
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Yash Gupta,
Penn State Milton S. Hershey Medical
Center, United States

REVIEWED BY

Oliver Planz,
University of Tübingen, Germany
Minghui Li,
Fudan University, China

*CORRESPONDENCE

Bharat Marwaha

drbharatmarwaha@gmail.com

RECEIVED 20 August 2023

ACCEPTED 06 October 2023

PUBLISHED 25 October 2023

CITATION

Marwaha B (2023) Role of Tau
protein in long COVID and
potential therapeutic targets.
Front. Cell. Infect. Microbiol. 13:1280600.
doi: 10.3389/fcimb.2023.1280600

COPYRIGHT

© 2023 Marwaha. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 25 October 2023

DOI 10.3389/fcimb.2023.1280600
Role of Tau protein in long
COVID and potential
therapeutic targets

Bharat Marwaha*

Department of Cardiology, Adena Health System, Chillicothe, OH, United States
Introduction: Long COVID is an emerging public health burden and has been

defined as a syndrome with common symptoms of fatigue, shortness of breath,

cognitive dysfunction, and others impacting day-to-day life, fluctuating or

relapsing over, occurring for at least two months in patients with a history of

probable or confirmed SARS CoV-2 infection; usually three months from the

onset of illness and cannot be explained by an alternate diagnosis. The actual

prevalence of long-term COVID-19 is unknown, but it is believed that more than

17 million patients in Europe may have suffered from it during pandemic.

Pathophysiology: Currently, there is limited understanding of the

pathophysiology of this syndrome, and multiple hypotheses have been

proposed. Our literature review has shown studies reporting tau deposits in

tissue samples of the brain from autopsies of COVID-19 patients compared to

the control group, and the in-vitro human brain organoid model has shown

aberrant phosphorylation of tau protein in response to SARS-CoV-2 infection.

Tauopathies, a group of neurodegenerative disorders with the salient features of

tau deposits, can manifest different symptoms based on the anatomical region of

brain involvement and have been shown to affect the peripheral nervous system

as well and explained even in rat model studies. Long COVID has more than 203

symptoms, with predominant symptoms of fatigue, dyspnea, and cognitive

dysfunction, which tauopathy-induced CNS and peripheral nervous system

dysfunction can explain. There have been no studies up till now to reveal the

pathophysiology of long COVID. Based on our literature review, aberrant tau

phosphorylation is a promising hypothesis that can be explored in future studies.

Therapeutic approaches for tauopathies have multidimensional aspects,

including targeting post-translational modifications, tau aggregation, and tau

clearance through the autophagy process with the help of lysosomes, which can

be potential targets for developing therapeutic interventions for the long COVID.

In addition, future studies can attempt to find the tau proteins in CSF and use

those as biomarkers for the long COVID.

KEYWORDS

long covid, tau protein, small fiber neuropathy, chronic fatigue/myalgic
encephalomyelitis, clinical symptoms of long covid
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Introduction

The COVID-19 pandemic has changed the lives of millions

across the globe. Recent statistics reveal that it has infected more

than 760 million people and led to more than 6.9 million deaths

worldwide. Initial research was focused on the acute complications of

COVID-19, but now healthcare faces the significant burden of the

long-term impact of COVID-19. The long-term complications of the

disease include its detrimental impact on various organ systems based

on the severity of the initial illness and underlying risk factors (Xie

et al., 2022). Long COVID is a relatively new medical syndrome

noticed among patients with a wide clinical spectrum. The WHO has

described this entity as a constellation of symptoms ranging from

systemic symptoms of fatigue, shortness of breath, cognitive

dysfunction, and others lasting for at least two months, usually

three months, from COVID-19 infection, with a relapsing and

fluctuating course over time, which cannot be explained by an

alternative diagnosis, irrespective of the severity of the initial illness

or hospitalization status (https://www.who.int/emergencies/diseases/

novel-coronavirus-2019/coronavirus-disease-answers?adgroup

survey=%7Badgroupsurvey%7D&gclid=CjwKCAjwzruGBhBA

EiwAUqMR8NuImw4LvO4C2n7n7MdNBo82efE8UcrchbGC
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eaEX4QVljInAFZfchoC6ycQAvD_BwE&query=Long+COVID

&referrerPageUrl=https%3A%2F%2Fwww.who.int%2Femergencies

%2Fdiseases%2Fnovel-coronavirus-2019%2Fcoronavirus-disease-

answers-). CDC also recognizes this syndrome as a constellation of

symptoms lasting more than 28 days (CDC, 2020).
Clinical spectrum

Recently, a few studies have been conducted to understand the

clinical spectrum of long COVID and its prevalence. In a

prospective study on long COVID, 4182 incident cases of

confirmed COVID-19 were reported on a study app. The

majority of these respondents were from the U.K. (88.2%),

followed by the U.S. (7.3%). The study reported that 13.3% (558)

of the respondents had COVID-19 symptoms lasting for 28 days,

with 4.5% (189) having experienced symptoms for 56 days and 2.6%

(108) for a duration of more than 84 days. Fatigue was reported by

97.70%, followed by headache (91.20%), shortness of breath

(70.80%), chest pain (60%), diarrhea (51%), loss of smell (72%), a

persistent cough (68.20%), and delirium (30%) at the end of the 28-

day time period (Sudre et al., 2021).
FIGURE 1

Pictorial Presentation of Clinical Manifestations of long COVID.
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During the workup of 802 respondents, 27% were given a

diagnosis of migraine, 14.7% myalgic encephalitis/chronic fatigue

syndrome, 8.2% neuralgia, 19% POTS, and 8.6% myocarditis. The

clinical spectrum of long COVID is shown in Figure 1, with a

description of commonly manifested symptoms in various body-

organ systems in corresponding tables.

In this cohort, 86%of the participants reported relapses, while

52.4% reported the relapse/worsening of symptoms in response to

specific triggers, out of which 71% were related to physical activity,

58.9% to stress, 54% to exercise, and 46% reported during

mental activity.

This study had some limitations, with respondents producing

negative and absent test results, but it was conducted in the initial

phase of the pandemic with limited availability of testing. The

likelihood of false-negative test results was 20% after three days of

the onset of symptoms, and up to 54% presented a false-negative

initial RT-PCR (Arevalo-Rodriguez et al., 2020; Kucirka et al., 2020;

Liu et al., 2020). This may have affected the accuracy of the testing.

In another study (Davis et al., 2021), 3762 participants with long

COVID were followed up for seven months. The study attempted to

elucidate the temporal trend of symptoms, triggers of relapses, and

course of symptoms. The clinical spectrum of the symptoms in this

group included systemic and post-exertional symptoms of

fatigue (98%).
Tau protein & COVID-19

Coronavirus belongs to the Coronaviridaefamily and the

Nidovirales order. The first clinical case of COVID-19 was

reported in Wuhan, China, on December 8th, 2019, with the

initial genome sequence published on the virological website on

January 10th, 2020. On February 11th, 2020, the International

Committee on Taxonomy of Viruses named the novel

coronavirus “SARS-CoV-2,” and the WHO named the disease

“COVID-19” (King et al., 2012; Cui et al., 2019; Hu et al.,

2021).ACE 2 is a receptor for SARS-CoV-2 infection (Hoffmann

et al., 2020). Cardiac pericytes, blood vessels, respiratory epithelial

cells, the kidneys, the intestines, the cortex of the human brain, the

respiratory system, and the hypothalamus in the brain stem have

these receptors (Hikmet et al., 2020; Lukiw et al., 2022). Systemic

symptoms and multi-organ involvement in the acute phase are due

to SARS-CoV-2 invasion via these receptors (Beyerstedt et al.,

2021). SARS-CoV-2 infection can result in significant

inflammatory and oxidative stress through dysregulated immuno-

inflammatory pathways. Diffuse inflammatory markers were

reported in >80% of COVID-19 patients’ brains, which could

have contributed to the multiple neurological symptoms observed

in a recently published study (Thakur et al., 2021). Hyposmia and

hypogeusia frequently manifest in COVID-19. Hyposomia is

reported in the initial stages of Alzheimer’s disease(AD), which

expresses key pathological features of tau deposits.

In a recently published study (Reiken et al., 2022), the authors

compared the autopsy tissue samples of COVID-19 brains to control

samples. They have reported that oxidative stress and inflammatory

pathways can trigger RyR(Ryanodine receptor) leakage. This can
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lead to dysregulated intracellular calcium levels, resulting in the

activation of calcium-dependent enzymes and the hyper-

phosphorylation of tau protein in COVID-19 brains compared to

controls. This study evaluated the multiple aspects of pathogenesis,

including oxidative stress, inflammatory markers, Ryanodine-

receptor-two-complex oxidation, and the leakage and hyper-

phosphorylation of tau protein. Further studies have reported that

COVID-19 expresses oxidative-stress markers with a 3.8-fold

increase in the glutathione disulfide (GSSG)/glutathione (GSH)

ratio in the cerebral cortex compared to control brain-tissue samples.

Increased PKA and CaMKII activity, along with the

phosphorylation/activation of AMPK and GSK3b, results in the

hyper-phosphorylation of tau at multiple residues. COVID-19-

brain lysates from aged patients showed increased tau

phosphorylation at S199, S202, S214, S262, and S356. Younger

patients showed tau phosphorylation at S214, S262, and S356 but

not at S199 or S202, demonstrating increased tau phosphorylation

and suggesting a tau pathology.

Stress-inflammatory/oxidative pathway activation results in

increased transforming growth factor-b (TGF-b) signaling, which

activates SMAD3 and increased NADPH Oxidase 2(NOX2)

expression and activity at the RyR2 channel, leading to oxidation

and calstabin 2 depletion from the channel macromolecular

complex. This results in the destabilizing of the closed state and

the inappropriate activation of channels at low cytosolic Ca2+

concentrations, resulting in pathological endoplasmic/sarcoplasmic

reticular Ca2+ leakage. Increased RyR2-channel activity at rest was

observed in COVID-19 channels compared to controls, suggesting

the leaky biochemical feature of these channels.

This impaired calcium regulation can result in increased

Ca2+/cAMP/PKA signaling, activating Ca2+-dependent enzymes

and reduced neuronal firing.

This tau-phosphorylation model was tested in the in vitromodel

developed by Ramani et al. (2020) in their study on human-brain

organoids derived from induced human pleura-potent stem cells. It

was reported that the aberrant phosphorylation of tau protein leads

to a series of events that can result in neuronal cell death. A SARS-

CoV-2 sample taken from the patient was used for infecting the

brain organoids, and respiratory epithelial cells were used as a

control group in the study. Human-brain organoids of 15-day and

60-day age groups were studied after 2 and 4 days of initial infection

(Ramani et al., 2020). The results showed that the virus preferably

affects 60-day-old organoids with mature neuron cells rather than

neuro-progenitor cells that are 15 days of age without any active

signs of viral proliferation by replication and local inflammatory

pathways as the potential mechanisms responsible for aberrant

phosphorylation. Viral oxidative stress in neurons leads to the

aberrant phosphorylation of p231T and the mislocalization in the

soma of neuronal cells from axons (Ramani et al., 2020).
Tau protein & immunopathology

Tau protein, in its physiological state, acts as a protective agent

against peroxidation-induced DNA damage, regulates DNA

packaging, and binds directly to its in vitro (Hua et al., 2003;
frontiersin.org
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Wei et al., 2008). Pathological tau in the disease state promotes

filamentous actin, which can result in a rigid cytoskeleton and

influence the dynamics of mitochondria, causing oxidative stress.

Pathogenic tau can also cause the nuclear envelope to be involute,

disrupting the nucleoskeleton. Pathogenic tau-induced oxidative

stress and the disruption of lamin-rich nucleoskeleton activates

silenced genes, leading to cell-cycle activation in neurons and

triggering apoptotic cell death (Fulga et al., 2007; Arendt et al.,

2010; Frost et al., 2014; Frost et al., 2016).SARS-CoV-2 infection can

lead to hyper-inflammatory syndromes characterized by higher

expressions of pro-inflammatory factors (Tay et al., 2020).

Immuno-pathological pathways with dysregulated innate

immune responses have played an important role in the

pathogenesis of COVID-19 (Vardhana and Wolchok, 2020).

Higher levels of pro-inflammatory cytokines, including IL-1, IL-2,

IL-4, IL-6, IL-7, IL-10, IL-13, IL-17, M-CSF, G-CSF, GM-CSF, and

IP-10 have been reported in severe COVID-19 patients (Costela-

Ruiz et al., 2020).The NOD-like receptor protein 3(NLRP-3)

inflammasome is a key immuno-stimulator with multi-organ

effects through dysfunctional immuno-inflammatory pathways in

COVID-19 (Rodrigues et al., 2021; Dutta et al., 2022). NLRP 3 has

also been shown in studies to influence the phosphorylation of tau

protein and play an important role in tauopathies (Ising et al.,

2019). Inflammasomes are integral components of innate immunity

and play a role in regulating the inflammation response to cellular

stress and infections (Mangan et al., [[NoYear]]).

Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) is another important inflammatory transcription factor

that plays a pivotal role in regulating cellular response in

neurodegenerative disorders, tauopathies, septic shock, viral

infections, and chronic inflammatory response (Sun et al., 2022).

There are five different transcription factors under this family that

get activated in the presence of pro-inflammatory cytokines, leading

to the translocation of P65/P50 dimers stored in the cytoplasm to

the nucleus activating cognate kB motif,

resulting in the expression of the NF-kB target gene under the

canonical pathway which has been extensively studied than

noncanonical pathway activated by tumor necrosis factor

(Motolani et al., 2021). NF-kB activated microglia, innate

immune cells in the central nervous system, can accelerate the tau

seeding and propagation of tau pathology, and inactivation of this

transcription factor can lead to a slow down of this propagation

demonstrated in the mice model (Wang et al., 2022). SARS-CoV 2

activates the NF-kB through multiple viral proteins, including

nucleocapsid and spike protein, in proportion to viral load, and

inhibition of this pathway contributes to better survival, although

the exact mechanism is not fully elucidated yet (Davies et al., 2021;

Gudowska-Sawczuk and Mroczko, 2022).
Tau protein & tauopathies

In 1975, Weingarten et al. (1975a) found a protein contaminant

along with microtubules, which is now known as the microtubule-

associated protein tau or “tau,” which is critical for its stability.

Subsequently, numerous studies reported that tau aggregates are
Frontiers in Cellular and Infection Microbiology 04
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neurodegenerative diseases, which are termed “tauopathies.”

These diseases include Alzheimer’s disease, progressive supra

nuclear palsy, corticobasal syndrome, frontotemporal dementias,

and chronic traumatic encephalopathy, defined by pathological tau-

positive deposits in the brain (Weingarten et al., 1975b).

The symptoms of tauopathies are primarily based on the

anatomical areas of the brain involved. Diagnosis is established

through history, with ongoing efforts in translational research to

establish the earlier diagnosis.Tau protein plays an important role in

the stabilization of microtubules and converts 6S dimers of tubulin

into the 36s rings required for microtubule polymerization,

resulting in localization at axons of neurons under normal

physiological conditions (Weingarten et al., 1975b). Multiple

dynamic interactions of tau protein with tubulins regulate various

aspects of neuronal growth and affect axonal sprouting, neurite

polarity, neuroplasticity, and morphogenesis (Drubin et al., 1985;

Liu et al., 1999; Takei et al., 2000).

Tau protein affects cell-cycle regulation by plasma-membrane

interaction and tyrosine kinase (Brandt et al., 1995; Jensen et al.,

1999), which plays a pivotal role in neuronal signaling and synaptic

plasticity (Weingarten et al., 1975b; Hanger et al., 2019). Tau

protein exhibits multiple features in disease states, which include

aberrant phosphorylation, post-translation modifications,

truncation, and aggregation into oligomers and larger insoluble

filaments (Orr et al., 2017). Studies have reported evidence of the

spread of pathogenic tau to neighboring cells, which can stimulate

the pathogenic tau in these cells. Pathogenic tau can seed

synaptically connected cells and lead to the stimulation and

aggregation of natively folded tau in naive cells, leading to further

progression of the disease (Frost et al., 2009; de Calignon et al.,

2012). It may spread by extracellular micro-vesicles called

“exosomes.” Tau-filled exosomes are present in cerebrospinal

fluid and plasma of patients with mild Alzheimer’s disease and

frontotemporal dementia (Goetzl et al., 2016).

A laboratory study conducted on transgenic mice expressing

human non-mutant tau was used to assess the impact of the post-

translational hyper-phosphorylation of tau on the central and

peripheral nervous system after a period of 3 and 6 months

(Marquez et al., 2021). The study’s findings revealed that aberrant

hyperphosphorylation could lead to transient memory deficits

along with peripheral neuropathy in the form of small-fiber and

large-fiber neuropathy with tactile allodynia, altered thermal

response, the slowing of motor-nerve-conduction velocity, and a

reduction in intra-epidermal-nerve-fiber density (Marquez et al.,

2021). Tauopathies have been reported among patients suffering

from autonomic failure. Peripheral neuropathy can be secondary to

disrupted cell signaling, loss of neurotrophic support, and structural

alterations (Calcutt et al., 2008). More than 70% of peripheral

neurons are small-fiber neurons (un-myelinated), and the

estimation of intra-epidermal nerve-fiber density is the gold

standard for the diagnosis of small-fiber neuropathy (Akihiko

et al., 2021) Multiple ongoing research studies are underway in

order to determine the role of tau protein as a potential biomarker

to diagnose these disabling neuro-degenerative diseases at earlier

stages and to compare it to imaging techniques.
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PET imaging studies on Alzheimer’s disease have shown that

cognition has a better correlation with tau pathology than with Ab-
plaque deposition (Brier et al., 2016; Johnson et al., 2016).

Cerebrospinal fluid(CSF) phosphorylated (p-tau), total tau (T-

tau), and amyloid-b 42 (Ab42) are unique markers of Alzheimer’s

disease. CSF-p-tau levels have shown a significant correlation

during the evolution of the disease from preclinical to clinical

dementia in A.D. compared to controls (Hansson et al., 2006;

Shaw et al., 2009; Olsson et al., 2016) In a recent study published

by Ashton et al. (2022), focusing on 171 participants, cross-sectional

evaluation of CSF (p-tau 181, p-tau21, p-tau 231) and PET imaging

showed that p-tau 231 is elevated in the preclinical stage and has

potential for using it as biomarker and target for therapeutic

interventions. Pathological tau can lead to cognitive dysfunction

and small-fiber neuropathy and can result in a wide spectrum of

clinical symptoms based on organ system involvement.
Small-fiber neuropathy & long COVID

Small-fiber neuropathy is an umbrella term for neuropathies

affecting thinly Ad-myelinated and un-myelinated C-fibers. Various

studies have reported a variable prevalence of disease, with an

estimated incidence of 1.3/100,000, which increased over a period of

time, and a prevalence of 13.3/100,000 (Brier et al., 2016). Small-

fiber neuropathy can be mixed, purely sensory, or purely

autonomic, depending on the involvement of the nerve fibers

(Johnson et al., 2021).In a study conducted on 921 patients with

pure small-fiber neuropathy, 53% had idiopathic small-fiber

neuropathy; in the remaining patients, immunological diseases

(sarcoidosis, Sjogren, celiac, and autoimmune) were reported in

19%and sodium-channel-gene mutations (SCN9A, SCN10A, and

SCN11A) in 16.7%. Secondary causes, such as diabetes mellitus

(7.7%), chemotherapy (2.2%), Vit B-12 deficiency (4.7%), alcohol

abuse(3%), and monoclonal gammopathy of undetermined

significance(1.4%),were reported in the study (Peters et al., 2013).

The National Institute of Health funded a study with the

multicenter enrollment of patients without a prior history of

neuropathy. The study included a total of 17 patients whose

symptoms matched the definition of long COVID; after a follow-

up of 1.4 years, it was revealed that 62.5% of the patients had a

small-fiber-neuropathy diagnosis on lower-leg-skin biopsy

(Oaklander et al., 2022),. Another study at the National Institute

for Health and Care Excellence (NICE) in the U.K focused on 70

patients, including 30 controls and 40 patients with neurological

symptoms four weeks post-COVID-19.The study identified small-

nerve fiber loss in the latter group (Bitirgen et al., 2021),. In total,

85% of small-fiber-neuropathy patients have mild dysautonomia

and neuropathy symptoms.

Another study, published by Nicholas Barizien et al. (2021),

from France, with 39 participants without prior neurological

complications from COVID-19 except for the loss of taste and

smell, tested the hypothesis of dysautonomia among long COVID

patients with fatigue. Heart-rate variability (HRV) with a change in

position was used as a physiological marker for the evaluation of

dysautonomia. Heart-rate variability has been used in the past to
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evaluate autonomic function. The HRV in Barizien et al.’s study was

reflected by the NOL (nociception level) index assessed after

changes in the positions of the patients and displayed in a range

from 0–100. The NOL index is calculated by an artificial

intelligence-driven algorithm based on multiple inputs from a

noninvasive finger probe and has been validated for the

assessment of the HRV in prior studies. The study showed a

statistically significant difference in the NOL NOL index between

a group of patients with long COVID and fatigue versus a healthy

cohort with a P value 0.046.

In a study published in the Journal of American College of

Cardiology on 41 patients reporting dyspnea post-COVID for 9 to

12 months, all the patients had normal pulmonary function tests,

chest X-rays, echocardiogram, and chest computed tomography

scans. Seven patients were offered invasive CPET; out of these, five

patients had preload failure and met the criteria for myalgic

encephalitis/chronic fatigue syndrome (Mancini et al., 2021),.

Twenty-four patients (58.5%) had a predicted peak VO2 <80%,

while 46% of the patients with dyspnea met the criteria for ME/

CFS syndrome.

Phillip Joseph et al. (2021),performed a study to find the

association between small-fiber neuropathy and myalgic

encephalitis/chronic fatigue syndrome. The study enrolled 160

patients, 31% of whom had small-fiber neuropathy diagnosed by

punch biopsy, and another control group featured 36 patients. The

exclusion criteria were right atrial pressure (RAP) >6.5, resting or

exercise pre- and post-capillary pulmonary hypertension, sub-

maximal heart rate <80% predicted for age, minute ventilation to

maximum voluntary ventilation >0.7 at anaerobic threshold, and a

lack of skin biopsy for the diagnosis of small-fiber neuropathy.

These participants were offered right-heart catheterization and

cardio-pulmonary stress tests with incrementally increasing

upright exercise. The study measured rest-to-peak changes in

cardiac output (Qc) and systemic oxygen extraction by the Qc/

Vo2 slope. The results were intriguing and showed impaired aerobic

capacity, with the suggestion of two types of vascular dysregulation

associated with small-fiber neuropathy as a presumptive etiology.

Decreased peak Vo2 and low cardiac output were reported in

low-flow patients with decreased biventricular filling pressure

secondary to low venous pressure that was not explained by

intrinsic heart disease or pulmonary hypertension (Oldham et al.,

2016). The degeneration of axons in small-fiber neuropathy can

lead to impaired veno-constriction with the pooling of blood in the

periphery, leading to low-flow preload failure. Similar abnormal

venous pooling has also been observed among POTS patients as

well (Streeten et al., 1988),. Decreased peak Vo2 can lead to the early

onset of anaerobic metabolism and muscle fatigue.

The second group with low peak Vo2 had a high cardiac

output and was found to have an impairment of systemic oxygen

extraction. Immunohistochemical studies in the past have shown

that small fibers regulate microvascular tone, primarily through

sympathetic and parasympathetic cholinergic synapses on

perivascular myocytes (Schuller et al., 2000). Dilated arterial-

venous shunts have been noticed in histological studies among

fibromyalgia patients who have considerable overlap with ME/

CFS patients (Albrecht et al., 2013). These findings have been
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observed in the pathological examination of the microvasculature

in chronic regional pain syndrome, which is a form of small-fiber

neuropathy (Albrecht et al., 2006; Oaklander and Fields, 2009).

These dilated shunts can lead to the bypass of oxygenated blood

from capillaries and result in early anaerobic metabolism and

muscle fatigue.

In the study, skin biopsy was used to establish the diagnosis of

small-fiber neuropathy because of its high specificity, 91%, but it has

lower sensitivity, 58% (Fabry et al., 2020). Small-fiber malfunction is

not identified by the biopsy, but it can contribute to this

dysregulation, although this contribution is very difficult to

quantify (Duchesne et al., 2018).Further studies have suggested

that small-fiber neuropathy can lead to impaired aerobic

metabolism, resulting in symptoms of fatigue, which is also the

most prevalent symptom of long COVID. In one of the largest

studies on long-COVID patients, 14% of the patients had a

diagnosis of ME/CFS during the workup on long COVID. De-

conditioning has been frequently considered as a confounding

factor in chronic-fatigue patients. De-conditioning is usually

associated with low cardiac output, with impaired ventricular

compliance with elevated filling pressure, contrary to the low

biventricular pressure and high cardiac output noticed in the

above study (Saltin et al., 1968; Stickland et al., 2006; Keller

et al., 2014).
Potential treatment options and
targets for therapeutic interventions

Tau protein undergoes post-translational modifications, which

can reduce its binding to microtubules, leading to an increased level

of cytoplasmic tau proteins. These tau aggregates can assemble,

leading to the formation of oligomers, straight filaments, and paired

helical filaments, which are neurotoxic. Paired helical filaments and

straight filaments contribute to the formation of NFTs, a hallmark

of neurodegenerative disease (Wang et al., 2021).

Therapeutic approaches for tauopathies have multidimensional

aspects, including targeting the post-translational modifications, tau

aggregation, and tau clearance through the autophagy process with

the help of lysosomes. Tau-protein clearance is also enhanced by

vaccines or antibodies (Soeda and Takashima, 2020).

Phosphorylation is a key post-translational modification that

can be influenced by protein kinases and phosphatases.

Phosphoprotein phosphatase(PP2A) is a key phosphatase,

accounting for over 70% of tau dephosphorylation, in contrast to

the multiple protein kinases involved in the phosphorylation of tau

protein (Ferrer et al., 2005; Liu et al., 2005). Although the targeting

of one enzyme because of its substrate specificity and several

regulatory subunits is promising, it has been challenging to target

this enzyme to develop therapeutics (Wolfe, 2016),. Various clinical

trials have tested protein kinases for developing therapeutic agents.

Glycogen synthase kinase (G.S.K. 3b) has been associated with

phosphorylation at 26 sites of tau protein, and its activity level

correlates with the progression of the neurodegenerative process,

and the over-activation of this enzyme contributes to tau hyper-

phosphorylation (Yamaguchi et al., 1996; Guo et al., 2017). So far,
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the clinical trials targeting this enzyme have not been successful in

reversing the disease process.

Recently, multiple newer agents targeting tau aggregation have

undergone trials with the potential to improve clinical outcomes.

When tested in a mouse model, rosmarinic acid(RA), a polyphenol

found in Lamiaceae herbs, showed that it inhibits the accumulation of

phosphorylated tau protein and improves spatial memory

(Yamamoto et al., 2021). Resveratrol, a non-flavonoid polyphenol-

rich in red wine and grape skin, induces the dephosphorylation of tau

by interfering with the MID1–PP2A complex and the down-

regulation of protein kinase for tau phosphorylation glycogen

synthase kinase(G.S.K. 3b) signaling pathways (Xia et al., 2010;

Jhang et al., 2017; Schweiger et al., 2017). The drug treatment

showed improvement in cognitive function in a mouse model, but

rapid metabolism in the liver and intestines leads to poor

bioavailability, and analogs have been developed to improve the bio

availability (Chimento et al., 2019; Sun et al., 2019).

Curcumin, a primary component of the Indian spice turmeric,

has been shown to have an inhibitory effect on tau aggregation with

a reduction in tau oligomer (Rane et al., 2017). The poor

bioabsorption of curcumin and rapid degradation likely led to no

therapeutic benefits in trials (Vareed et al., 2008). Analogs with

better bio-absorption have undergone clinical trials (Chen et al.,

2018). Folic acid has been shown to inhibit tau aggregation by

stabilizing the tau in the native state and can reduce tau

phosphorylation by regulating PP2A methylation (Li et al., 2015;

Ghasemzadeh and Riazi, 2020). Tau degradation involves both the

ubiquitin–proteasome system and the autophagy–lysosome system

(Lee et al., 2013).

Tau-protein clearance is increased by treatment with vaccines or

antibodies, and multiple clinical trials for tauopathies are currently

testing this approach (Troquier et al., 2012; Ando et al., 2014;

Sandusky-Beltran and Sigurdsson, 2020). AADvac1, a synthetic

peptide consisting of amino acids 294–305 of the tau, generates

antibodies against the tau protein. It has been shown to reduce tau

pathology in an animal model (Kontsekova et al., 2014), and it has

been tested in a clinical trial(ADAMANT;NCT02579252) in phase 1

and phase 2 on Alzheimer’s patients. It has been shown to lead to

decreased cognitive decline among younger patients, albeit without

improvements across all age groups, and will undergo a phase-3

clinical trial.ACI-35 immunotherapy has been used to target S-396/

404 tau phosphorylation by generating specific antibodies, showing

reduced soluble and insoluble tau in the brain and improving

survival in animal-model studies (Theunis et al., 2013). ACL -35

has been redesigned to generate as ACL-35.030 to generate a more

robust response (Soeda and Takashima, 2020).

A multicenter phase-1b/2a study is being conducted to evaluate

the safety and immunogenicity of this vaccine in Alzheimer’s

disease (AD) patients(NCT04445831).BIIB092 is a humanized

monoclonal antibody developed against an N-terminal fragment

of tau (extracellular tau) secreted from familiar AD-patient-derived

pluripotent stem cells. It is undergoing a phase-2 clinical trial for

AD (TANG0; NCT03352557) (Soeda and Takashima, 2020).

Oligonucleotide therapy targeting antisense and Si-RNA aims to

control the onset and progression of the disease by regulating the

protein expression levels. In transgenic mice, tau antisense
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oligonucleotides (AS0) reduced the amount of tau mRNA by 50%

and showed inhibition of neuronal loss, hippocampal atrophy, and

neuronal loss (DeVos et al., 2017). The A.S.O. drug, BIIB080, is in a

phase-1/2 double-blind, placebo-controlled trial(NCT03186989) on

mild AD patients.
Discussion

Post-COVID complications pose a significant public health

burden, with a recent study from CDC reporting its prevalence at

between 20 and 25% among COVID-19 patients (Bull-Otterson

et al., [[NoYear]]).

The extensive literature review above revealed the tau deposits in

the brain by examining the tissue samples from autopsies of COVID-

19 patients compared to controls. Another in-vitro model on

human-brain organoids infected with the COVID-19 virus showed

the aberrant phosphorylation of the tau protein, p tau 231, resulting

in neuronal cell death after infection with SARS-CoV-2.A variety of

body stresses, including viral infection, can trigger pathological tau

protein, which can possibly spread to healthier naive cells through

synapses, resulting in functional and structural changes in the

peripheral and autonomic nervous system, as discussed above.

This can result in peripheral, autonomic, and small-fiber

neuropathy, as revealed in transgenic-rat-model studies, and can

manifest in the form of a diverse range of clinical symptoms.

Long-COVID patients have predominant symptoms of fatigue,

post-exertional malaise, cognitive dysfunction, peripheral

neuropathy, and autonomic dysfunction, which can potentially be

explained by tauopathy neuropathy, including small-fiber

neuropathy, as discussed above.

Limitations: In the literature review, there is no direct study

available to elucidate the pathogenesis of long COVID or the direct

impact of tauopathy on long COVID. Our literature review has

explored the autopsy studies showing aberrant tau phosphorylation

in COVID-19 patients and in vitro studies showing similar findings

of aberrant phosphorylation resulting in neuronal cell death.

Multiple immuno-histopathological studies have shown the NLRP

3 inflammasome’s key role in COVID-19 as well as its role in the

tauopathies along with NF-kB, a transcriptor factor’s direct impact

on COVID-19 and tauopathies.

Apart from the above-mentioned pathophysiology of long

COVID, there may be other possible pathways that can
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potentially explain the Long COVID, which needs to be explored

to address this emerging disease.
Conclusion

I propose a prospective clinical study for the evaluation of the

role of tauopathy-induced neuropathy among long-COVID-19

patients with fatigue. The further evaluation and testing of CSF

for abnormally elevated tau protein in human organoids infected

with COVID-19 could be the first step in the development of a

biomarker for the diagnosis of long COVID. Elucidating the

underlying mechanism of aberrant phosphorylation can help us

to develop new targets for therapeutic interventions for long

COVID and other tauopathies in the future.
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