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Reactive oxidant species (ROS) are unstable, highly reactive molecules that are

produced by cells either as byproducts of metabolism or synthesized by

specialized enzymes. ROS can be detrimental, e.g., by damaging cellular

macromolecules, or beneficial, e.g., by participating in signaling. An increasing

body of evidence shows that various fungal species, including both yeasts and

molds, increase ROS production upon exposure to the antifungal drugs currently

used in the clinic: azoles, polyenes, and echinocandins. However, the

implications of these findings are still largely unclear due to gaps in knowledge

regarding the chemical nature, molecular origins, and functional consequences

of these ROS. Because the detection of ROS in fungal cells has largely relied on

fluorescent probes that lack specificity, the chemical nature of the ROS is not

known, and it may vary depending on the specific fungus-drug combination. In

several instances, the origin of antifungal drug-induced ROS has been identified

as the mitochondria, but further experiments are necessary to strengthen this

conclusion and to investigate other potential cellular ROS sources, such as the

ER, peroxisomes, and ROS-producing enzymes. With respect to the function of

the ROS, several studies have shown that they contribute to the drugs’ fungicidal

activities and may be part of drug-induced programmed cell death (PCD).

However, whether these “pro-death” ROS are a primary consequence of the

antifungal mechanism of action or a secondary consequence of drug-induced

PCD remains unclear. Finally, several recent studies have raised the possibility

that ROS induction can serve an adaptive role, promoting antifungal drug

tolerance and the evolution of drug resistance. Filling these gaps in knowledge

will reveal a new aspect of fungal biology and may identify new ways to

potentiate antifungal drug activity or prevent the evolution of antifungal

drug resistance.
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Introduction: reactive oxidant species
and fungal pathogens

Reactive oxidant species (ROS) are a host of unstable molecules

that are highly reactive with other molecules in their vicinity,

sometimes with detrimental consequences (Schieber and Chandel,

2014; Sies et al., 2017; Sies et al., 2022). Most ROS are oxygen- or

nitrogen-based, but can also contain chlorine, sulfur, etc., and can

be either free radicals (e.g., hydroxyl radical •OH, superoxide O2
•-,

or nitric oxide NO-•) or non-free radicals (e.g., hydrogen peroxide

H2O2 or hypochlorite HOCl). ROS are produced by all living

organisms, either as byproducts of cellular metabolism or

synthesized by specialized enzymes, such as NADPH oxidases

and nitric oxide synthases. For several decades after their

discovery in the 1960s, ROS were considered to be exclusively

detrimental to cells because of the oxidative damage they could

cause to cellular macromolecules, including DNA, proteins, and

lipids. However, eventually it became apparent that the

consequences of ROS could be either detrimental or beneficial,

depending on the specific molecules produced and their levels

(Winterbourn, 2008; Finkel, 2011; Schieber and Chandel, 2014;

Sies et al., 2017; Lennicke and Cochemé, 2021; Sies et al., 2022).

Therefore, the current prevailing paradigm is that ROS are integral

components of normal cellular signaling and functions, and the

formerly widely used concept of “oxidative stress” has been refined

to include “oxidative distress”, wherein ROS are present at high and

damaging levels, and “oxidative eustress”, wherein ROS are present

at levels supporting normal cellular homeostasis (Sies et al., 2017).

In some contexts, however, the damaging capacity of ROS is

integral to their biological function. The best studied example of this

is the capacity of immune cells to produce high levels of ROS via

specialized enzymes to kill pathogenic microbes. Conversely,

microbial pathogens, including fungi, have evolved a range of

defense mechanisms that allow them to counteract and survive

the ROS onslaught imposed by host immunity (Warris and Ballou,

2019; Yaakoub et al., 2022). Furthermore, fungal cells themselves

have been shown to produce endogenous ROS that play important

roles in promoting fungal morphogenesis, including at the host-

pathogen interface (Rossi et al., 2017). It is in the context of host-

pathogen interaction that the connection between fungal pathogens,

ROS, and fungal antioxidant systems has been largely studied and

discussed (Warris and Ballou, 2019; Yaakoub et al., 2022).

Interestingly, over the last decade, a number of studies have

shown that ROS are also produced by fungal cells in response to

antifungal drug treatment (Table 1). However, despite the

accumulating evidence for antifungal drug-induced ROS

formation, the implications of this phenomenon are still largely

unknown. In this review we summarize the evidence for antifungal

drug-induced ROS formation in fungal cells, outline what is known

about their chemical nature, molecular origin, and possible

functions, highlight the large gaps in knowledge in these three

areas, and outline the approaches that could fill those gaps. The

focus of this review is on the most prevalent fungal pathogens of

humans that cause invasive infections associated with high

mortality (namely, Candida, Aspergillus, and Cryptococcus
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species), and we will discuss evidence for ROS production by

fungi specifically in response to antifungal drugs currently used in

the clinic to treat invasive fungal infections: azoles, polyenes, and

echinocandins. Finally, we will discuss these observations in the

broader context of ROS formation as part of the fungal

programmed cell death (PCD) cascade triggered by various types

of environmental stress.
ROS form in fungi during antifungal
drug exposure

Three major classes of antifungal drugs are currently used

clinically to treat invasive fungal infections – azoles,

echinocandins, and polyenes – and increased ROS production has

been detected in fungal cells in response to all of these drug classes

(Table 1). In this section we briefly describe the antifungal mode of

action for each of these drug classes and summarize the available

experimental evidence for ROS induction in response to treatment.

In the following sections we will discuss the identity, cellular origins,

and functions of these ROS, focusing in particular on the large gaps

in knowledge in each of these areas and possible approaches to fill

those gaps.

Azoles are a frontline antifungal drug class that works by inhibiting

the biosynthesis of ergosterol, an essential component of fungal cellular

membranes. Most azoles exert static effects in yeasts (Candida,

Nakaseomyces, Cryptococcus) but are cidal in molds, such as

Aspergillus. Evidence of ROS formation in response to azole

exposure has been reported in both yeasts and molds (Table 1).

Interestingly, in Candida, the most robust and reproducible evidence

for ROS formation has been obtained in response to fungicidal azoles:

miconazole and itraconazole (Kobayashi et al., 2002; Francois et al.,

2006; Belenky et al., 2013; Lee and Lee, 2018; Muñoz-Megıás et al.,

2023). In contrast, investigating whether C. albicans induces ROS in

response to fluconazole, which is fungistatic in Candida, has produced

conflicting results (Kobayashi et al., 2002; Francois et al., 2006; Belenky

et al., 2013) (Table 1). Indeed, some studies have explicitly noted that

ROS were robustly induced in response to fungicidal drugs but not

fungistatic ones (Francois et al., 2006; Belenky et al., 2013). On the

other hand, ROS increases have been detected in response to

fluconazole in Nakaseomyces glabratus (formerly and still frequently

referred to as Candida glabrata) (Mahl et al., 2015) and Cryptococcus

neoformans (Peng et al., 2018; Dbouk et al., 2019) (but not C. gattii

(Ferreira et al., 2013)), i.e., species in which fluconazole is fungistatic.

Thus, the relationship between cidality and ROS induction is suggested

by some data but does not appear to be universal. The mechanisms

proposed to link azole action to ROS formation are not fully

understood but have invoked mitochondrial membrane perturbation

by the azoles, resulting in respiratory chain defects, electron leakage,

and increased ROS production (Shekhova et al., 2017). Also, as

discussed at length below, azole-mediated disruption of

mitochondrial integrity may trigger the fungal PCD response, in

which ROS are a key intermediate (Ramsdale, 2008; Strich, 2015).

Polyenes are the oldest antifungal agents in clinical use, which

exert their antifungal action by binding to ergosterol in the fungal
frontiersin.org
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membranes, resulting in loss of membrane integrity. These drugs

are not used as frontline agents due to their high incidence of toxic

side effects. Nevertheless, polyenes, of which amphotericin B is the

most frequently used member, are an important part of our

antifungal drug armamentarium due to high intrinsic or

increasing acquired resistance to frontline antifungals (azoles and

echinocandins) in some fungal species (Perlin et al., 2015; Gow

et al., 2022). Amphotericin B is fungicidal against all fungal species,

at least in vitro, and it has been shown to induce robust ROS

formation in all yeast and mold species examined to date, including

several Candida species, N. glabratus, C. neoformans and C. gattii,

and Aspergillus fumigatus (Phillips et al., 2003; Sangalli-Leite et al.,

2011; Belenky et al., 2013; Ferreira et al., 2013; Mesa-Arango et al.,

2014; Guirao-Abad et al., 2017; Shekhova et al., 2017) (Table 1).

How amphotericin B induces ROS production is not clear, but

mitochondrial membrane disruption has been proposed as the

initiating event (Shekhova et al., 2017), and several studies have

proposed that this antifungal agent has multiple mechanisms of

action, whereby its capacity to induce oxidative distress is separate

from its capacity to disrupt fungal membranes (Sangalli-Leite et al.,

2011; Ferreira et al., 2013). There is also significant evidence that

fungal cells exposed to amphotericin B exhibit multiple features of

PCD, including ROS formation, nuclear fragmentation, and

externalization of phosphatidylserine on plasma membrane

(Phillips et al., 2003; Mousavi and Robson, 2004), but whether

this PCD is triggered by mitochondrial membrane disruption or

other drug effects is not yet understood.

Echinocandins are a frontline antifungal drug class that acts by

inhibiting 1,3-b-glucan synthase, the enzyme that synthesizes an
Frontiers in Cellular and Infection Microbiology 03
essential component of the fungal cell wall, and thus disrupting

fungal cell wall integrity. The first echinocandin introduced into the

clinic (in the early 2000s) was caspofungin, but other members of

the class, first micafungin and then anidulafungin, have been

approved for clinical use since then. Echinocandins are cidal in

Candida, static in molds, such as Aspergillus, and inactive against

Cryptococcus. Of the three drug classes discussed in this review, the

effect of echinocandins on fungal ROS formation has thus far

received the least amount of attention, likely because it is the

newest antifungal drug class. Nevertheless, several studies have

detected caspofungin-induced ROS in C. albicans, N. glabratus,

and A. fumigatus, as well as micafungin-induced ROS in C. albicans

and N. glabratus but not A. fumigatus (Belenky et al., 2013; Guirao-

Abad et al., 2017; Satish et al., 2019; Garcia-Rubio et al., 2021)

(Table 1). The mechanism(s) by which these drugs induce ROS

formation are not known. Unlike azoles and polyenes, which target

membranes, echinocandins target the cell wall and are thus not

expected to disrupt mitochondria directly. Nevertheless, it has been

proposed that fungi activate the PCD pathway in response to

echinocandin-caused cell wall damage and that ROS are a key

part of this PCD (Hao et al., 2013; Garcia-Rubio et al., 2021).
Chemical nature of antifungal drug-
induced ROS

As mentioned above, the term “ROS” encompasses a large

number of molecules with oxidizing capacity, but their chemical

nature, half-life, reactivity, diffusibility, and other properties vary
TABLE 1 Reports of ROS formation in fungal pathogens in response to antifungal drugs.

Candida Nakaseomyces Cryptococcus Aspergillus

C. albicans
C.

parapsilosis
C.

tropicalis
C.

krusel
N. glabratus C. neoformans C. gatii A. fumigatus

Azoles

Fluconazole

Belenky et al.
(2013); Muñoz-
Megías et al.

(2023)

Kobayashi
et al.
(2002)

Mahl et al.
(2015)

Peng et al. (2018);
Dbouk et al.

(2019)

Ferreira et al.
(2013)

Itraconazole Peng et al. (2018)
Muñoz-

Megías et
al. (2023)

Ferreira et al.
(2013)

Shekhova et
al. (2017)

Miconazole
Kobayashi et al. (2002); Belenky
et al. (2013); Muñoz-Megías et

al. (2023)

Polyenes
Amphotericin

B

Phillips et al. (2003); Belenky et
al. (2013); Mesa-Arango et al.
(2014); Guirao-Abad et al.

(2017)

Mesa-
Arango et al.

(2014)

Mesa-
Arango et
al. (2014)

Mesa-
Arango
et al.
(2014)

Mesa-Arango et
al. (2014)

Sangalli-Leite et
al. (2011); Mesa-
Arango et al.

(2014)

Ferreira et al.
(2013); Mesa-
Arango et al.

(2014)

Shekhova et
al. (2017)

Echinocandins

Caspofungin
Kobayashi et al. (2002); Hao et

al. (2013)
Garcia-Rubio et

al. (2021)

Shekhova et
al. (2008);
Satish et al.
(2019)

Micafungin Guirao-Abad et al. (2017)
Garcia-Rubio et

al. (2021)
Satish et al.
(2019)
fr
ROS not tested.

No ROS increase detected.

ROS increase detected.
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widely. For instance, hydrogen peroxide H2O2 has low reactivity

with cellular macromolecules but is capable of passing through

cellular membranes and is therefore thought to function in

signaling more than in oxidative damage (Winterbourn, 2008;

Finkel, 2011; Sies et al., 2017; Sies et al., 2022). In contrast, the

hydroxyl ion •OH cannot diffuse across membranes but is highly

and indiscriminately reactive, rapidly and irreversibly oxidizing

proteins, lipids, and DNA in its vicinity, and is therefore highly

toxic to cells (Sies et al., 2017; Sies et al., 2022). On the other hand,

superoxide O2
•- is selectively reactive, preferentially oxidizing

enzymes that contain iron-sulfur clusters (Sies et al., 2017; Sies

et al., 2022). Thus, the functional consequences of the ROS induced

in fungal cells in response to antifungal drugs depend on which

specific ROS molecules are being produced.

The idea that different ROS molecules may be induced in

different fungi and by different antifungals is supported by

functional examinations undertaken in some of the studies cited

above and in Table 1. For instance, Ferreira et al. studied ROS

formation in C. gattii in response to amphotericin B and

itraconazole and showed that although amphotericin B induced

the greatest increase in overall ROS levels, itraconazole induced

the greatest increase both in the levels of lipid oxidation and in the

activities of superoxide dismutase and peroxidase, two enzymes

involved in detoxifying ROS (Ferreira et al., 2013). Thus, the

specific ROS induced by itraconazole may have had stronger

oxidative or damaging capacity than the ROS induced by

amphotericin B. Similarly, Shekhova et al. found that although

amphotericin B caused the greatest accumulation of ROS in A.

fumigatus, itraconazole resulted in higher lipid peroxidation

(Shekhova et al., 2017). On the other hand, amphotericin B

resulted in much greater mitochondrial membrane peroxidation

and was also the only drug to elicit the nuclear translocation of

Yap1, a conserved transcription factor activating oxidative

response genes. Additionally, the same study reported that

although the echinocandin caspofungin also elicited robust ROS

induction (at least as high as amphotericin B), no mitochondrial

membrane peroxidation was observed during caspofungin

treatment (lipid peroxidation and Yap1 localization were not

reported for caspofungin) (Shekhova et al., 2017). Furthermore,

although in C. parapsilosis itraconazole induced ROS production,

there was no concomitant increase in the activities of either

catalase or superoxide dismutase, two of the primary enzymes

responsible for detoxifying cellular ROS (Muñoz-Megıás et al.,

2023). Finally, we have reported that although the echinocandins

caspofungin and micafungin elicit robust ROS induction in N.

glabratus, we detected no concomitant increases in lipid

peroxidation or induction of oxidative genes (Garcia-Rubio

et al., 2021). Together, these and other results strongly suggest

that the chemical nature and cellular consequences of the ROS

induced by antifungal agents vary greatly, and that to understand

their functions, it is first essential to discover their identity.

Unfortunately, the examination of ROS is challenging due to

their unstable nature, short lifetimes, and high reactivity. As such,

these molecules are rarely analyzed directly but are detected indirectly
Frontiers in Cellular and Infection Microbiology 04
by measuring the products of their oxidant activity, usually by

utilizing small molecules that become fluorescent upon oxidation.

Indeed, virtually all studies reporting ROS formation in fungal cells

have relied on fluorescence-based ROS detection methods using

fluorescein-derived probes, such as dihydrofluorescein diacetate

(DFH) and 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA),

whose levels can be measured by flow cytometry. Although these

probes have the advantage of being easy to use, they lack specificity as

they can be oxidized by a number of different ROS molecules; thus,

an increase in fluorescence does not reveal which species are

responsible for it (Zhang et al., 2018; Murphy et al., 2022). The

same lack of specificity also characterizes other fluorescent probes

used to measure ROS, such as dihydroethidium (DHE) and

rhodamine-based dyes (Zhang et al., 2018; Murphy et al., 2022). A

recently published consensus statement providing guidelines for

measuring ROS in cells lists a number of alternative methods – all

more labor-intensive and often requiring specialized equipment but

also more unambiguous in their ROS identification (Murphy et al.,

2022). One such method is electron spin resonance (ESR) (a.k.a.,

electron paramagnetic resonance), which uses small molecule spin

traps that capture oxygen radicals, forming covalent bonds and

stabilizing them, followed by detection by electron spin resonators

(Murphy et al., 2022). Depending on the capabilities of the ESR

instrument, different initiating ROS molecules can produce different

ESR spectra, thus enabling the identification of the ROS present in

cells. ESR has been successfully applied to detect and identify the ROS

induced in bacterial cells by antibiotics (Thomas et al., 2013; Thomas

et al., 2014; Thomas et al., 2015), suggesting that it can likewise be

used to identify antifungal drug-induced ROS in fungal cells. Because

ESR requires specialized and expensive equipment, it is usually not

feasible for biologists to run these experiments in house. Some

avenues for overcoming this challenge are collaborating with ESR

experts in the chemistry and physics departments of nearby

universities and research centers and taking advantage of shared

ESR resource facilities (see, e.g., https://www.niehs.nih.gov/research/

resources/epresr/resources/index.cfm).

For detecting non-radical intracellular ROS, such as H2O2, one

can employ genetically encoded chimeric proteins, such as HyPer or

roGFP-Orp1, in which a fluorescent protein is fused to, and

regulated by, a H2O2-sensing protein from either bacteria (HyPer)

or yeast (roGFP-Orp1) (Smolyarova et al., 2022). Indeed, a version

of HyPer has been successfully used in the fungus Fusarium to

detect intracellular fluctuations in H2O2 during cell division and

differentiation (Mentges and Bormann, 2015), suggesting that it can

also be used to measure H2O2 levels during antifungal drug

treatment. These reporter constructs can be easily obtained (e.g.,

from https://www.addgene.org/) and adapted to one’s favorite

fungal experimental system using standard molecular genetic

techniques. In sum, the use of these and other methods capable

of precisely identifying specific ROS molecules, such as liquid

chromatography-mass spectrometry (LC-MS) and optical

spectroscopy (Zhang et al., 2018; Murphy et al., 2022), will reveal

the chemical nature of antifungal drug-induced ROS, which in turn

will inform on their cellular functions.
frontiersin.org
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Cellular origins of antifungal drug-
induced ROS

As mentioned above, ROS can be produced by cells in multiple

ways. Innate immune cells contain dedicated enzymes, such as

NADPH oxidases and NO synthases, which produce the ROS bursts

aimed at attacking engulfed microbes. Fungal cells also contain

NADPH oxidases, one of which, Fre8, has been implicated in

producing ROS bursts during hyphal morphogenesis in C.

albicans (Rossi et al., 2017). Whether fungal NADPH oxidases are

involved in antifungal drug-induced ROS has not yet been

investigated. ROS can also be derived from peroxisomes, which

generate ROS during fatty acid oxidation and other lipid metabolic

reactions (Antonenkov et al., 2010), and from the endoplasmic

reticulum (ER) during protein folding, wherein one molecule of

hydrogen peroxide is generated for each disulfide bond formed

(Zeeshan et al., 2016; Rashdan and Pattillo, 2020). Thus far, the

involvement of peroxisomes in antifungal drug-induced ROS

formation has not been investigated. However, Yu et al. have

provided evidence that in C. albicans the ER is involved in ROS

formation in response to cell wall perturbation by CalcofluorWhite,

a chitin binding compound (Yu et al., 2016). Thus, it is possible that

echinocandins, which target cell wall integrity, also induce ROS via

inducing ER stress; however, this remains to be experimentally

verified. Finally, the major source of ROS in fungal cells is thought

to be the mitochondria, where superoxide is formed as a result of

electron leakage from respiratory complexes I and III during

electron transfer (Mailloux, 2020; Yaakoub et al., 2022). The

majority of this superoxide is rapidly converted into hydrogen

peroxide by the action of mitochondrial superoxide dismutases

(Sies et al., 2017; Warris and Ballou, 2019; Lennicke and Cochemé,

2021). Both superoxide and hydrogen peroxide can either remain

inside the mitochondria or diffuse to the cytosol where they are

neutralized by cytosolic superoxide dismutases and catalases,

respectively (Sies et al., 2017; Warris and Ballou, 2019; Lennicke

and Cochemé, 2021). Thus far, several studies have proposed that

antifungal drug-induced ROS is predominantly of mitochondrial

origin, but, as discussed below, this may not be true in every case.

Several studies have explicitly posited that the ROS induced by

antifungal drugs are of mitochondrial origin (Mesa-Arango et al.,

2014; Shekhova et al., 2017; Muñoz-Megıás et al., 2023). A key piece

of evidence supporting that conclusion was that the addition of

rotenone, an inhibitor of mitochondrial complex I, significantly

reduced the levels of ROS induced by amphotericin B and

itraconazole in A. fumigatus (Shekhova et al., 2017), itraconazole

in C. parapsilosis (Muñoz-Megıás et al., 2023), and amphotericin B

in C. tropicalis (Mesa-Arango et al., 2014). All of these fungi contain

the canonical mitochondrial complex I, so the effect of rotenone

could be explained due to its known inhibition of that complex,

resulting in reduced electron leakage and ROS formation.

Interestingly, however, rotenone also significantly reduced

echinocandin-induced ROS formation in N. glabratus (Garcia-

Rubio et al., 2021), which, like its close relative baker’s yeast

Saccharomyces cerevisiae, lacks mitochondrial complex I, whose

functions are carried out by rotenone-insensitive NADH-quinone
Frontiers in Cellular and Infection Microbiology 05
oxidoreductases (Joseph-Horne et al., 2001; Schikora-Tamarit et al.,

2021). Thus, in N. glabratus rotenone must be reducing

echinocandin-induced ROS formation via another mechanism,

and this mechanism cannot be ruled out in complex I-containing

fungi as well. It is also possible that different antifungals induce ROS

via different mechanisms, with membrane-targeting drugs (azoles

and polyenes) acting primarily via the mitochondria but cell wall-

targeting drugs (echinocandins) acting, for example, via the ER, as

discussed above. Support for this hypothesis can be found in the

study by Shekhova et al., who showed that in A. fumigatus ROS

formation induced by amphotericin B and itraconazole resulted in

mitochondrial membrane peroxidation and was reduced by

rotenone, whereas neither of those effects were observed for the

ROS induced by the echinocandin caspofungin (Shekhova et al.,

2017). Future studies combining genetic mutations perturbing the

functions of mitochondria, ER, peroxisomes, and NADPH oxidases

with high resolution imaging (e.g., using ROS-sensitive genetically

encoded probes mentioned above) will help conclusively identify

the origins of the ROS induced by antifungal drug treatment.
Cellular functions of antifungal drug-
induced ROS

The ultimate questions regarding antifungal drug-induced ROS

concern their cellular functions, i.e., the consequences of their

formation, and whether and how this information can be

leveraged to improve the efficacy of antifungal therapies. Broadly,

the hypotheses regarding their functions can be classed into two

categories: one where the ROS mediate or promote the antifungal

mechanism of action, e.g., via causing cellular damage and

facilitating cell death, and another, where the ROS are an

adaptive response of the fungus to the drug because they have

beneficial functions in that situation. These two hypotheses are not

mutually exclusive, and both may be true depending on the specific

drug-fungus context. Thus far, there is significantly more evidence

for the first hypothesis, but our recent results (Garcia-Rubio et al.,

2021; Arastehfar et al., 2023) and several recent reports on the role

of ROS in stress-induced mutagenesis and the evolution of

antibiotic-resistant mutants in bacteria (Pribis et al., 2019;

Carvajal-Garcia et al., 2023) raise the possibility that antifungal

drug-induced ROS may also mediate the evolution of antifungal

drug resistance.

The association of ROS with fungal cell death has been noted in

several studies showing that robust ROS production is induced by

fungicidal but not fungistatic drugs (Francois et al., 2006; Belenky

et al., 2013). However, in a few cases ROS have also been detected in

response to fungistatic drugs (Mahl et al., 2015; Peng et al., 2018),

and more work is necessary to understand the meaning of those

results. The idea that ROS participate in the fungal killing by

antifungal drugs has been suggested by a number of studies

where pretreatment with ROS scavengers reduced antifungal

efficacy and improved fungal survival. For instance, N-

acetylcysteine antagonized the cidal activity of itraconazole in C.

albicans (Lee and Lee, 2018) and amphotericin B in A. fumigatus
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(Shekhova et al., 2017), peroxynitrite scavenger FETPPS reduced C.

gattii killing by amphotericin B (Ferreira et al., 2013), and thiourea

reduced the killing of C. albicans by amphotericin B and

micafungin (Guirao-Abad et al., 2017). In all of these

experiments, the antifungal agents were used at the MIC or

above-MIC concentrations, inducing a high degree of cell killing.

These results are consistent with two alternative explanations. First,

the ROS may be induced directly by the activity of the antifungal

drug, e.g., via disruption of mitochondrial membrane or inducing

ER stress, and these ROS then damage cellular components,

promoting cell death. Second, the antifungal drug may trigger

PCD in the fungus, and the ROS would then form as part of the

apoptotic cascade, irrespective of the original antifungal mechanism

of action. In support of the second hypothesis, several studies have

provided evidence that fungal cells exposed to fungicidal drugs

exhibit multiple features of PCD besides ROS formation, such as

plasma membrane phosphatidylserine externalization, caspase

activation, and DNA fragmentation (Phillips et al., 2003; Hao

et al., 2013; Lee and Lee, 2018). In either scenario the ROS would

damage the cell, but in the first case, the ROS would be part of the

primary drug-induced damage, whereas in the second case, ROS-

induced damage would be secondary to the drug-induced damage.

How these two possibilities could be distinguished has been

demonstrated by elegant experiments conducted in bacteria,

where it was shown that addition of a ROS scavenger after the

removal of a bactericidal antibiotic (i.e., when the cells are no longer

experiencing primary antibiotic-induced damage) significantly

improves bacterial survival, indicating that the ROS are part of a

secondary death-triggering cascade (Hong et al., 2019). Similar

experiments may help decipher the role of ROS in antifungal

drug-induced fungal cell death.

Our recent studies have hinted at another possible role for ROS

formed in response to echinocandin action. We detected robust

ROS induction in N. glabratus during treatment with caspofungin

and micafungin (Garcia-Rubio et al., 2021). We tested several

compounds with ROS scavenger activity, and only pre-incubation

with ascorbic acid significantly reduced this increase in ROS.

Interestingly, however, ascorbic acid had no effect on N. glabratus

killing by caspofungin, suggesting that the ROS were not

participating in cell death. Consistent with that conclusion, when

we deleted several enzymes involved in ROS detoxification,

including catalase and superoxide dismutase, the ROS levels

increased, but lethality was not altered (Arastehfar et al., 2023).

However, the ROS detoxification mutants showed a several orders

of magnitude increase in the emergence of echinocandin-resistant

mutations, suggesting that the ROS may promote mutagenesis in

drug-treated cells. This conclusion is consistent with an emerging

picture in bacteria, where several recent discoveries have pointed to

a key role for ROS in stress-induced mutagenesis and the evolution

of antibiotic-resistant mutants (Pribis et al., 2019; Pribis et al., 2022;

Carvajal-Garcia et al., 2023). In particular, treatment of E. coli with

sublethal quinolone doses induces ROS in a subset of treated cells

(Pribis et al., 2019). These ROS do not damage DNA but induce the

general stress response, which in turns upregulates mutagenesis,

leading to mutations that cause resistance to quinolones as well as

other antibiotics not yet encountered by the bacteria (Pribis et al.,
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2019). Furthermore, another recent study showed that in several

bacterial species in vitro evolution of resistance to multiple

antibiotics is significantly slowed down in the presence of ROS

scavenger thiourea (Carvajal-Garcia et al., 2023). It was also shown

that the ROS-linked mutagenesis was mediated by enzymes

involved in transcription-coupled repair, nucleotide excision

repair, as well as several error-prone DNA polymerases. Together,

these studies identify the various ways in which ROS can promote

the evolution of drug-resistant mutations, and similar mechanisms

may operate in fungal cells. Finally, as another example of a

beneficial role of antifungal drug-induced ROS, we have

shown that caspofungin-induced ROS in A. fumigatus

promote the acquisition of echinocandin tolerance via non-

genetic mechanisms involving altered plasma membrane lipid

microenvironment of the echinocandin target, 1,3-b-glucan
synthase enzyme (Satish et al., 2019).
ROS and stress-induced cell death
in fungi

The strong association between antifungal drug cidality and

ROS formation fits well within the broader paradigm of stress-

induced fungal cell death (Grosfeld et al., 2021), two major types of

which have been described: PCD (a.k.a., apoptosis) and necrosis

(Ramsdale, 2008; Strich, 2015). Both necrosis and PCD are

associated with ROS formation (Eisenberg et al., 2010; Strich,

2015), and both have been detected in fungal cells treated with

antifungal drugs (Phillips et al., 2003; Mousavi and Robson, 2004;

Hao et al., 2013). For example, A. fumigatus treated with lower

doses of amphotericin B exhibited multiple features of PCD,

whereas treatment with higher doses led to necrosis (Mousavi

and Robson, 2004). PCD has many similarities with mammalian

apoptosis and is defined as a programmed, active cellular response

to damage, characterized by mitochondrial membrane

permeabilization, ROS accumulation, chromatin condensation,

nuclear DNA fragmentation, externalization of plasma membrane

phosphatidylserine, and activation of pro-death proteins such as

homologs of mammalian caspases. In contrast, necrosis is defined as

damage-induced loss of cellular integrity, in which the cell is less of

an active participant. It is thought that in unicellular eukaryotes

PCD functions to eliminate damaged cells from the population to

make more resources available for undamaged ones, which is

consistent with antifungal drug-induced damage activating PCD.

ROS are thought to promote macromolecular damage and to

facilitate cellular demise; thus, inclusion of ROS scavengers can

alleviate stress-induced lethality (Ramsdale, 2008), which, as

discussed above, is also the case for several antifungal drugs. With

respect to the cellular origins of PCD-associated ROS, although

damaged mitochondria are often invoked as their source, ROS

derived from the ER, peroxisomes, and NADPH oxidase Yno1 have

also been implicated in fungal PCD (Strich, 2015).

ROS can act as both the trigger for PCD activation, e.g., in

response to an external source of oxidative damage, such as H2O2,

and as one of the features of PCD activated by a different stress, such

as heat shock, acid stress, membrane stress, or cell wall stress
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(Grosfeld et al., 2021). This dual role makes it difficult to

disentangle whether the ROS induced by antifungal drugs are a

direct result of antifungal drug action (e.g., via mitochondrial

membrane disruption), which in turn triggers PCD, or whether

the ROS are a secondary consequence of PCD caused by a different

type of antifungal-induced damage (e.g., to the cell wall). Indeed,

the answer may be different for different drugs and different fungi,

and these scenarios are not mutually exclusive. An intriguing

question that has not, to our knowledge, been explored is whether

the PCD program can be activated by fungal cells but not carried

out to completion, instead utilizing PCD features (ROS formation,

DNA fragmentation) to promote genome instability and

evolvability in cells that survive drug exposure.
Conclusion

The accumulating evidence for the role of ROS in medically-

relevant fungi adds to the large body of literature demonstrating the

importance of ROS in eukaryotic stress responses and in human

health, including inflammation (Forrester et al., 2018), cancer

(Poillet-Perez et al., 2015; Cheung and Vousden, 2022), metabolic

diseases (Newsholme et al., 2016), and aging (de Almeida et al., 2022).

As in those contexts, experimental evidence indicates that antifungal

drug-induced ROS have important functions, whether in promoting

cell death at lethal concentrations of antifungals, promoting

mutagenesis and evolution of drug resistance at sublethal

concentrations of antifungals, or other, as yet unknown,

mechanisms. However, many key questions still remain regarding

the chemical nature, molecular origins, and functional consequences

of these ROS, as well as their connection to PCD. Decades of research

and many dozens of studies focusing on analogous questions in

bacteria have revealed profound mechanistic insights, which are

being leveraged to identify new ways to potentiate antibiotic-

mediated killing (Brynildsen et al., 2013; Jiang Q et al., 2020) or
Frontiers in Cellular and Infection Microbiology 07
prevent the evolution of antibiotic resistance (Zhai et al., 2023). Thus,

there is every reason to believe that gaining an understanding of the

role of ROS in fungi treated with antifungal drugs will help develop

new tools to fight deadly invasive fungal infections, as well as reveal a

fascinating aspect of fungal biology.
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