection and supportive care through the

administration of fluids and vasopressors (Seitz et al., 2022).

Kidney dialysis and mechanical ventilation are often used to

support organ failure as the disease progresses. Multiple drugs

which have shown promise in preclinical models have failed in

large randomized clinical trials to demonstrate a significant

reduction in mortality (Osborn, 2017). This absence of clinical

translation is due to a host of factors, including the incorporation of

rodent models that fail at emulating the complete clinical situation

that is present in humans (e.g., age, sex, demographics,

comorbidities etc.) and the varied composition of systemic

leukocytes in both species (Rudd et al., 2020; Iregbu et al., 2022;

World Health Organization, 2017). Recent clinical trials have

examined the impact of anti-cytokine receptor therapies such as

anakinra (an IL-1 receptor antagonist) to mitigate the inflammatory

response (Shakoory et al., 2016), and the consideration of using

DNase (such as DNase-I) in addressing sepsis-associated formation

of neutrophil extracellular traps (NETs), thereby highlighting the

multifaceted approach required for effective sepsis treatment

(Singer et al., 2016; Donnelly et al., 2017). Unfortunately, none of

these treatments demonstrate targeted efficacy against sepsis.

Numerous reports have highlighted the heterogeneous nature of

sepsis (Scicluna et al., 2017; Fenner et al., 2021; Yang et al., 2021b;

Langston et al., 2023), confirming the unlikelihood that a one-size-

fits-all treatment will be appropriate for every septic patient. Thus,

the lack of therapeutic options for the treatment of sepsis

underscores the urgent need for further research and innovation

to develop novel therapeutic interventions that can address the

complexities of this life-threatening condition (Langston et al.,
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2023). Emerging tools such as microphysiological assays (i.e.,

organ-on-chip) (Kilpatrick and Kiani, 2020; Yang et al., 2021a),

omics, in silico models and machine learning (Giannini et al., 2019;

Stolarski et al., 2022; Honoré et al., 2023; Pan et al., 2023) are

providing promising avenues for developing effective, personalized

options for treating sepsis (Figure 1).

In this review, we will examine critical aspects of neutrophil-ECs

interactions during the evolution and progression of sepsis, highlighting

the difficulties in development of effective therapeutic approaches. We

will discuss the emergence of innovative in vitromodels that mimic the

complex interplay between neutrophils and ECs and the use of these

models in classifying sepsis patients and testing potential therapeutics.

We will focus on the importance of immune phenotyping and sepsis

endotyping to gain important insight into the heterogenous nature of

the disease. We will discuss the importance of omics in identifying

important cellular signaling cascades involved in sepsis progression.

Lastly, we will discuss promising applications of in silico models and

machine learning algorithms, offering new avenues for enhancing our

comprehension of sepsis.
Neutrophil activation during sepsis

Neutrophils are key cells of the human innate immune system and

critical elements of host defense against pathogens. Neutrophils identify

infectious agents through pattern recognition receptors (PRRs), such as

Toll-like receptors, on the cell surface that recognize a wide variety of

PAMPs and DAMPS that are released by invading pathogens and

damaged tissue (Iba and Ogura, 2018). Upon activation, neutrophils

rapidly traffic to sites of infection or inflammation (Ley et al., 2007).

Neutrophils clear pathogens through phagocytosis, degranulation and

the release of proteases and the production of reactive oxygen species

(ROS), which can kill pathogens directly by causing oxidative damage

(Perobelli et al., 2015; Glémain et al., 2022; Rosales, 2018). Neutrophils

possess numerous types of granules within their cytoplasm that are
Frontiers in Cellular and Infection Microbiology 03
sequentially released upon stimulation and degranulation. Neutrophils

contain primary (azurophilic), secondary (specific) and tertiary

(gelatinase) granules, as well as secretory vesicles encompassing a

repertoire of more than 300 proteins involved in cell adhesion,

migration and bactericidal activities (Fox et al., 2010). A number of

potent proteases are located in these granules including

myeloperoxidase (MPO), neutrophil elastase and cathepsin G

(Borregaard, 2010). The release of these proteases is tightly regulated

to minimize host tissue damage, but during sepsis and immune

dysregulation, the release of these granule contents can damage ECs

and host tissue. Neutrophils can also immobilize and kill pathogens

through the release of NETs (Perobelli et al., 2015; Herrero-Cervera

et al., 2022; Rosales et al., 2023). NETs are composed of extruded

strands of nuclear material (such as DNA) which form a web-like

structure that is composed of decondensed chromatin fibers decorated

with antimicrobial enzymes released from granules, such as neutrophil

elastase, MPO and cathepsin, as well as nuclear proteins (Perobelli

et al., 2015; Döring et al., 2017; Jiao et al., 2020). NETs can be a double-

edged sword; they are critical for microbicidal activity, but uncontrolled

NETs release during sepsis can also exacerbate inflammation, damage

ECs, and cause tissue injury (Chang, 2019; Glémain et al., 2022).

Thus, neutrophil activation plays a pivotal role during sepsis,

with a complex interplay between various cellular and molecular

mechanisms. The activation of neutrophils leads to a cascade of

events, including adhesion, migration, degranulation, and the

formation of NETs. However, dysregulated neutrophil activation

contributes to EC damage and organ dysfunction.
Endothelial cell activation
during sepsis

Under normal conditions, ECs act as an important regulator of

hemodynamic balance throughout the body. ECs possess a

remarkable ability to sense and react to various extracellular
FIGURE 1

An illustration of how emerging tools such as biomimetic microphysiological systems (i.e., organ-on-chip), omics, in silico models and machine
learning are providing promising avenues for better understanding and developing more effective, personalized options for treating sepsis.
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stimuli originating from the microenvironment (Yang et al., 2021b).

These stimuli encompass both biomechanical factors (e.g., shear

forces, pressure, and cyclical strain) as well as biochemical signals

(e.g., growth factors, hormones, cytokines, chemokines, nitric oxide,

oxygen and reactive oxygen species) (Rosales, 2018). The ability to

sense hemodynamic stimuli allows ECs to quickly respond to

microenvironmental changes in the blood vessel environment,

such as sensing the pro-inflammatory cytokines released by

neutrophils during sepsis (Iba et al., 2022). Notably, in response

to these stimuli, ECs exhibit distinct phenotypes characterized by

spatial and temporal tissue-specific heterogeneity (Aird, 2012).

The diverse morphological characteristics of endothelium are

directly related to their functional heterogeneity (Yang et al.,

2021b). For example, within arteries and arterioles, ECs align and

elongate in parallel to the direction of blood flow, playing a crucial

role in regulating vascular tone (Yang et al., 2021b). In contrast, ECs

in veins and venules typically assume a polygonal shape rather than

an elongated shape, lacking specific orientation (Yang et al., 2021b).

Moreover, venous ECs tend to have higher permeability compared

to arterial ECs (Sriram et al., 2015).Notably, post-capillary venules

serve as primary sites for leukocyte extravasation during

inflammation and sepsis, facilitating the movement of immune

cells from the bloodstream into the surrounding tissues (Chi et al.,

2003). These contrasting characteristics of ECs are closely linked to

variances in hemodynamic environments and the functional

properties of the vessels they line (Young and Simmons, 2010).

Endothelial cells (ECs) also exhibit remarkable heterogeneity

across different organs, and their distinct phenotypic profiles can

play varying roles in sepsis. For instance, lung microvascular ECs

are characterized by high levels of tissue factor expression, which

contributes to the initiation of coagulation pathways during sepsis

(Wang et al., 2008). In contrast, hepatic ECs possess unique

functional features, including the clearance of endotoxins and

bacterial products where the EC structure and alignment are

discontinuous, allowing the exchange of large solutes between

plasma and intestinal environment (Shetty et al., 2018). On the

other hand, kidney EC exhibits a fenestrated alignment that features

intracellular pores with a diaphragm that penetrate the endothelium

layer, which warrants the rapid exchange of water (Yang et al.,

2021b). This specific EC alignment in kidney plays a crucial role in

sepsis by potentially enabling enhanced vascular permeability and

leukocyte trafficking, thereby contributing to the pathophysiological

processes and kidney dysfunction during sepsis progression. These

organ-specific variation in EC function during sepsis is critical for

understanding the differential responses observed in discrete

organs. At the molecular level, these organ-specific disparities can

be attributed to differences in the expression of adhesion molecules,

cytokine receptors, and signaling pathways. For instance, the lung

ECs express higher levels of vascular cell adhesion molecule 1

(VCAM-1) and intercellular adhesion molecule 1 (ICAM-1),

which are involved in leukocyte adhesion and recruitment (Ley

et al., 2007). Liver ECs, on the other hand, express receptors for

bacterial toxins, enabling them to actively participate in

detoxification processes (Dejager et al., 2011). Vascular

permeability is regulated by tight and adherens junctions between

ECs, therefore, the disassembly of occludin, claudin-5 and VE-
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cadherin from tight junctions can be used as an indicator of

increased vascular permeability (Kondo et al., 2009). Aslan et al.

reported that baseline expression levels of occludin, claudin-5, and

VE-cadherin markedly differed between kidney and lung, with

claudin-5 and VE-cadherin being highly expressed in the lung,

and occludin being highly expressed in the kidney during sepsis in

mice and humans, indicating an organ-specific molecular

manifestation of ECs (Aslan et al., 2017). This intricate web of

organ-specific heterogeneity in EC function during sepsis not only

enhances our understanding of the diverse organ responses but also

underscores the pivotal role of these cells in shaping the outcomes

of this complex and life-threatening condition.

The endothelial glycocalyx (eGC) is a protective layer on the cell

surface of vascular ECs (Fatmi et al., 2022) that plays a critical role

during inflammation. This glycoprotein layer has an intricate

architecture consisting of different components integrating either

plasma- or endothelium-derived soluble molecules, including

syndecan-1 (SDC-1), Heparan sulphaste (HS), Hyaluronan (HA),

chondroitin sulphate (CS), and other cell adhesion molecules

(CAMs) such as VCAM-1 and ICAM-1 (Puchwein-Schwepcke

et al., 2021; Fatmi et al., 2022). These important surface molecules

play critical roles during the leukocyte adhesion cascade in sepsis

(Ley et al., 2007; Iba and Ogura, 2018; Iba et al., 2022). Activated

neutrophils can damage the protective EC glycocalyx leading to

increased vascular barrier permeability and neutrophil trafficking

into vital organs (Chang, 2019; Iba et al., 2022).

ECs are tightly connected through junctional adhesion

molecules (JAMs) including JAM-A, -B, -C and endothelial cell-

selective adhesion molecules (ESAM) which are crucial for

maintaining the endothelial junctional complexes that regulate

vascular transmigration and permeability (Woodfin et al., 2011;

Amalakuhan et al., 2016). During sepsis, these junctional functions

are disrupted and become dysregulated, leading to increased

vascular permeability and, fluid leakage into the surrounding

tissue and edema, causing further organ damage (Figure 2)

(Nourshargh and Alon, 2014; Uchimido et al., 2019; Duong and

Vestweber, 2020). Other junctional components include platelet

endothelial cell adhesion molecule (PECAM)-1 and nectin; the

disruption of these components also contribute to the

uncontrolled neutrophil influx (Duong and Vestweber, 2020).

In summary, ECs play a pivotal role in maintaining vascular

health and homeostasis, and their injury can trigger a cascade of

events leading to tissue and organ dysfunction. EC injury can occur

due to various insults, such as inflammation, oxidative stress or

mechanical damage. At the molecular level, the loss of EC integrity

disrupts the endothelial barrier, exposing underlying tissues to a

pro-inflammatory environment. Moreover, injured ECs release

vasoactive molecules, such as endothelin-1, leading to

vasoconstriction and impaired blood flow (Aird, 2012).

Disruption of the endothelial barrier can also result in increased

vascular permeability, allowing the leakage of proteins and immune

cells into the interstitium, further exacerbating inflammation

(Chistiakov et al., 2015). Over time, these processes can lead to

chronic inflammation, tissue damage, and ultimately, organ

dysfunction. Understanding the molecular mechanisms

underlying EC injury and dysfunction is crucial for developing
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targeted therapeutic interventions to mitigate the consequences of

endothelial damage (Libby et al., 2011).
Neutrophil-endothelium interaction
during sepsis

Septic patients often die from MODS, in part caused by the

dysregulated neutrophil influx into tissues leading to organ damage

(Yang et al., 2021a). During infection, pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) are released and activate the innate immune

system. This activation results in the release of cytokines,

chemokines and other proinflammatory mediators which can

activate neutrophils and endothelial cells (ECs) leading to

neutrophil-EC interaction.

The leukocyte adhesion cascade is a process by which

leukocytes, such as neutrophils, roll, firmly adhere and then

migrate through activated ECs (Ley et al., 2007; Futosi et al.,

2013; Tecchio et al., 2014; Rosales, 2018; Rosales, 2020). This

process is mediated on ECs by pro-adhesive and other effectors

molecules through the Nuclear factor-kappa B (NF-kB) signaling
pathway (Kojok et al., 2018). Pattern recognition receptors (PRRs)

are widely expressed on neutrophils and ECs (Iba and Ogura, 2018).

When these receptors interact with PAMPs and DAMPs, cytokines

[e.g., Tumor necrosis factor-alpha (TNF-a) and Interleukin-1 Beta

(IL-1b)] and chemokines [e.g., Interleukin-8 (IL-8) and Monocyte
Frontiers in Cellular and Infection Microbiology 05
chemoattractant protein 1 (MCP-1)] are synthesized and released

into the bloodstream (Zhu et al., 2017; Kojok et al., 2018; Wang

et al., 2018; Georgescu et al., 2020). These pro-inflammatory

cytokines disrupt the integrity of the endothelial glycocalyx (eGC)

surface layer, exposing adhesion molecules, such as VCAM-1,

ICAM-1 and E-selectin and result in increased number of

neutrophils rolling, firmly adhering and transmigrating through

the ECs (Schmidt et al., 2012; Yang et al., 2021b). As sepsis

advances, VCAM-1 and ICAM-1, which are expressed in large

quantities on the activated EC surface of septic patients, are also

cleaved and released into the circulation (Amalakuhan et al., 2016).

Figure 2 illustrates the key steps of the leukocyte adhesion cascade

process during the onset of sepsis and highlights the unique

characteristics of neutrophils and ECs that allow them to interact

effectively during sepsis.

Better understanding of neutrophil-endothelium interaction

can help identify potential therapeutic targets to prevent the

development of organ dysfunction in sepsis.
Sepsis manifestations and existing
models for sepsis research and
their limitations

Animal models and in vitro models employing cell culture and

organoids, have proven invaluable for unraveling some of the

intricacies of sepsis pathophysiology. The classical approach in
FIGURE 2

Leukocyte adhesion cascade during sepsis: During sepsis, both PAMPs and DAMPs trigger the activation of neutrophils and endothelial cells,
prompting the production of cytokines and chemoattractants. Consequently, neutrophils display surface molecules that interact with adhesion
molecules expressed by activated endothelium. The initial rolling step involves interactions between E/P-selectin and their ligands, such as PSGL-1,
which slows down the neutrophil. Subsequently, firm adhesion is mediated by endothelial adhesion molecules like ICAM-1, ICAM-2, and VCAM-1,
interacting with neutrophil ligands, such as b2 integrins. In response to chemoattractants, adhered neutrophils migrate through endothelial junctions,
facilitated by PECAM-1, VE-cadherin and JAMs. Concurrently, activated neutrophils release cytokines, reactive oxygen species (ROS), and proteases,
or undergo the formation of neutrophil extracellular traps (NETs). During sepsis, the endothelial glycocalyx (eGC) is degraded, endothelial cell tight
junctions are damaged, and there is an increase in endothelial cell apoptosis, ultimately leading to compromised barrier function and
increased permeability.
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exploring the mechanisms of inflammatory diseases involves the

use of murine models. However, the lack of alignment between

murine models and human septic manifestations is a growing

concern (Soroush et al., 2020). Additionally, the significant

phenotypic variation observed among various types of endothelial

cells has raised questions about the translatability of findings from

these models to human diseases (Seok et al., 2013; Sznajder et al.,

2013). Consequently, a notable limitation of murine models is the

potential for a given therapeutic intervention to yield distinct

outcomes in mice compared to humans (Seok et al., 2013;

Sznajder et al., 2013). These concerns gain support from recent

research employing bulk and single-cell transcriptomics to delineate

innate immune responses. This work has demonstrated substantial

interspecies variations in the expression of cytokines, chemokines,

and their corresponding receptors (Hagai et al., 2018). While rodent

models remain a valuable tool in sepsis research, an international

panel of experts has emphasized the pressing need for models that

more realistically recapitulate human disease, acknowledging the

significant limitations of murine models (Zingarelli et al., 2019).

Hence, there exists a considerable demand for the development of

“in vitro reconstitution of disease-related cell types or tissues”

employing human cells to investigate human inflammatory

diseases more effectively (Kilpatrick and Kiani, 2020; Soroush

et al., 2020; Yang et al., 2021a). Reconstruction of more in vivo

human relevant models could bridge the gap between traditional

murine models and the intricacies of human inflammatory disease,

potentially advancing our understanding and therapeutic strategies

in this field.

Traditional cell culture models have been used to study

molecular and cellular responses to septic insults. These models

typically involve specific cell types, such as macrophages or

endothelial cells, and exposing them to PAMPs, such as

endotoxin, or proinflammatory cytokines to mimic septic

conditions. These in vitro studies allow for the investigation of

host responses, such as the activation of PRRs which activate NF-kB
and other transcription factors to produce proinflammatory

mediators such as cytokines and chemokines. (Ploppa et al., 2012;

Mai et al., 2013; Wicherska-pawłowska et al., 2021). Despite their

utility and ease of use, cell culture models have significant

limitations. They often lack the intricate three-dimensional tissue

architecture seen in vivo, which is crucial for studying cell-cell

interactions. Moreover, these models may not fully replicate the

complexity of the immune response in sepsis, as they often lack

multiple cell types important for cell-cell communication

(Chistiakov et al., 2015). More importantly, static cell culture

models do not take in to account the impact of physiologically

relevant flow conditions which is a critical parameter in cell

activation and signaling and needed to model in vivo conditions.

Organoids represent another promising approach for in vitro

studies of sepsis. These miniature 3D organ-like structures are

developed by culturing organ-specific cells, such as intestinal

tissue (Siwczak et al., 2021), lung tissue (Bosáková et al., 2022), or

brain tissue (Lim et al., 2022) under conditions that promote self-

organization and differentiation. Recent advancements have

allowed researchers to create lung, liver, and intestinal organoids

to mimic in vivo inflammation more realistically. These models
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provide valuable insights into the tissue-specific molecular

responses during inflammatory conditions (Lim et al., 2022),

including the dysregulation of tight junction proteins, altered

metabolic pathways and the release of proinflammatory cytokines

(Lee et al., 2014). However, organoids, too, have their limitations.

They may not fully capture the systemic effects of sepsis, given their

focus on individual organs. Additionally, their utility is currently

restricted by challenges in scaling up for high-throughput screening

and maintaining long-term viability. Last but not least, the vascular

network of organoids is hard to reconstruct in vitro, therefore, these

organoid models often lack realistic blood flow representation

as well.

In summary, organoids offer insights into tissue-specific

responses while murine animal models could provide a more

translational understanding to human in vivo conditions. These

models enhance our understanding of sepsis pathophysiology, but

researchers must be mindful of their limitations, such as the lack of

tissue complexity in cell cultures, the limited systemic perspective of

organoids, and the significant limitations of animal models.

Addressing these challenges is essential for optimizing the

translational potential of these models in sepsis research.

Emerging in vitro models – the
promise of the organ-on-
chip technology

As discussed previously, excessive neutrophil infiltration into

tissues causes organ damage, often resulting in organ failure and

death during sepsis. Employing screening models that mimic

neutrophil-endothelium interactions under inflammatory

conditions have become important tools for developing

precision therapeutics.

Development of “organ-on-chip” assays, also known as

microphysiological systems or 3-D biomimetic microfluidic

assays, offer a number of advantages including the ability to

observe and measure in real time neutrophil-endothelial cell

interactions such as chemotaxis, upregulation of adhesion

molecules and changes in response to various therapeutic agents

(Ren et al., 2022; Man et al., 2023). The ability to use primary

human cells in microphysiological systems increases their clinical

relevance. For example, Muldur et al. utilized a microfluidic system

to examine the distinct effects of different types of Complement 5

(C5) cleavage inhibitors on human neutrophils activities including

anti-microbial functions, chemotaxis and swarming (Muldur et al.,

2021). Zhang et al. developed a microfluidic system to measure

affinity separation to capture the concentration of Cluster of

differentiation (CD64)+ cells and provided evidence that

neutrophil CD64 expression is upregulated in sepsis patients

(Zhang et al., 2018).

The formation of NETs is a critical step in antimicrobial defense

through the immobilization of pathogens (Jiao et al., 2020).

Microfluidic assays have been used to investigate NETs. For

example, Sakuma et al. developed a microfluidic assay to capture

and measure NETs in a drop of human blood using

immunostaining and fluorescence microscopy (Sakuma et al.,
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2022). In this system, using as little as 10 uL of blood, without

neutrophil or plasma separation, the assay consistently measures

the sum of intact and degraded NETs (Sakuma et al., 2022). “Open-

well” barrier based microfluidic designs could potentially replicate

the compartmentalization found in vivo (Byrne et al., 2017). In

these assays, primary human cells can be seeded directly onto the

membrane that physically separates the different compartments

while permitting soluble factor communication between the cell

populations (Byrne et al., 2017). The conventional transwell assay

design has been used to study the blood-brain barrier (Stone et al.,

2019), alveolar-capillary interface (Janga et al., 2018) and

glomerular barrier (Moriyama et al., 2017). However, these

transwell model designs lack fluid flow, an important component

in the in vivo microenvironments. In order to address this

constraint, Mehran et al. integrated laminar flow into the open-

well model concept and developed an open-well modular system

(m-uSiM) utilizing a silicon membrane (thickness=100nm,

porosity=15%), establishing a human endothelial cell layer in the

device that could be visualized under a microscope (Mansouri

et al., 2022).

Aside from the visualization of the cell-cell interaction, another

important advantage of these assays is the ability to study

neutrophil behavior and functions in real-time. For example,

studies have shown that when using biomimetic microfluidic
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assays, neutrophil migration (Boribong et al., 2019) and NETosis

(Petchakup et al., 2023) can be observed. Furthermore, biomimetic

microfluidic assays can be used to observe the process of

neutrophils eliminating pathogens such as fungal clusters (Alex

et al., 2020) and bacteria (Ellett et al., 2019) in real-time.

Many of the microfluidic devices used for studies of the

inflammatory response do not completely reproduce the geometry

and structure of microvascular networks observed in vivo. To better

model the neutrophil-endothelium interaction during sepsis using

primary human cells in a more realistic environment, our group has

developed a biomimetic microfluidic assay that reproduces

complete microvascular networks on a chip to study the effect of

inflammation and sepsis on endothelial permeability and

neutrophil-endothelial cell interaction (Yang et al., 2021a). This

system can be used to observe the entire leukocyte adhesion cascade

including rolling, firm adhesion, spreading and migration of

neutrophils into the tissue compartment (Figure 3), mediated by

the presence of chemoattractants such as fMLP in the tissue

compartment. Neutrophil adhesion and migration could then be

measured under physiologically relevant shear stress levels in

response to, for example, pro-inflammatory cytokines (Soroush

et al., 2016). We have used this microfluidic assay to show that a

novel Protein Kinase C-delta (PKCd) inhibitor not only reduces

neutrophil adhesion to and migration across ECs but also decreases
FIGURE 3

A biomimetic microfluidic assay that reproduces complete microvascular networks on a chip to study the effect of inflammation and sepsis on
endothelial permeability and of neutrophil-endothelial cell interaction (A); the dark spot in the middle of (A) is the port for connecting tubing to the
tissue compartment. The vascular channels of this system are cultured with primary human endothelial cells (B) and the neutrophil-endothelial cell
interaction can be studied under physiologically relevant shear stress levels in the presence of chemoattractants such as fMLP in the tissue
compartment. [(B) reproduced with permission (Soroush et al., 2020)].
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the expression of ICAM-1 and other adhesion molecules on ECs

during the onset of inflammation (Soroush et al., 2016; Kilpatrick

and Kiani, 2020; Soroush et al., 2020). The findings from our

microfluidic system have been validated against in vivo

observations in sepsis animal models (Soroush et al., 2016). In a

rodent model of sepsis, administration of the PKCd inhibitor

significantly decreased sepsis-induced neutrophil influx into the

lungs and kidneys (Liverani et al., 2020). Furthermore, PKCd
inhibition was lung protective and decreased sepsis-induced

VCAM-1 and ICAM-1 endothelial expression (Mondrinos

et al., 2014).

ECs are heterogeneous, in part due to organ type, and it is

therefore critical to develop organ-on-chip assays that realistically

represent the conditions in each organ. Our group, for example, has

employed a novel blood-brain-barrier on-a-chip (B3C) microfluidic

assay to study the role of PKCd in mediating human brain

microvascular endothelial cell (HBMVEC) permeability,

junctional protein expression and leukocyte adhesion and

migration (Tang et al., 2018). Our findings indicated that TNF-a
activates PKCd and its translocation in HBMVEC (Tang et al.,

2018). Inhibition of PKCd significantly reduced TNF-a mediated

hyperpermeability and increased TEER in activated HBMVEC

(Tang et al., 2018). Using this B3C microfluidic assay, we

demonstrated a more critical role of PKCd in regulating

neutrophil transmigration as compared to neutrophil adhesion,

providing important mechanistic insight into the mechanism of

action of PKCd. Our in vitro results agree with our in vivo studies in

a rodent model of sepsis where PKCd inhibition reduced BBB

permeability as measured by Evans Blue uptake into the brain

(Tang et al., 2018).

It is important to recognize that microphysiological systems,

despite their utility in studying EC function, have inherent

limitations. While they are often referred to as “organ-on-chip”

systems, it is crucial not to interpret this term literally (Yang et al.,

2021a). These systems typically involve the co-culture of a limited

number of cell types within a predominantly mechanically rigid

synthetic or gel scaffold. Consequently, they often lack the presence

of other critical in vivo components, such as additional cell types,

the extracellular matrix or other components. Experiments using

microphysiological systems should therefore be carefully designed,

and there is a need for cautious interpretation when extrapolating

findings from these models to the more complex dynamics of in

vivo systems (Yang et al., 2021b).

Clinical research - sepsis
heterogenicity and endotyping
of patients

Devising a single standardized treatment for the heterogeneous

sepsis patient population has proven problematic, emphasizing the

recognition of the need to classify sepsis patients into distinct

endotype classes that define specific host response subgroups

(Leligdowicz and Matthay, 2019). Therefore, phenotyping sepsis
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patients in the clinical environment could identify patients for

individualized treatment options.

Traditional methods to classify septic patients into distinct

endotypes utilizes statistical models such as (k-means) clustering;

most of these models suffer from lack of accuracy and/or validation

(Li et al., 2022). For example, Li et al. collected 17 published clinical

studies that focused on phenotyping adult septic patients (Li et al.,

2022). However, only 6 out of 17 studies in the report were given a

low risk of bias rating by the authors; the rest of the trials were

deemed medium risk (8/17) and high risk of bias (3/17) due to lack

of either internal validation or external validation or both (Li et al.,

2022). This report implies that the traditional clustering models

might not always yield reliable outcome to phenotype sepsis

patients. In pediatric sepsis clinical research, Lin et al. suggested

classifying new or progressive multiple organ dysfunction

syndrome (NPMODS) during the 7-day observation as a distinct

phenotype for better clinical outcomes (Lin et al., 2017). The

authors report that the hospital mortality in patients with

NPMODS was 51% compared with patients with new multiple

organ dysfunction syndrome (28%) and those with single-organ

dysfunction without multiple organ dysfunction syndrome (10%)

(p < 0.001) (Lin et al., 2017). This study provides important clinical

insight, but multi-institutional prospective clinical trials are needed

for validation. There are many reports suggesting the use of

biomarkers to phenotype patients For example, plasma

lipoprotein level (Barker et al., 2021; Guirgis et al., 2021),

coagulation markers (Barker et al., 2021; Kudo et al., 2021),

hypoxia-inducible factor-1 (HIF-1) in macrophages (Peyssonnaux

et al., 2007), source of contracting sepsis (Rosales et al., 2023) and

vital signs such as hypotension or elevated lactate (Aldewereld et al.,

2022) were used as criteria for phenotyping clusters. Most of these

studies were done retrospectively using unsupervised clustering

approaches. Although they provide important information for

future research, prospective clinical trials are needed for

validation. Advanced and more clinically relevant phenotyping

mechanisms need to be developed for septic patients to receive

customized treatment for better clinical outcomes.

Sepsis is an aggressive, heterogeneous disease that requires

novel tools to characterize critical stages of the disease in each

patient; omics analysis can help discover and characterize sepsis-

related biomarkers (Langston et al., 2022). Specifically, omics can

help in the identification of a) prognostic biomarkers, b) diagnostic

biomarkers and c) biomarkers for personalized patient response to

therapeutic intervention (Průcha et al., 2018; Langston et al., 2022).

Since one biomarker is unlikely to represent a patient ’s

comprehensive sepsis condition, a synergistic panel of biomarkers

that could satisfy the aforementioned criteria is needed (Průcha

et al., 2018). A recent review analyzed 7 biomarkers that were most

studied in sepsis: CRP, sTREM-1, LBP, Presepsin, CD64, PCT and

IL-6. Results indicated that IL-6, PCT, LBP, sTREM-1 and

presepsin (98) had the highest diagnostic accuracy (Teggert et al.,

2020). However, limitations of current biomarkers include:

prognostic and diagnostic accuracy, variability in concentration

during the different stages of sepsis, lack of studies comparing
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biomarkers and no consensus on diagnostic cut-off values for

analysis (Pierrakos et al., 2020; Teggert et al., 2020).

Several studies have classified sepsis patients into endotypes

based on modeling methodologies and genome and transcriptome

data (Wong et al., 2009; Davenport et al., 2016; Scicluna et al., 2017;

Sweeney et al., 2018; Seymour et al., 2019). These studies have

correlated the features of each endotype with clinical outcomes,

demonstrating the heterogeneity of sepsis in patients. Since sepsis

affects a myriad of biological compartments and cell types, omics

can interrogate patient-specific genome, transcriptome and

proteome expression in cells and tissues and, in combination with

clinical and functional studies, decipher how biological pathways

are dysregulated (Hasin et al., 2017; Langston et al., 2022). These

findings will allow individual, molecular sub-typing of patients and

distinguish the mechanisms in each endotype (Itenov et al., 2018;

Olivier et al., 2019; Langston et al., 2022). A seminal genome-wide

study identified three subclasses, via hierarchical clustering, in

pediatric septic shock patients (Wong et al., 2009). Subclass A

patients exhibited an immunocompromised presentation (due to

repressed gene expression (e.g., Linker of activated T cells (LAT)

and T-cell receptor-associated transmembrane adapter 1 (TRAT) in

immunity) and thus had the highest mortality compared to

subclasses B and C (Wong et al., 2009). Repressed genes were

correlated with glucocorticoid and B-cell pathway signaling which

further confirms that this group of patients did not have strong

immunity (Wong et al., 2009). In a second study, the Molecular

Diagnosis and Risk Stratification of Sepsis (MARS) project was

designed to evaluate an 8 gene signature in classifying ICU sepsis

patients into distinct endotypes (Scicluna et al., 2017). The

endotypes generated from this study included MARS 1 (a group

of patients showing decreased acquired and innate immunity gene

expression), MARS 2 (patients exhibiting increased chemokine

expression), MARS 3 (patients presenting increased acquired

immunity expression) and MARS 4 (patients displaying increased

NF-кB and interferon expression) (Scicluna et al., 2017). When

developing a biomarker signature based on omics for distinguishing

the heterogeneity of sepsis between patients, it should be simple and

sensitive enough for patient classification to be feasible for use at the

bedside (Langston et al., 2022). Furthermore, comparing endotype

studies is complicated due to the differences in genome/

transcriptome expression at various times (Langston et al., 2022).

For example, most of the cited studies collected data in the first 48

hours from the time of hospital admission; however, it has been

found that half of patients can change endotypes within the first 100

hours of admission (Leligdowicz and Matthay, 2019). Thus, omic

expression needs to be carefully tracked as the disease progresses.

Even though the methodologies used to stratify patients into

unique endotypes were different, there are similarities across

endotypes which may be helpful for future therapeutic research

(Langston et al., 2022). Lowmortality endotypes [MARS 3 (Scicluna

et al., 2017), subclasses B and C (Wong et al., 2009)] had increased

immune signaling compared to high mortality endotypes [MARS 1

(Scicluna et al., 2017), subclass A (Wong et al., 2009)] which had

repressed immune function (Langston et al., 2022). Overall,

endotyping could be used to discover subphenotypes of a disease
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for tailoring of therapeutics, but it should not be used as a definitive,

prognosis tool (Wong et al., 2017). Furthermore, additional,

endotype studies are needed to examine their signatures across

populations beyond their original intent and to observe if

combinations of different endotypes can unravel novel, biological

entities between populations leading to clinical presentation

(Langston et al., 2022). However, before these advanced studies

can be executed, there needs to be standardization by which

endotypes are defined and standardized in various studies

(Langston et al., 2022). Most importantly, endotype studies must

be validated in prospective studies across institutions with sepsis

patients who are at different stages of sepsis progression before they

can be clinically relevant (Langston et al., 2022).

In silico models – phenotyping using
omic methodologies, machine
learning and artificial intelligence

Because of the heterogenous nature of sepsis at omic, functional,

clinical and temporal levels which results in phenotype differences

(e.g., hypoinflammatory vs. hyperinflammatory phenotypes), data

incorporated into in silico models are often collected and analyzed

from diverse, reputable sources in order to comprehensively capture

a patient’s condition. Most importantly, the integration of these

sources of data into a model can expedite the drug discovery process

and generate novel hypotheses that can be tested experimentally. In

silicomodels offer a promising approach to integrate omics findings

with funct ional measures from innovat ive tools l ike

microphysiological systems and clinical parameters, enabling the

generation of testable hypotheses and expediting the drug discovery

process. These models also can unravel complex mechanisms of

action that may not be readily apparent through traditional

statistical analysis and/or reductive studies (Langston et al., 2022).

Multiple modeling methods have been applied to sepsis that are

quantitative (e.g., data-driven, multivariate regression, PCA) or

qualitative (e.g., network) (Vodovotz and Billiar, 2013). Most

models have focused on dysregulation of the immune response

(Shi et al., 2015; Stan et al., 2018) but have not identified novel drugs

or druggable targets that can be repurposed for sepsis. In silico

modeling studies that not only incorporate large sets of data from

different repositories but also focus on investigating new drugs or

repurposing drugs for sepsis are urgently needed to address this life-

threatening condition.

Drug repurposing or repositioning is an emerging area in drug

discovery. The focus of the field is to identify novel uses for

approved therapeutics that are outside the scope of the original

disease (e.g., breast cancer) or indication (e.g., hematology) of

interest (Pushpakom et al., 2018). The key advantage of this

approach is the low risk of failure since the drug has already been

approved for a specific disease/indication and has passed the

extensive safety assessments. Furthermore, drug repurposing saves

time and costs associated with moving a drug from the bench to the

bedside, since on average, de novo drug development is a 10–17-

year process with a cost of ~$2 billion. Moreover, the probability of
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a drug entering the market is below 10%; thus, alternative

approaches are needed (Rumienczyk et al., 2022). Drug

repurposing in sepsis has not yet reached its full potential, but

efforts are underway; this is especially important since all ~150

drugs recently designed to treat sepsis have been successful in

rodent models but have failed in clinical trials (Drake, 2013). This

absence of clinical translation is due to a host of factors, including

the incorporation of rodent models that fail at emulating the

complete clinical situation that is present in humans (e.g., age,

sex, demographics, comorbidities etc.) and the varied composition

of systemic leukocytes in both species (humans have higher

numbers of circulating neutrophils compared to mice) (Drake,

2013; Efron et al., 2015). These factors could significantly alter

the trajectory of the disease (Langston et al., 2023). A recent review

discussed the repurposing of oncology drugs to treat sepsis and

identified several potential compounds (e.g., Topotecan, Olaparib,

Trametinib) that are currently being evaluated in sepsis models

(Rumienczyk et al., 2022). Another review identified several drugs

(e.g., Methylthiouracil, Simvastatin, Mangiferin) used in

endocrinology and oncology that are being repurposed as possible

treatment approaches for sepsis (Prakash et al., 2020). However,

there have not been many studies that use in silico modeling and

drug repurposing to investigate neutrophil-EC dysregulation

in sepsis.

We are using a synergistic combination of omics, in silico

modeling and drug repurposing to investigate neutrophil-

endothelial interaction in sepsis/inflammatory conditions.

Recently, we implemented proteomic analysis of endothelial cells
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(from lung, liver and kidney) to investigate differences in protein

expression levels between organ-specific ECs under inflammatory

conditions across time. As time progressed, the number of

differentially expressed proteins shared between ECs increased

(Rossi et al., 2022). These findings suggest that sepsis

progressively affects protein expression in different organ-specific

ECs over time. Currently, we are identifying signaling pathways that

have a mechanism of action associated with FDA approved drugs

for repurposing. Using a combination of functional responses

integrated with proteomic and genomic analysis, we will be able

to evaluate the feasibility of repurposing these drugs for

treating sepsis.

Machine learning (ML), a branch of Artificial intelligence (AI),

can be used to improve sepsis diagnosis, prognosis and clinical/drug

monitoring of the disease (Langston et al., 2023). For example, Goto

et al. utilized a ML approach to identify sepsis patients with distinct

phenotypes that could benefit from recombinant human

thrombomodulin (rhTM) therapy (Goto et al., 2022). With this

methodology, the authors developed a web-based application to

identify rhTM target phenotype. Although promising, this model

has not been validated in prospective studies (Vincent et al., 2019;

Goto et al., 2022). ML has also been used to create a proteomic

panel that distinguishes acute respiratory distress syndrome

patients from sepsis patients and to predict early sepsis onset and

prognosis (Yehya et al., 2022; Moor et al., 2021). However, there

have not been any ML studies that specifically investigate

neutrophil-endothelial interactions in sepsis and identify

repurposed therapeutics which are urgently needed.
FIGURE 4

A synergistic platform incorporating emerging technologies such as microphysiological systems to study physiological function, clinical parameters,
omics and in silico models combined with machine learning and artificial intelligence will not only provide a better understanding of the
pathophysiology of sepsis but also outline a roadmap for precision medicine for treating sepsis.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1274842
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2023.1274842
To advance the field, it is essential to explore the integration of

genomic, transcriptomic, proteomic and metabolomic approaches,

since multi-omics holds the potential for improved prognostication

and the selection of more suitable treatments (von Groote and

Meersch-Dini, 2022). However, the effectiveness of these

approaches in improving clinical outcomes needs to be

demonstrated through further rigorous clinical studies for

validation (Arcaroli et al., 2005). Exciting advancements in omics

technology offer promise in enhancing our understanding of disease

pathophysiology at an individual patient level, thus facilitating the

progression of precision medicine in sepsis and aiding in the

development and validation of biomarkers (Davenport et al.,

2016). Moreover, adopting more comprehensive tissue

interrogation techniques, such as single-nuclei RNA sequencing

and single-cell proteomics (Bennett et al., 2023), has the potential to

augment biomarker-driven approaches by providing deeper

insights into injury mechanisms and the localization of damage

(Davenport et al., 2016). These strategies could provide the

granularity required to implement a true precision medicine

treatment approach for sepsis-related complications, such as acute

kidney injury (AKI) (Kiryluk et al., 2018). Given the large volume of

data generated from omics studies and the need to synergistically

combine and validate this data with those obtained from

microphysiological systems and clinical data, in silico models and

ML will likely play a critical role in integrating these multiple types

of data to allow for a comprehensive understanding of sepsis.
Future directions

In this review, we suggest that leveraging a multidisciplinary

approach that incorporates innovative technologies such as

microphysiological systems, translational clinical research, and in

silico methods incorporating omics, machine learning and artificial

intelligence (AI) in sepsis research will enhance our understanding

of sepsis and bring about the promise of precisions medicine

(Figure 4). Microphysiological systems offer a promising avenue

for studying sepsis in vitro by mimicking the physiological

conditions of the human body and providing a more accurate

representation of the complex interactions between different cell

types, tissues and the immune system. Future research studies

should aim to optimize and standardize these platforms so that

findings from different studies can be compared. This is particularly

important as the recent FDA Modernization Act 2.0 now allows for

such alternatives to animal testing to bring a drug to human trials

(Wadman, 2023). Integration of biomimetic microfluidic assays

with advanced imaging techniques and real-time monitoring

systems can provide valuable insights into dynamic cellular and

molecular changes during sepsis progression.

Complementing in vitro studies with in vivo clinical research

remains crucial for translating laboratory findings into clinical

applications. Clinical trials that involve large cohorts of sepsis

patients can help validate the efficacy and safety of potential
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treatments. These studies should focus on identifying patient

subgroups with distinct sepsis endotypes, allowing for targeted

interventions and personalized treatment strategies. In addition,

investigating the long-term outcomes of sepsis survivors and

identifying potential biomarkers associated with prognosis and

response to therapy will be essential.

Furthermore, synergistic incorporation and interpretation of

large volumes of diverse data from multiple sources requires the use

of emerging techniques such as in silico models and machine

learning algorithms which can analyze and interpret vast amounts

of data and assist in the prediction of disease progression, patient

outcomes and treatment responses. These models can provide a

holistic view of the dynamics of sepsis leading to a deeper

understanding of its pathophysiology, facilitating the development

of novel therapeutics which can ultimately improve patient care.
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AI Artificial intelligence
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B3C Blood-brain-barrier on-a-chip

C5 Complement 5

CAMs Cell adhesion molecules

CD64 Cluster of differentiation 64

CRP C-reactive protein
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DEGs Differentially expressed genes
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MMP8 Matrix metalloproteinase 8

MMP9 Matrix metalloproteinase 9

MODS Multiple organ dysfunction syndrome

MPO Myeloperoxidase

NADPH Nicotinamide adenine dinucleotide phosphate

NETs Neutrophil extracellular traps

NF-kB Nuclear factor-kappa beta

NFKBIA Nuclear factor kappa beta inhibitor alpha

NPMODS New or progressive multiple organ
dysfunction syndrome

O2
- Superoxide anion

OH• Hydroxide free radical

PAMPs Pathogen-associated molecular patterns
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