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Joint arthroplasty is an option for end-stage septic arthritis due to joint infection

after effective control of infection. However, complications such as osteolysis

and aseptic loosening can arise afterwards due to wear and tear caused by high

joint activity after surgery, necessitating joint revision. Some studies on tissue

pathology after prosthesis implantation have identified various cell populations

involved in the process. However, these studies have often overlooked the

complexity of the altered periprosthetic microenvironment, especially the role

of nano wear particles in the etiology of osteolysis and aseptic loosening. To

address this gap, we propose the concept of the “prosthetic microenvironment”.

In this perspective, we first summarize the histological changes in the

periprosthetic tissue from prosthetic implantation to aseptic loosening, then

analyze the cellular components in the periprosthetic microenvironment post

prosthetic implantation. We further elucidate the interactions among cells within

periprosthetic tissues, and display the impact of wear particles on the disturbed

periprosthetic microenvironments. Moreover, we explore the origins of disease

states arising from imbalances in the homeostasis of the periprosthetic

microenvironment. The aim of this review is to summarize the role of relevant

factors in the microenvironment of the periprosthetic tissues, in an attempt to

contribute to the development of innovative treatments to manage this common

complication of joint replacement surgery.

KEYWORDS

microenvironment, homeostatic imbalance, joint prothesis, joint arthroplasty,
aseptic loosening
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1 Introduction

Septic arthritis occurs when bacteria invade the joint cavity,

resulting in the infection of joint cavity and joint function

impairment. Joint arthroplasty is an option for end-stage septic

arthritis combined with successful control of infection by anti-biotic

medications. It is also the surgical option for end-stage hip and knee

arthritis due to developmental anomaly, degenerative changes, or

autoimmune diseases. This surgical procedure replaces part of the

arthritic joint with a plastic, metal, or ceramic prosthesis, aiming to

restore normal joint function and improve patients’ quality of life.

The evolution of joint replacement techniques has come a long way

since the first artificial hip prosthesis was implanted in 1891, using

ivory femoral heads (Trebsě and Mihelič, 2012), with millions of

patients benefiting from this procedure (Katti, 2004; Huang et al.,

2012; Singh et al., 2019).

Despite the advances in the biomaterials and improved

biocompatibility over the years, complications such as osteolysis

persist due to the inevitable release of wear particles (Kapadia et al.,

2015; Hodges et al., 2021). The National Joint Registry database

records millions of annual primary joint replacement surgeries,

with approximately 4-6% requiring joint revision after 10 years, and

the revision rate increases over time. Aseptic loosening,

characterized by the unexplained loosening of the joint prosthesis

without mechanical causes or infection, is the leading cause of joint

revision, accounting for over 30% of revision surgeries.

Consequently, tens of thousands of individuals undergo revision

arthroplasty each year. Understanding the pathogenesis following

joint arthroplasty is crucial for the prevention and treatment of

these complications (Sadoghi et al., 2013).

Current studies on tissue pathology after prosthesis

implantation have identified various cell populations involved in

the process, including osteoblasts, osteoclasts, osteocytes,

fibroblasts, macrophages, and inflammatory cells. However, there

is a paucity of literature describing the interaction between these

cells and the altered periprosthetic microenvironment. The

periprosthetic microenvironment is a highly intricate

environment comprising various cells and extracellular matrix

components that work together to maintain microenvironmental

homeostasis. Nano wear particles, which is the result of continuous

and intense wear of the artificial joint, is a major contributor to the

periprosthetic microenvironment and plays an important role in

the development of post-implantation inflammation and

aseptic loosening.

In this review, we first recall the histological changes occurred

after prosthetic implantation, then summarize the cellular changes

in the periprosthetic microenvironment, and further put a focus on

the disturbance of nano wear particles of the metal implants on the

periprosthetic microenvironment. In the last, we also look into cell-

cell interactions after prosthetic implantation. Furthermore, we

examine previous studies on the mechanisms associated with

post-implantation prostheses to gain a better understanding of

the changes occurr ing in the per ipros the t i c t i s sue

mic roenv i ronment and the mechan i sms under ly ing

complications. The aim of this review is to summarize the role of
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relevant factors in the microenvironment of the periprosthetic

tissues, and the mechanisms underlying cell-cell and cell-

environment interactions caused by imbalances in the

periprosthetic tissue microenvironment, therefore contributing to

the development of innovative treatments.
2 Histological changes after
prosthetic implantation

2.1 Remodeling of the periprosthetic tissue

The normal joint structure consists of bone, cartilage, and the

synovial joint (Wright et al., 1973). After joint arthroplasty, the new

composition of the joint includes bone, prosthesis, synovial joint, its

newly formed synovial tissue, and joint synovial fluid (Athanasou,

2002) (Figure 1). The bone undergoes a series of healing processes,

including inflammation, hematoma formation, reparative tissue

formation, callus formation, and bone remodeling and maturation

(Gallo et al., 2013). Cartilage repair may also occur, but the rate and

extent of repair can vary and may not occur in all cases.

In the immediate aftermath of surgery, the body responds to the

surgical trauma and the presence of the foreign object (the

prosthesis) with an acute inflammatory response. This response

involves the accumulation of fluid and immune cells around the

prosthesis. Hematoma formation is a natural outcome of this

inflammation and plays a vital role in the bone healing process. It

occurs when blood leaks from damaged blood vessels and

accumulates in the surrounding tissue, providing growth factors

and a barrier between the prosthesis and the surrounding tissues.

Subsequently, reparative tissue, also known as granulation tissue,

forms around the implant. This tissue consists of fibroblasts and

blood vessels and acts as a scaffold for new bone formation. Over

time, the reparative tissue becomes calcified and forms a callus,

which provides support to the surrounding bone. In the final phase

of bone healing, the callus undergoes remodeling and maturation.

This process allows the bone to regain its original strength and

structure while integrating the prosthesis into the surrounding

bone. Eventually, the artificial joint replaces the original joint as

part of the joint (Athanasou, 2002).

Following the removal of chronically inflamed synovial tissue

during joint replacement surgery, over time residual synovial tissue

and regenerated synovial tissue form a new synovial component,

which contains a lining layer and a sub-lining layer. The synovium

is composed of highly vascularized and fibrotic connective tissue

infiltrated by macrophages and dendritic cells. The regenerated

synovial tissue covers the implant and serves as a smooth gliding

surface for joint movement. Periprosthetic pseudomembranes are

often observed in pathological states such as aseptic loosening,

indicating a poor prognosis for prosthetic implantation (Konttinen

et al., 2001; Kung et al., 2015). The combined synovial and

periprosthetic membranes are referred to as the “synovial-like

interface membrane” (SLIM). The synovial fluid produced by the

new synovial tissue contains hyaluronic acid, lubricin, and various

phosphatidylcholines, with protein and phospholipid concentration
frontiersin.org
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levels comparable to normal synovial fluid. However, the

concentration of hyaluronic acid decreases, reducing fluid

viscosity and increasing the risk of joint abrasion (Mazzucco

et al., 2004).
2.2 Appearance of nano wear particles
after prosthetic implantation

Elderly patients undergo a significant number of gait cycles per

year, ranging from 500,000 to 1 million (Goodman et al., 2014).
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This continuous and intense wear action exerts strain on the

artificial joint, resulting in the generation of wear particles,

referred to as prosthetic debris. These wear particles are dispersed

throughout the joint fluid along the bone-implant interface

(Schmalzried et al., 1992; Revell, 2008). The quantity, size, and

origin of these particles influence the extent of bone loss and the

number and depth of resorption sites (Saleh et al., 2004; Goodman,

2007). Furthermore, the presence of wear particles in the

periprosthetic microenvironment can induce the accumulation of

inflammatory cells, leading to bone destruction and disruption of

the microenvironment (Jacobs et al., 2006).
FIGURE 1

Structure of the artificial joint structure and sequential changes after prosthesis implantation. Artificial joint implantation for end-stage joint disease
involves a process of removing damaged cartilage, synovial tissue, and osteophytes, followed by implanting a prosthesis composed of bone and
artificial elements. The initial removal leads to joint tissue trauma and potential tissue necrosis, along with diminished synovial function. The body’s
reparative processes subsequently get triggered, which involves phagocytosing necrotic tissue, forming woven bone, regrowing microvessels, and
repairing synovial tissue, and increasing synovial fluid production. Over time, the prosthesis tightly integrates with the bone, although a decrease in
bone density may occur post-implantation. Despite this, synovial function is ultimately restored, and the composition of synovial fluid in the artificial
joint mirrors that of a normal one.
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2.3 The onset of aseptic loosening

When the equilibrium of the prosthetic microenvironment is

disrupted by factors such as wear particles, it can give rise to the

development of disease states, notably aseptic loosening, where the

rate of particle accumulation can surpass the body’s ability to

maintain microenvironmental balance, resulting in periprosthetic

osteolysis (PPOL) (Shanbhag et al., 1994; Maloney and Smith, 1996;

Shanbhag et al., 2002). Aseptic loosening often accompanies

periprosthetic osteolysis and an inflammatory response.

Additionally, it stands as a significant reason for revision

arthroplasty (Maradit Kremers et al., 2015; Singh et al., 2019).

Therefore, although significant advancements have been made in

prosthetic materials, it remains crucial to prolong the lifespan of

prosthetics and minimize particle production to mitigate the risk of

aseptic loosening (Couto et al., 2020).
3 The cellular periprosthetic
microenvironment after
prosthetic implantation

The microenvironment refers to the extracellular matrix (ECM)

and cells that surround and support target cells. In the context of

arthroplasty and prosthesis implantation, the microenvironment

encompasses the prosthesis itself, released wear particles, bone-

forming lineage cells, immune cells, fibroblasts, and the ECM,

which forms a complex network structure that influences the

behavior of cells within the microenvironment and plays a crucial

role in maintaining homeostasis (Buckley et al., 2021). Here we first

analyze the cellular components in the periprosthetic

microenvironment, which include immune cells, osteogenic

lineage cells forming the joint, and other cells associated with

tissue repair processes.
3.1 Activation of immune cells in the
periprosthetic microenvironment

Various types of immune cells respond to prosthetic

implantation. Leukocytes, such as neutrophils and monocytes,

migrate from the vascularized tissue to the site of damage during

the acute inflammatory response, as illustrated in Figure 2 and

Figure 3A. As illustrated in Figure 2, neutrophils release proteases,

lysozymes, and reactive radicals in the form of extracellular traps

(NETs). This process contributes to opsonization, clearance, and

scavenging at the implant site (Jhunjhunwala et al., 2015; Jorch and

Kubes, 2017). However, neutrophils appear transiently and are

subsequently replaced by macrophages. Prolonged accumulation

of neutrophils after a metal implant may indicate a potential adverse

reaction to the metal implant (Grammatopoulos et al., 2016). Mast

cells also participate in the acute inflammatory response to the

implant by releasing histamine, which recruits macrophages to the

implant site by inducing the expression of adhesion molecules on
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endothelial cells (Zdolsek et al., 2007). Simultaneously,

macrophages produce IL-1a, IL-1b, and TGFb, which recruit

aggregates of neutrophils (St. Pierre et al., 2010; Akbar et al.,

2012). Macrophages can originate from resident macrophages in

bone or differentiate from monocytes in blood vessels. They play a

crucial role in clearing the debris at injury site during the

subsequent inflammatory response. Eosinophils and dendritic

cells are also observed in the acute inflammatory response.

Dendritic cells play a role in inducing and programming T cells,

while the specific role of eosinophils remains unclear (Keselowsky

and Lewis, 2017).

In the adaptive immune response triggered by prostheses,

particularly metal implants, lymphocytes, including T cells and B

cells, play a crucial role in the normal biological response to the

implant (U.S. Food and Drug Administration, 2019). CD4+ T

helper cells (Th) exhibit diverse functional responses to different

metal components, including proliferation, expansion, and

expression of phenotypic markers associated with activation.

Tregs cells promote wound healing by inhibiting the aggregation

of inflammatory cells and macrophages (Nosbaum et al., 2016;

Revell et al., 2016; Markel et al., 2018). CD8+ T cells can be detected

in the vicinity of the prosthetic implant, although their involvement

in the implant response remains uncertain (Hallab et al., 2012).

Histological evidence finds abundant number of T cells in failed

implant tissues. However, the presence of T cells near an implant

does not necessarily indicate a maladaptive response (Hasegawa

et al., 2016; Paukkeri et al., 2016). The response of B cells to

implants is not yet fully understood, but their role in prosthetic

implantation may involve B cell-mediated type I, II, and III

hypersensitivity reactions. Signs of B cell activation have been

observed in failed implants (Mittal et al., 2013).
FIGURE 2

Cellular changes after joint implantation. During the initial phase of
prosthesis implantation, neutrophils, as representatives of the acute
inflammatory response, are the first to enter the cellular repair
response at the site of injury, followed by macrophages and foreign
body giant cells as representative cells of the chronic response in
the prosthetic microenvironment. At the same time the repair of
new capillaries and fibrous tissues gradually proceeds and eventually
granulation tissue is formed.
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3.2 Activation of osteogenic lineage cells
after prosthetic implantation

The trauma caused by prosthetic implantation disrupts bone

homeostasis and activates MSCs as well as osteogenic lineage cells,

including osteocytes and osteoblasts, leading to new bone

formation. As illustrated in Figure 3B, MSCs are present in the

bone marrow stroma, periosteum, and local microvascular walls,

which can differentiate into osteoblasts. During the process of bone

formation, MSCs are stimulated by cytokines to differentiate into

the osteoblast lineage, resulting in the formation of collagen fibers

and bone-like tissue composed of mesenchymal cells, pre-

osteoblasts, and osteoblasts (Marco et al., 2005; Kuzyk and

Schemitsch, 2011). Osteoblasts play a vital role in bone deposition

and implant osseointegration. They are primarily responsible for

the synthesis of most bone matrix components, regulation of bone

mineralization, and provide the foundation for the growth of new

bone tissue. Consequently, osteoblasts play a critical role in

postoperative implant osseointegration. Osteoclasts are also

involved in implant osseointegration and normal bone

remodeling. Activation of osteoclasts leads to bone resorption,
Frontiers in Cellular and Infection Microbiology 05
followed by the activation of osteoblasts and mineralization of

new bone tissue (Zhang et al., 2020). Eventually, a new balance is

established in bone regeneration and osteolysis. Osteoblasts that are

surrounded by the newly generated bone extracellular matrix

differentiate into osteocytes, which constitute the majority of cells

within the bone and contribute to maintaining bone homeostasis

through their involvement in matrix synthesis, regulation of

cytokines, and other functions (Pajarinen et al., 2017).
3.3 Alterations in other cells during
prosthetic implantation

Fibroblasts and endothelial cells play crucial roles in tissue

repair following prosthesis implantation (Figure 3C). Fibroblasts

migrate to the injury site within 2-10 days of implantation. They

contribute to tissue repair by producing ECM, especially type I and

type III collagen. Simultaneously, proliferating endothelial cells

facilitate the formation of new blood vessels, promoting the

development of granulation tissue at the injury site. Over time,

the granulation tissue gradually diminishes along with fibroblasts,
B

C

D

A

FIGURE 3

Cell changes in periprosthetic environment after prosthesis implantation. (A): Inflammatory Response Post-Implantation (B): Bone Regeneration
Post-Implantation (C): Synovial Repair Post-Implantation (D): Extracellular Matrix Post-Implantation The prosthetic microenvironment comprises
cells and extracellular matrix, playing roles in inflammatory response, bone regeneration, and synovial repair. Cells like neutrophils, monocytes,
eosinophils, mast cells, dendritic cells, and lymphocytes contribute to the inflammatory response. Neutrophils are the first to converge on the
damaged area, eliminating DAMPs (necrotic cells and bone debris) via NETs (extracellular traps). Monocytes migrate to the prosthetic
microenvironment, differentiating into macrophages to phagocytose necrotic cells, alongside tissue-resident macrophages. However, the exact
mechanisms of eosinophils, mast cells, dendritic cells, and lymphocytes are not fully elucidated. During bone regeneration, mesenchymal stem cells
differentiate into osteoblasts to stimulate osteogenesis. Osteoblasts subsequently encapsulated by bone form osteocytes, while osteoclasts are
responsible for bone resorption. The synovial membrane consists of synovial-like and fibroblast-like cells, with macrophages aiding in its
regeneration and endothelial cells participating in tissue repair. The extracellular matrix, largely studied in the context of wear particles, is an
inevitable byproduct in the prosthetic microenvironment, dispersing within the synovial fluid and tissue areas of the joint.
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leaving behind a collagenous scar. M2 Macrophages also play a role

in this process by secreting growth factors that stimulate fibroblasts

and endothelial progenitor cells, as well as guiding ECM remodeling

(Krafts, 2010). Additionally, fibroblasts may contribute to the

pathological process of bone resorption through the secretion of

pro-inflammatory factors (Koreny et al., 2006).

Post implantation, the synovial membrane consists of a thin

layer of cells containing macrophage-like synoviocytes and

fibroblast-like synoviocytes, and ECM similar to that of a normal

joint. The regeneration capacity of synovial tissue are postulated to

be originated from local synovial mesenchymal stem cells (MSCs).

MSCs is the precursor for mesenchymal lineage (Huang et al., 2011;

Lv et al., 2014), which harbor in many tissue sources (Lv et al., 2012)

and become the key cell type for tissue regeneration in recent years

(Leung et al., 2014; Deng et al., 2020; Qi et al., 2020; Chen et al.,

2022). Some literature also suggests that synovial MSCs may

manifest as fibroblast-like synoviocytes (Kung et al., 2015; Li

et al., 2019; Li et al., 2020).
4 The disturbance of nano wear
particles on the periprosthetic
microenvironment

A persistent low-grade chronic inflammation could be triggered

by nano wear particles surrounding the prosthesis to cause aseptic
Frontiers in Cellular and Infection Microbiology 06
loosening (Marmotti et al., 2020). As depicted in Figures 3D,

Figure 4, wear particles exhibit resistance to enzymatic

degradation and are not readily absorbed by the body, leading to

their accumulation in the periprosthetic microenvironment. The

persistent chronic foreign body reaction diminishes local bone

formation and augments osteolysis, ultimately culminating in

aseptic loosening.
4.1 Nano wear debris induces inflammation
in aseptic loosening

Wear particles primarily activate an innate immune response

dominated by macrophages, with the involvement of monocytes,

mast cells, and dendritic cells, as illustrated in Figure 4C. However,

there is still ongoing debate regarding the involvement of

lymphocytes in the process of aseptic loosening.

Osteoclasts and tissue-resident macrophages are recognized as

the initial cells that encounter wear debris (Lenz et al., 2009;

Goodman and Ma, 2010; Smith et al., 2010; Lin et al., 2015).

Upon activation, these cells produce pro-inflammatory cytokines

and chemokines, which attract monocytes and dendritic cells and

amplify the overall inflammatory response. Following the presence

of wear particles in the periprosthetic environment, resident

macrophages surrounding the prosthesis identify the foreign body

through sensing, chemotaxis, phagocytosis, and adaptive

stimulation (Medzhitov, 2008). The magnitude of the macrophage
FIGURE 4

Disruption of Microenvironment Homeostasis in Joint Prosthesis: Cellular and Extracellular Changes Leading to Aseptic Loosening. (A): Cellular
Components Post-Implantation with homeostaisis (B): Extracellular Matrix Post-Implantation with homeostaisis (C): Changes in Cellular Components
during Aseptic Loosening (D): Changes in Extracellular Matrix during Aseptic Loosening Following implantation, the microenvironment within the
joint prosthesis initially attains stability. This is evidenced by the harmonious presence of diverse cell types, including osteoblasts, osteoclasts,
osteocytes, synovial cells, and fibroblasts and the establishment of a steady extracellular matrix that includes the prosthesis, bone, and synovium.
However, this state of balance is disrupted when aseptic loosening begins. This process initiates as wear particles trigger the differentiation of
monocytes into macrophages. The macrophages that form from this differentiation process not only attract additional macrophages but also inhibit
the differentiation of osteoblasts by releasing cytokines such as TNF-a. Concurrently, fibroblasts stimulate increased activity in osteoclasts via the
RANKL-RANK axis. These changes lead to an overall increase in osteoclast activity and a suppression of osteogenesis. The response also includes
participation from mast cells and dendritic cells. In addition, it is suggested that T lymphocytes participate in this process when metal wear particles
are generated. The culmination of these alterations results in bone destruction, a roughened surface of the prosthesis, and an increase in synovial
inflammation, all of which contribute to aseptic loosening.
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response is intensified by larger abrasive particles. When particles

are small (<10 µm), individual macrophages and foreign body

macrophages can effectively adhere to and phagocytose them. For

particles that cannot be efficiently phagocytosed by individual

macrophages or foreign body macrophages (20-100 µm),

macrophages can fuse together to form multinucleated

macrophages or multinucleated foreign body macrophages that

surround or isolate large particles, eventually resulting in the

formation of foreign body granulomas (Nich et al., 2013).

Granulomas comprise histiocytes, fibroblasts, and multinucleated

foreign body giant cells (Shen et al., 2006), while monocytes

continue to differentiate into macrophages, participating in the

reaction during this process.

Current hypotheses propose that wear particle-engulfing

macrophages exhibit an MF phenotype, and wear particles

induce the polarization of macrophages into a pro-inflammatory

M1 phenotype. This, in turn, promotes osteoclast maturation,

leading to increased bone resorption and periprosthetic osteolysis

(Mandelin et al., 2004; Masui et al., 2004; Sabokbar et al., 2015;

O’Brien et al., 2016) (Figure 5). Simultaneously, macrophages cause

further macrophage aggregation through the release of pro-

inflammatory cytokines, such as interleukin 1a (IL1-a), IL1-b,
Frontiers in Cellular and Infection Microbiology 07
tumor necrosis factor a (TNF-a), IL-6, IL-1, growth factors such

as macrophage colony-stimulating factor-1), and chemokines such

as macrophage inflammatory protein-1 a (MIP-1a) and monocyte

chemoattractant protein-1 (MCP-1) (Gibon et al., 2017). Other

macrophages, not activated by phagocytosis, undergo polarization

through membrane receptor interactions by toll-like receptor 4

(TLR4), CD11b, CD14, wherein TLR4 is induced to activate the

nuclear factor kappa-B (NF-kB) pathway primarily via the adapter

protein myeloid differentiation primary response gene 88 (MyD88)

or directly through the interferon regulatory Factor 3 (IRF3)

pathway, resulting in cytokine release. Our previous study

revealed a significant downregulation of sirtuin 1 (SIRT1) in

macrophages stimulated by metal nanoparticles via the NF-kB
pathway (Deng et al., 2017a). Following activation, an increased

number of macrophages contribute to an enhanced osteolytic effect

(Akira et al., 2001; Tuan et al., 2008). Moreover, macrophages also

play a role in fibrosis and attempt tissue repair and restoration.

During this phase, M2 phenotype macrophages exhibit an anti-

inflammatory function by releasing cytokines (IL-4, IL-10, IL-13),

regulating ongoing tissue damage, isolating granuloma-like

structures, and attempting to isolate nondegradable materials

(Mosser and Edwards, 2008; Purdue, 2008; Sun et al., 2021).
FIGURE 5

The interaction between wear particles and macrophages in aseptic loosening. Wear particles of artificial joint prosthesis are often released into the
prosthetic microenvironment because of overuse, Instability, and trauma factors. Monocytes can swallow wear particles, and when wear particles are
swallowed by phagocytes, they will aggravate inflammation by releasing pro-inflammatory cytokines, chemokines, and M-CSF1 to activate M1
phenotype macrophages and promote the release of more inflammatory factors. Whereas osteoclast growth increases, causing increased osteolysis.
Monocytes can also recognize stimulatory signals from wear particles through cell contact and release cytokines to further recruit more
macrophages, while activating macrophages, causing more osteolysis. M2 phenotype macrophages and M1 phenotype macrophages can
interconvert, with M2 phenotype anti-inflammatory macrophages phagocytosing wear particles to lyse and releasing cytokines to inhibit
inflammation, as well as encapsulating granulomas to isolate inflammatory lesions.
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Infiltration of mast cells (Solovieva et al., 1996; Qiu et al., 2005)

and dendritic cells (Kou and Babensee, 2010; Vaculová et al., 2018)

can be observed in the periprosthetic microenvironment during

aseptic loosening (Figure 4C). However, the mechanisms behind

their involvement remain poorly understood. Concerning the effect

of wear particles on dendritic cells (DCs), in vitro exposure to ultra-

high-molecular-weight polyethylene (UHWMP) particles has

demonstrated that wear particles can stimulate major

histocompatibility complex (MHC) II expression and IL-12

production by activating TLR1/2 on the surface of DCs (Maitra

et al., 2008). Furthermore, the inability of DCs to digest wear

particles following phagocytosis leads to lysosome rupture and

the release of histone proteases S and proteases B into the

cytoplasm, triggering activation of pattern recognition receptors

(PRRs) such as the NLR family pyrin domain containing 3 (NLRP3)

inflammasome. This activation results in the release of IL-18 and

IL-1b from the cells into the extracellular environment. In turn,

these cytokines contribute to extracellular matrix lysis, the onset of

periprosthetic inflammation, and bone resorption, ultimately

leading to the development of osteolysis (Maitra et al., 2009).

Based on current literature, it has been established that

lymphocytes play a crucial role in the development of aseptic

lymphocyte-dominated vasculitis-associated lesion (ALVAL) in

response to wear particle stimulation. However, the role of

lymphocytes in aseptic loosening induced by wear particles

remains controversial. Some studies have observed a greater

aggregation of CD3+ T cells, particularly in metal-on-metal

prostheses, in pathological tissue specimens (Hercus and Revell,

2001; Hopf et al., 2017). Conversely, other studies have reported

lower levels of T cells in osteolysis tissue and the absence of cytokine

release associated with T cells (Li et al., 2001). Furthermore, no

significant increase in Th1, Th2, and CD3+ T cells was observed in

osteolytic tissue compared to non-osteolytic tissue (Arora et al.,

2003; Dapunt et al., 2014). Based on the available literature, it can be

presumed that lymphocytes may not play a significant role in

aseptic loosening. Existing studies, which are limited by small

sample sizes, have primarily reported an increase in T

lymphocytes in metal implants, potentially due to the coexistence

of ALVAL. Therefore, further investigation is necessary to clarify

the role of lymphocytes in aseptic loosening.
4.2 Impact of wear particles on bone
forming lineage cells

The impact of wear particles on bone-forming lineage cells

(MSCs, osteoblasts, osteocytes) is crucial in the osteolysis process

wi th in the pros thes i s microenv i ronment in asept i c

loosening (Figure 4C).

An increasing number of studies have demonstrated that wear

particles not only activate macrophages and osteoclasts, leading to

increased bone resorption, but also cause significant damage to

MSCs. This damage prevents osteoblast differentiation and impairs

bone formation, reducing cell viability and impairing the

production of mineralized bone matrix (Goodman et al., 2006;

O’Neill et al., 2013; Ebert et al., 2021). Animal experiments and
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cellular studies have revealed that wear particles inhibit MSCs’

osteogenic differentiation, induce the production of pro-

inflammatory cytokines such as IL-1b, IL-6, and TNF-a,
upregulate receptor activator of nuclear factor-kappa B ligand

(RANKL), and decrease osteoprotegerin (OPG) (Cai et al., 2013;

Jiang et al., 2013). In response to titanium (Ti) particles, impaired

MSCs activity and osteogenic differentiation depend on the

phagocytosis of Ti particles. Additionally, granulocyte-

macrophage colony stimulating factor (GM-GSF) disrupts

cytoskeletal organization and induces MSCs to secrete IL-8 and

GM-CSF, further reducing cell viability and osteogenic

differentiation similar to the effects of phagocytosis of Ti particles

(Okafor et al., 2006; Haleem-Smith et al., 2011). Although several

signaling pathways have been observed to have adverse effects on

MSCs due to wear particles, such as the NF-kB signaling pathway

adversely affecting osteogenic differentiation (Lin et al., 2014),

reduced involvement of the Wnt/b-actin signaling pathway in

MSC differentiation to osteogenesis (Wang et al., 2016) and

activation of the extracellular regulated protein kinases (ERK)

signaling pathway (Lee et al., 2011), the number of studies on this

topic is limited, and the signaling pathways involved in the

inhibition of MSC differentiation induced by wear particles

remain poorly understood.

Simultaneously, wear particles stimulate MSCs to express

metalloproteinases through multiple signaling pathways. These

metalloproteinases can cleave the collagen-rich, mineralized ECM

of bone (Chen et al., 2018). Consequently, when matrix

metalloproteinases are overexpressed and attach to the surface of

the bone-prosthetic tissue, they can degrade the bone matrix and

exacerbate periprosthetic osteolysis (Takei et al., 2004; Jonitz-

Heincke et al., 2016).

Osteoblasts primarily interact with wear particles through

phagocytosis, involving the internalization of the particles (Chiu

et al., 2009, 5; Vermes et al., 2016). They also engage in non-

phagocytic interactions with the particles (Granchi et al., 2003;

Vermes et al., 2006). When particles enter the cytoplasm of

osteoblasts, attachment to different cells causes swelling of

intracellular organelles and rupture of cell membranes.

Furthermore, particles can lead to DNA damage and activate

DNA repair mechanisms, although no particles have been

observed within the nucleus (Lee et al., 2013; Ribeiro et al., 2016).

When particles attach to actin fibers, they significantly disrupt the

cytoskeletal structure of osteoblasts, impeding cell function

(Saldaña and Vilaboa, 2009; Lee et al., 2011; Lee et al., 2013). Our

study has shown that the expression of SIRT1 is significantly

downregulated in osteoblasts treated with particles. Additionally,

particles can stimulate the production of inflammatory cytokines

and induce apoptosis in osteoblasts through the NF-kB pathway

(Deng et al., 2017b). Furthermore, our results suggest that the

STAT/IL-6 pathway may mediate nanoparticle-induced

inflammation and stimulate osteoclast formation (Deng et al.,

2021). Moreover, particles inhibit the osteogenic differentiation of

osteoblasts through the Wnt/b-catenin and bone morphogenic

protein (BMP)/smad signaling pathways (Preedy et al., 2015;

Nam et al., 2017; Sun et al., 2019). By secreting extracellular

matrix (mainly type I collagen) and matrix metalloproteinases
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along with their inhibitors such as tissue inhibitor of

metalloproteinase (TIMP), osteoblasts wearing particles can

inhibit the formation of type I precollagen through the NF-kB
signaling (Roebuck et al., 2006; Vermes et al., 2006). This disruption

also disturbs the balance between osteogenic matrix

metalloproteinases and TIMP (Ma et al., 2006; Syggelos et al.,

2013), resulting in decreased osseointegration and subsequent

implant failure.

Osteoblasts reside in the mineralized matrix lumen and account

for 90-95% of the cells in mineralized bone, with osteoclasts and

osteocytes comprising only about 5% of the cells (Shiflett et al.,

2019). In response to wear particle stimulation, osteoblasts shift

from anabolic to catabolic, as evidenced by increased expression of

catabolic markers such as cathepsin K and tartrate-resistant acid

phosphatase (TRAP). This leads to periluminal remodeling, causing

a significant increase in osteocyte lumen size (Atkins et al., 2009;

Ormsby et al., 2016). Interestingly, according to Ormsby’s study,

osteoblast-induced bone loss in response to wear particles appears

to be gender-specific, affecting only women (Ormsby et al., 2019).
4.3 Impact of wear particles on fibroblasts
in the synovial membrane

The composition of the synovial membrane in aseptic loosening

includes synovial tissue, regenerated synovial tissue, and the

periprosthetic membrane between bone and cement or bone and

implant, with fibroblasts comprising 70% of these components.

During the dispersion of joint fluid along the bone-implant

interface, wear particles can persist in the synovial membrane,

leading to fibroblasts’ involvement in wear particle-induced

osteolysis (Rose et al., 2012). Wear particles can induce the

expression of receptor activator of nuclear kappa-B (RANKL) in

fibroblasts through various pathways, including the TLR-MyD88-

RANKL pathway, the endoplasmic reticulum (ER) stress pathway,

and the prostaglandin E2 (PGE2) receptor EP4 signaling pathway,

thereby stimulating osteoblast differentiation (Tsutsumi et al., 2009;

Wang et al., 2015; Li et al., 2018). However, it is important to note

that this response may vary among patients.
5 Cell-cell interaction

To gain a better understanding of the complex periprosthetic

environment and the interactions among different cell types

involved in aseptic loosening, it is crucial to investigate cell

communication. The periprosthetic environment encompasses

osteogenic lineage cells and various immune cells, such as

macrophages, osteoclasts, MSCs, osteoblasts, osteocytes,

fibroblasts, mast cells, dendritic cells, and lymphocytes. Among

these cell types, osteogenic lineage cells and immune cells play

significant roles. Due to their spatial proximity, interactions

between these cell types are inevitable, and studying these

interactions could provide insights into the mechanisms

underlying aseptic loosening (Okamoto et al., 2017). While much

remains unknown, exploring cell-to-cell interactions studied in the
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context of osteolysis and other aspects of orthopedics could serve as

a valuable starting point for future research aimed at developing

new treatments.
5.1 Osteoimmunological interactions

Osteoimmunological interactions are essential for maintaining

bone homeostasis and play a significant role in bone pathology,

particularly in the process of aseptic loosening, where macrophages

and osteoclasts dominate the innate immune response. Immune

cells have the ability to influence osteoblastic lineage cells, and

conversely, osteoblastic lineage cells may also regulate innate

immunity in this process.

The proliferation, function and differentiation of MSCs could be

affected by their local microenvironments (Huang et al., 2020).

Studies exploring the interaction between macrophages and MSCs

in aseptic loosening are still limited. Macrophages contribute to

MSCs aggregation by secreting chemokines such as macrophage

inflammatory protein 1 (MIP1a) and monocyte chemotactic

protein-1 (MCP-1) (Huang et al. , 2010). Furthermore,

macrophages can inhibit the osteogenic differentiation of MSCs.

In conditioned medium with Ti particles mimicking macrophage

activation, macrophages induce the MSCs-mediated NF-kB
signaling pathway in sclerostin via TNF-a. This inhibits Wnt and

BMP signaling pathways, resulting in decreased runt-related

Transcription Factor 2 (RUNX2) expression, alkaline phosphatase

(ALP) activity, and bone mineralization in MSCs (Lee et al., 2012).

On the contrary, particle-stimulated macrophages have been shown

to stimulate MSCs to promote osteogenesis through IL-10 (Mahon

et al., 2020). Recent studies have demonstrated that co-culturing

MSCs with M2 macrophages promotes bone formation (Gao et al.,

2021). Additionally, it has been observed that M1 macrophages

inhibit the growth of MSCs, while M2 macrophages promote their

growth (Lu et al., 2021). Therefore, it is possible that M1

macrophages inhibit osteogenic differentiation, whereas M2

macrophages promote bone formation in aseptic loosening.

Regarding the effect of MSCs on immune cells, it has been

discovered that MSCs have an inhibitory effect on the inflammatory

response. Blocking the secretion of the chemokine C-C-motif

receptor (CCR1) in MSCs can lead to an increase in particles-

induced osteolysis, suggesting that recruiting MSCs to inflamed

areas helps limit inflammation and may contribute to bone

regeneration (Gibon et al., 2012). Recent studies have also shown

that MSCs can increase the ratio of M2/M1 cells, reducing bone

resorption and enhancing bone formation (Shen et al., 2022;

Kushioka et al., 2023). While MSCs primarily regulate adaptive

immune responses in inflammatory diseases (Bernardo and Fibbe,

2013), an increasing number of studies indicate their crucial role in

modulating innate immunity (Le Blanc and Mougiakakos, 2012).

MSCs can induce macrophage polarization to an M2 anti-

inflammatory phenotype through the paracrine secretion of

PGE2, transforming growth factor b (TGF-b), indoleamine 2,3-

dioxygenase (IDO), chemokine C-C motif ligand 2 (CCL2), and

chemokine C-X-C Motif ligand 12 (CXCL12) (Pajarinen et al.,

2017; Lu et al., 2021). Thus, MSCs may suppress the inflammatory
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1275086
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Xie et al. 10.3389/fcimb.2023.1275086
response by modulating the innate immune response in

aseptic loosening.

Macrophages can aggregate in osteal tissues to form osteomas

and are believed to play a crucial role in directing osteoblast

function and mineralization. However, the interaction of site-

specific macrophage populations with other cells has not been

studied yet (Cho, 2015; Miron and Bosshardt, 2015). In the

context of aseptic loosening, macrophages inhibit osteoblasts,

leading to increased osteolysis. The release of cytokines, such as

TNF-a, IL-6, IL-1b, and GM-CSF, stimulates the secretion of

osteoblasts, including IL-6, PGE2, M-CSF, GM-CSF, MCP-1, and

RANKL (Rodrigo et al., 2002; Vallés et al., 2008; Guo et al., 2013),

which further recruit macrophages, increase osteoclast production,

and inhibit osteoblast function. Osteoblasts can modulate the

degree of inflammation in macrophages and regulate the

macrophage response to particle stimulation through the release

of soluble mediators. In an osteoblast-macrophage co-culture

model, lower levels of TNF-a and IL-1b were detected, possibly

due to the paracrine action of PGE2 from osteoblasts (Rodrigo et al.,

2005). Furthermore, it has been found that when macrophages were

co-cultured with osteoblasts, macrophages could produce lipoxin

A4 (LXA4) to counteract polymethylmethacrylate (PMMA)

induced cytokine production, and this production of LXA4 was

only observed in the presence of osteoblasts (Li et al., 2009). These

findings suggest that osteoblast-macrophage interactions contribute

to the resolution of particle-induced inflammation.

Osteoclasts are the only cells in the body responsible for bone

resorption and work together with osteoblasts to maintain the

dynamic balance of bone metabolism. Osteoblasts interact with

osteoclasts through secreted factors RANKL and osteoprotegerin

(OPG). The binding of RANKL and RANK activates the NF-kB
pathway, ultimately leading to osteoclast formation, while OPG

serves as a decoy receptor for RANKL and negatively regulates

osteogenesis. The ratio of RANKL/OPG determines the degree of

osteoclast differentiation and function. Wear particles induce a shift

from an anabolic phenotype to a catabolic phenotype in osteoblasts

(Atkins et al., 2009), resulting in increased expression of cytokines

mediating osteoclastogenesis (TNF-a, IL-1b, IL-6, IL-8, PGE2, M-

CSF, MCP1, RANKL) and decreased OPG expression (Granchi

et al., 2003; Pioletti and Kottelat, 2004; Atkins et al., 2009; Gordon,

2016). Recent studies have also identified a reverse signaling

pathway of RANKL in osteoclast-osteoblast coupling, where

osteoclasts promote osteoblast bone formation by secreting

vesicular RANK and stimulating osteoblast differentiation.

Signaling proteins and neurotrophins also play a significant role

in the communication between osteoclasts and osteoblasts.

Moreover, non-resorbing osteoclasts have been found to influence

the function of osteoblasts under particle attack. Interestingly,

recent research suggests that the intricate balance of bone

homeostasis is maintained through communication between

osteoblasts and osteoclasts using exosomes (Yuan et al., 2018).

However, the roles of these interactions in aseptic loosening have

not been studied extensively, and further research is needed to

determine their importance.

The interaction between osteoclasts and MSCs is not well

understood, but current research suggests that MSCs can regulate
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osteoclast activation and formation through paracrine secretion and

the RANKL-RANK-OPG pathway. New studies have also shown

that MSCs can inhibit osteoclasts, and stem cell exosomes can block

osteoclast activation or differentiate into osteoblasts to regulate

bone remodeling. BMSC derived exosomes have been

demonstrated to activate osteogenesis and downregulate

osteoclastogenesis through multiple pathways (Ma et al., 2022).
5.2 The interaction of fibroblasts with
other cells

Apart from the interaction between immune cells and bone cells,

limited research has been conducted on other types of cell-to-cell

interactions within implant microenvironments. However, some

evidence suggests that fibroblasts, when interacting with osteoclasts,

also play a crucial role in maintaining microenvironment homeostasis

in aseptic loosening. Studies have shown that fibroblasts in the

periprosthetic environment can induce the differentiation of MSCs

and peripheral blood mononuclear cells into mature osteoclasts,

leading to local bone resorption or osteolysis through mechanisms

involving RANKL and TNF-a (Sakai et al., 2002; Sabokbar et al., 2005).

Recent research has found that fibroblasts can enhance osteoclast

differentiation through X-box binding protein 1 (XBP1) mediated

RANKL expression (Wang et al., 2017). Furthermore, fibroblasts on

the bone surface can actively participate in bone resorption by

degrading the bone matrix through the release of acidic components

and bone-degrading enzymes, without the involvement of osteoclasts

(Pap et al., 2003). In summary, fibroblasts can accelerate bone

resorption around implants by promoting osteoclast differentiation

and directly releasing bone-resorbing substances.

The role of osteoclasts in relation to fibroblasts has not been

explored in the literature, and there is currently no available

research on the interaction between osteogenic lineage cells and

fibroblasts. The lack of literature on the interaction between

osteoclasts and fibroblasts, as well as between osteoblasts and

fibroblasts, highlights the need for further research in this area.

Understanding the mechanisms underlying the interaction between

these cell types may provide insight into the development and

progression of aseptic loosening.
6 Conclusion

Aseptic loosening is a complex process involving biomaterials,

host tissues, and the immune system. It is characterized by immune

cell infiltration, cytokine production, osteoclast activation, bone

resorption, and wear debris production. Factors such as long-term

wear of the implant and disruption of microenvironment

homeostasis contribute to aseptic loosening. Potential therapeutic

targets include anti-inflammatory drugs, osteoclast inhibitors, and

antioxidants, addressing chronic inflammation, bone resorption,

and oxidative stress, respectively.

Despite the progress made in understanding aseptic loosening,

current research mainly focuses on wear particle-induced cellular

effects, while cell interactions and spatial distribution in the
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prosthesis remain understudied. Therefore, future studies should

concentrate on elucidating cell interactions using advanced

technologies such as single-cell and spatial sequencing to

uncover the complex relationships between various cell types

and their functions in the microenvironment. Moreover,

interdisciplinary collaboration among material scientists,

biologists, and clinicians is essential for developing innovative

solutions that bridge the gap between fundamental research and

clinical applications.

Further research should investigate cellular interactions, spatial

distribution in the microenvironment, and potential therapeutic

targets, with the aim of developing a comprehensive understanding

of the mechanisms underlying aseptic loosening. This knowledge

will contribute to the development of innovative treatments that

effectively prevent and manage this common complication of joint

replacement surgery, ultimately improving patient outcomes and

quality of life.
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