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Single-cell RNA sequencing
reveals common and unique
gene expression profiles in
primary CD4+ T cells latently
infected with HIV under
different conditions

Xinlian Zhang1, Andrew A. Qazi2, Savitha Deshmukh2,
Roni Lobato Ventura2, Amey Mukim2

and Nadejda Beliakova-Bethell2,3*

1Herbert Wertheim School of Public Health and Human Longevity Science, University of California,
San Diego, CA, United States, 2Veterans Affairs (VA), San Diego Healthcare System and Veterans
Medical Research Foundation, San Diego, CA, United States, 3Department of Medicine, University of
California, San Diego, CA, United States
Background: The latent HIV reservoir represents the major barrier to a cure. One

curative strategy is targeting diseased cells for elimination based on biomarkers

that uniquely define these cells. Single-cell RNA sequencing (scRNA-seq) has

enabled the identification of gene expression profiles associated with disease at

the single-cell level. Because HIV provirus in many cells during latency is not

entirely silent, it became possible to determine gene expression patterns in a

subset of cells latently infected with HIV.

Objective: The primary objective of this study was the identification of the gene

expression profiles of single latently infected CD4+ T cells using scRNA-seq.

Different conditions of latency establishment were considered. The identified

profiles were then explored to prioritize the identified genes for future

experimental validation.

Methods: To facilitate gene prioritization, three approaches were used. First, we

characterized and compared the gene expression profiles of HIV latency

established in different environments: in cells that encountered an activation

stimulus and then returned to quiescence, and in resting cells that were infected

directly via cell-to-cell viral transmission from autologous activated, productively

infected cells. Second, we characterized and compared the gene expression

profiles of HIV latency established with viruses of different tropisms, using an

isogenic pair of CXCR4- and CCR5-tropic viruses. Lastly, we used proviral

expression patterns in cells from people with HIV to more accurately define

the latently infected cells in vitro.

Results: Our analyses demonstrated that a subset of genes is expressed

differentially between latently infected and uninfected cells consistently under

most conditions tested, including cells from people with HIV. Our second
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important observation was the presence of latency signatures, associated with

variable conditions when latency was established, including cellular exposure

and responsiveness to a T cell receptor stimulus and the tropism of the

infecting virus.

Conclusion: Common signatures, specifically genes that encode proteins

localized to the cell surface, should be prioritized for further testing at the

protein level as biomarkers for the ability to enrich or target latently infected cells.

Cell- and tropism-dependent biomarkers may need to be considered in

developing targeting strategies to ensure that all the different reservoir subsets

are eliminated.
KEYWORDS

HIV latency, single-cell RNA-seq, biomarker, gene expression profiling, in vitro models,
viral tropism, HIV latency in vivo
1 Introduction

The latent HIV reservoir represents the major barrier to a cure

from this virus (Chun et al., 1997; Finzi et al., 1997; Wong et al.,

1997); therefore, identification of a molecular signature, and

ultimately, a set of cell surface markers that can be used to

eliminate all the latently infected cells is crucial. HIV reservoir is

highly heterogenic. Prior studies demonstrated that HIV can persist

in cells of essentially all major maturation phenotypes (Lambotte

et al., 2002; Bacchus et al., 2013; Buzon et al., 2014; Jaafoura et al.,

2014; Soriano-Sarabia et al., 2014; Zerbato et al., 2019) and in many

functional subsets of memory cells (Tran et al., 2008; Pallikkuth

et al., 2015; Sun et al., 2015; Banga et al., 2018; Dobrowolski et al.,

2019). In addition, though resting CD4+ T cells were believed to be

the main component of the stable latent reservoir, it is not clear

whether cells that express some level of activation markers, CD69,

CD25, and HLA-DR, are always fully activated and are destined to

die by contraction (Falcinelli et al., 2019). Furthermore, HIV

provirus can remain silent even in cells activated to proliferate

(Musick et al., 2019). Several recent studies have described preferred

phenotypes of cells that bear the latent HIV reservoir (Neidleman

et al., 2020; Collora et al., 2022; Sun et al., 2023). Recurring

observations in these studies included markers of immune

checkpoint, activation and differentiation states, and phenotypes

that are protective from immune-mediated killing (Neidleman

et al., 2020; Collora et al., 2022; Sun et al., 2023). Despite some

similarities in the signatures of reservoir cells described, there

appears to be no unifying phenotypic marker that can distinguish

latently infected from uninfected cells (Sun et al., 2023). Sun and

colleagues proposed that the host immune activities influence the

absence or presence of specific molecular signatures on latently

infected cells (Sun et al., 2023).

Consistent with these observations in vivo, several HIV latency

biomarker discovery studies performed in vitro reported poorly

overlapping sets of differentially expressed genes (Iglesias-Ussel

et al., 2013; White et al., 2016; Descours et al., 2017; Trypsteen
02
et al., 2019). This discrepancy in the identified signatures of HIV

latency is consistent with the idea that these signatures are

dependent on signals from the cellular environment. Indeed, in

some of these in vitro models, HIV latency was established in

activated cells that were allowed to return to quiescence (Iglesias-

Ussel et al., 2013; White et al., 2016), while other models used direct

infection of resting cells (Descours et al., 2017; Trypsteen et al.,

2019). Remarkably, even in studies that did perform validation of

identified biomarkers using cells from people with HIV, each of the

biomarkers defined only a small portion of all latently infected cells,

which was evident by only modest (up to 10-fold) enrichment for

the reservoir cells when antibodies against the biomarker proteins

were used (Iglesias-Ussel et al., 2013; Fromentin et al., 2016;

Beliakova-Bethell et al., 2022). Based on these observations, it is

likely that an extended complex biomarker panel will be required to

define and target the entire HIV reservoir.

Single-cell RNA sequencing (scRNA-seq) has emerged as a

powerful technology to make the identification of heterogenic

cellular responses and gene expression profiles associated with

disease possible (Saura et al., 2023; Thomas et al., 2023). Because

HIV provirus in many cells during latency is not entirely silent

(Lassen et al., 2004; Wiegand et al., 2017; Yukl et al., 2018), it is

possible to detect these cells by scRNA-seq. This has allowed

interrogating gene expression patterns of these cells at the single-

cell level, even though they represent a minority population of cells

in people with HIV. However, ex vivo studies are limited by the

need to collect an enormous amount of data to capture a few HIV-

positive cells in the background of thousands of HIV-negative cells

to achieve sufficient power in such gene expression comparisons. To

address this problem, in vitro models of HIV infection can be used;

however, they, too, have certain limitations. First, these models are

usually short-term and do not accurately represent years-long

infection of cells in people with HIV. Second, it remains

challenging to prioritize the selection of promising biomarkers for

testing, among the identified differentially expressed genes, when

using these models.
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In this study, we aimed to circumvent these limitations by

conducting biomarker discovery using both the in vitromodels and

the ex vivo samples of CD4+ T cells from virologically suppressed

people with HIV. Our primary goal was to identify gene expression

profiles of latency commonly observed in cells under these various

conditions: 1) cellular exposure and responsiveness to the T cell

receptor (TCR) stimulus before returning to a quiescent state; 2)

tropism of infecting virus; 3) study participants selected.

Secondarily, we were interested in determining whether

conditions of latency establishment impact the composition of the

biomarker profiles. In addition to analyzing all the cells with low

levels of HIV RNA expression in vitro, we have also defined latently

infected cells more narrowly, using the HIV transcriptional patterns

of CD4+ T cells ex vivo. The signatures identified in vitro using

hundreds of cells were then validated ex vivo using dozens of cells.

Our study’s results point to common gene expression profiles

associated with latent HIV infection established in different

conditions. These genes should be prioritized for further testing

at the protein level as biomarkers for the ability to enrich or target

the latently infected cells. Remarkably, we discovered the presence

of latency signatures associated with variable conditions when

latency was established, including cellular exposure and

responsiveness to the TCR stimulus, a subset of study

participants, and the tropism of the infecting virus. All of these

condition-dependent biomarkers may need to be considered in

developing targeting strategies to ensure that all different reservoir

subsets are eliminated.
2 Materials and methods

2.1 Primary CD4+ T cell samples

Primary CD4+ T cells from HIV seronegative donor volunteers

were used to establish HIV infection in vitro. Cells were isolated

using negative selection (StemCell Technologies, Inc., Vancouver,

Canada) from the peripheral blood samples. The protocol was

approved by the Institutional Review Boards of the University of

California San Diego, and the Veterans Affairs San Diego

Healthcare System. All participants provided written informed

consent. CD4+ T cells used for ex vivo studies were biobanked

de-identified CD4+ T cell samples from people with HIV, kindly

gifted to us by Dr. Douglas Richman. Cohorts from which these

samples were available were described previously (Richman et al.,

2019; Bakkour et al., 2020); however, characteristics of individual

samples used in this study were not available to the investigators. Of

importance to the present study on latency, all participants had

undetectable viral loads (less than 50 copies per milliliter of plasma)

(Richman et al., 2019; Bakkour et al., 2020).
2.2 Viruses

The laboratory strain NL4.3 was used for the majority of the

experiments. In the experiments where CXCR4- and CCR5-tropic

infections were compared, the isogenic pair of NL4.3 (CXCR4-
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tropic) and the same virus with the JR-CSF V3 loop sequence

(CCR5-tropic) (Suzuki et al., 1999) were used. The viral stocks were

generated by transfecting plasmid DNA into the CEM or P4R5 T

cell lines. Virus preparations were quantified for infectivity via the

P4R5 MAGI blue cell assay (Day et al., 2006). Before using the

CCR5-tropic virus for infection, it was incubated for 30 minutes at

4°C with the infectivity enhancement reagent (Miltenyi Biotec, Inc.,

Gaithersburg, MD, USA).
2.3 The in vitro models of HIV latency

In the first experiment, the two in vitro models of HIV latency

with different mechanisms of latency establishment were used. The

first model involved infection, activation of CD4+ T cells using

aCD3/aCD28 antibodies, and allowing the cells to return to

quiescence (the 14-day model) (Soto et al., 2022). The second

model involved direct infection of the resting CD4+ T cells via

co-culture with autologous productively infected cells to allow cell-

to-cell viral transmission (the 10-day model) (Beliakova-Bethell

et al., 2019; Soto et al., 2022). The experiments were conducted in a

paired design, meaning both models were set up using cells from the

same three blood donors. We conducted the scRNA-seq experiment

with both models on the same day; therefore, one portion of cells

designated for setting up the 10-day model of latency was viably

frozen for four days.

For the 14-day model, the isolated CD4+ T cells were stained with

a viable dye carboxyfluorescein succinimidyl ester (CFSE, day -1). The

following day, cells were infected with the wild-type HIV virus NL4.3

for 4-6 hours and then stimulated in 6-well non-tissue culture plates

coated with aCD3/aCD28 antibodies (day 0). Four days later, the cells
were removed from the plates and cultured in the presence of the

mixture of cytokines to optimize cell proliferation and survival: IL-2,

IL-15, and IFNb, added at different times during the culture (Soto et al.,

2022) (Figure 1A). Indinavir (1 µM) was added on Day 7 and

maintained until the end of the culture. On Day 14, the cells were

stained with Aqua live/dead stain (Thermo Fisher, Inc., Waltham, MA,

USA), and sorted using the FACS Aria (BD Biosciences, Inc., San Jose,

CA, USA) or Sony MA900 Multi-Application cell sorter (Sony, Inc.,

New York, NY, USA), to recover live cells with strong proliferative

response to the TCR stimulus (CFSElow), moderate proliferative

response (CFSEmed) and no proliferative response (CFSEhigh)

(Figures 1A, B).

For the 10-day model, the frozen cells were viably thawed and

split into two portions (day -1). One portion was incubated without

infection or stimulation for five days, while the other portion was

stained with CFSE, infected with the wild-type NL4.3 virus, and

stimulated as described above. On Day 4, the fully activated,

infected, stained cells were mixed with the resting cells at a ratio

of 1:4 in the presence of the cytokines IL-2 and IL-15, to allow cell-

to-cell virus transmission and establishment of latent infection

directly in resting cells. On Day 7, CFSE-negative resting cells

were recovered by flow cytometry sorting using the FACS Aria

(BD Biosciences, Inc., San Jose, CA, USA) or Sony MA900 Multi-

Application (Sony, Inc., New York, NY, USA) instruments. On Day

10, the cells were stained with Aqua live/dead stain (Thermo Fisher,
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Inc., Waltham, MA, USA), and live cells were sorted using flow

cytometry as above (Figure 1C).

Both the 14- and the 10-day models were extensively

characterized previously (Beliakova-Bethell et al., 2019; Beliakova-

Bethell et al., 2022; Soto et al., 2022). It is important to note that

proviral integration frequency ranged between 2.5 and 22% for the

10-day model, and between 0.3 and 46% for the different cell

subpopulations (dividing and non-dividing) in the 14-day model.

Baseline RNA expression was detected for both models when

quantified from bulk RNA samples isolated from a mixture of

infected and uninfected cells.

The second experiment assessed the effect of viral tropism on

the molecular signatures of latently infected cells. The 10-day model

was used in this experiment, with freshly isolated CD4+ T cells and

eFluor 670 (Thermo Fisher, Inc., Waltham, MA, USA) utilized in

place of CFSE. The design was paired, meaning that cells from the

same three donors were infected with CXCR4- or CCR5-tropic

viruses. Of note, these three donors were different from those who

participated in Experiment #1.
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2.4 Preparation of cells for scRNA-seq

For single-cell transcriptomic profiling, the droplet-based

Chromium platform developed by 10X Genomics, Inc.

(Pleasanton, CA, USA) was used. Its advantages are high

throughput (up to 10,000 cells per sample) and single-cell

resolution. For all paired sets of experiments, scRNA-seq was

conducted on the same day. Following live cell recovery using

flow cytometry, CFSElow, CFSEmed, and CFSEhigh cells from the 14-

day model were stained with cell hashing antibodies (Biolegend,

Inc., San Diego, CA, USA) TotalSeq™-B0252, TotalSeq™-B0253,

and TotalSeq™-B0254, respectively. After staining, cells were

mixed back together, 10,000 from each population. For additional

sample processing details, please refer to the Supplementary

Methods. Our third, and last experiment involved biobanked

CD4+ T cell aliquots from people with HIV. These cells were

viably thawed, followed by Aqua live/dead staining (Thermo Fisher,

Inc.) and live cell sorting. For one of the donors, two sequencing

reactions were prepared (technical replicate). In all experiments,
A

B C

FIGURE 1

The in vitro models of HIV latency. (A) A diagram depicting the model of HIV latency established following cell activation and their return to
quiescence (the 14-day model). Numbers indicate days during the model set-up; grey circles depict resting cells; green circles depict cells stained
with CFSE. (B) Gating scheme to obtain cells with variable responsiveness to the TCR stimulus. (C) A diagram depicting the model of HIV latency
established via cell-to-cell virus transmission from the autologous CFSE-stained, infected, activated cells (the 10-day model). Numbers indicate days
during the model set-up; grey circles depict resting cells; green circles depict cells stained with CFSE. To ensure that the scRNA-seq experiment
occurred on the same day, Day -1 of this model is the same day as Day 3 of the model depicted in (A).
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12,000 total cells were loaded into the Chromium Controller,

aiming to achieve the targeted recovery of 10,000 cells in the

scRNA-Seq experiment. Reverse transcription to generate cDNA

and library preparation for scRNA-seq were conducted per the

manufacturer’s instructions (10X Genomics, Inc., Pleasanton, CA,

USA) using v3 or v3.1 kits. Sequencing was performed at the

Institute for Genomics Medicine (IGM) Genomics Center using

the NovaSeq 6000 instrument (Illumina, Inc., San Diego, CA). The

IGM Genomics Center provided the data as paired.fastq files.
2.5 ScRNA-seq read mapping and counting

Raw sequencing .fastq files were used as input into the read

mapping and counting software, CellRanger v4.0 or v7.0.1,

developed by 10X Genomics, Inc. (Pleasanton, CA, USA). When

v7.0.1 was used, the mode to not include read mapping to gene

introns was selected to directly compare the data generated earlier

in time that were mapped using CellRanger v4.0. The genome

reference used for mapping was the Consortium Human Reference

38 combined with the HIV genome. To maximize the chances

of capturing all HIV reads, detailed information on the most

abundant alternatively spliced HIV variants (Purcell and Martin,

1993) with exon coordinates was included in the genome index for

CellRanger to retain potential junction reads. The output

filtered_feature_bc_matrix folder, which contains the barcodes

after cell-calling filtration, was used for downstream analyses in

Bioconductor R. The raw and mapped data are available through

the Gene Expression Omnibus (GEO) database, accession

number GSE241723.
2.6 ScRNA-seq data pre-processing

Our data pre-processing pipeline has been recently published

(Zhang et al., 2023) and was used for the samples analyzed here.

Briefly, the filtered_feature_bc_matrix data generated by the

CellRanger were read using the Read10X function in the library

Seurat (Satija et al., 2015) in Bioconductor R. HIV unique molecular

identifiers (UMIs) were removed from the gene expression matrix

and added to the object metadata to ensure that cell clustering

occurs based on host gene expression. Other added metadata

included percent reads mapping to mitochondria genes, natural

log-transformed HIV UMI, and UMI and their natural log-

transformed values for all antibodies used to label cells with

different proliferative responses.

A data-driven approach to exclude cells of poor quality (dead

cells and multiplets) was used as described previously (Zhang et al.,

2023). Of note, the multiplets were removed only from the samples

generated from the 14-day in vitro model, where different cell

hashes were used to label cells with different proliferative

responses to the TCR stimulus. Removal of multiples was not

feasible for the 10-day in vitro model or samples from people

with HIV. To determine filtering thresholds, either the interquartile

range (IQR) rule or the Gaussian mixture model was used based on

the data (Zhang et al., 2023) (see also Supplementary Methods).
Frontiers in Cellular and Infection Microbiology 05
HIV expression in individual cells was normalized to the total

library size for that cell before assessing HIV expression levels in

cells using the Gaussian mixture model. Histograms of HIV

expression were plotted to assess the overall levels of HIV

expression. It was found that a small proportion of cells had high

levels of HIV expression, comparable to levels observed previously

for productively infected cells (Zhang et al., 2023). These cells were

therefore excluded from the analysis of differentially expressed

genes between latently infected and uninfected cells.
2.7 Integrating replicate experiments

Data from triplicate experiments were integrated together for

further analysis using the anchoring procedure (Stuart et al., 2019) in

the library Seurat. Five integrated datasets were analyzed: Experiment

#1, 14-day model; Experiment #1, 10-day model; Experiment #2

CXCR4-tropic infection; Experiment #2 CCR5-tropic infection;

Experiment #3, samples from people with HIV. Before integration,

gene filtering was performed to remove genes not expressed in any

cells in any of the samples; data were normalized for library size and

log-transformed. Two thousand genes with the most variable

expression were used to identify integration anchors. Anchor

expression was used to align phenotypically similar cells from the

three replicate samples during the data integration process. Data were

then scaled, and dimensionality reduction was first performed using

principal component analysis (PCA), followed by the

implementation of the t-distributed stochastic neighborhood

embedding (tSNE) or uniform manifold approximation and

projection (UMAP) algorithms. The integrated datasets were used

for differential gene expression analyses. Integrated datasets were

merged together to generate comparative plots of gene expression

levels across conditions.
2.8 Improving the definition of latently
infected cells based on HIV transcriptional
profiles ex vivo

Due to the HIV genome being AT-rich, the 10X platform

detects HIV RNA not only at the 3’ end on the polyA tail but

also in additional areas of the HIV genome with many consecutive

A’s. This feature allows assessment of the HIV genome read

coverage, and using it to deduce the state of HIV latency in a

given cell. From the four sequenced samples represented by three

people with HIV on suppressive antiretroviral therapy (ART), 71

cells expressing HIV RNA (average 3 reads per cell, range 1-35

reads per cell) were detected and used for determination of HIV

transcript profiles. We parsed the .bam files from the CellRanger

output using pysam package (Li et al., 2009; Bonfield et al., 2021) in

the Python platform and extracted the starting coordinates of the

mapped reads to visualize the mapped reads on the HIV genome.

HIV reads mapped predominantly to the 5’ proximal half of the

genome (0-5000bp), with an exceptionally high peak at the 3’ end,

corresponding to the repetitive region of the long terminal repeat

(LTR) in HIV transcripts. We calculated the proportion of reads
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falling outside the 5001bp-9526bp region, combining all HIV-

positive cells from available samples from people with HIV (p0 =

0.9069). Then, for each HIV-positive cell detected in vitro, we

compared the percentage of reads falling outside the 5001bp-

9526bp region to p0. If this percentage was greater than p0, cells

were labeled as “predicted latently infected cells”; provirus in other

cells was considered more active, and such cells were excluded from

further analyses (Figure 2).
2.9 Identification of gene expression
profiles of latently infected cells

HIV expression in individual cells was normalized to the

total library size for that cell before assessing HIV expression.

When HIV expression was plotted on a histogram (Figure 3), we

noticed a minor peak with high HIV RNA levels that were

comparable to the levels of HIV RNA reported previously for

productively infected cells (Zhang et al., 2023). In the 14-day
Frontiers in Cellular and Infection Microbiology 06
model, these cells may be representative of incomplete

quiescence. In the 10-day model, these cells likely represent

contamination of the sorted resting populations with

productively infected cells. Therefore, we have used the

Gaussian mixture model described above and in the

Supplementary Methods to establish proper thresholds to

exclude cells with high levels of HIV RNA from the analyses.

In the first round of analyses, we defined latently infected cells

as all HIV-positive cells that remained after excluding cells with

high levels of HIV RNA. In the second round of analyses, we

defined “predicted latently infected cells” based on the HIV

transcriptional profiles in cells from people with HIV (Figure 2).

In both cases, differential gene expression analyses were conducted

between HIV-negative cells and cells defined as latently infected

with HIV. The FindMarkers function in the library Seurat was used

with the default parameters. A Bonferroni-adjusted p-value < 0.05

was considered a significant difference. For the 14-day model, these

analyses were conducted separately for CFSElow (hashed with

TotalSeq™-B0252), CFSEmed (hashed with TotalSeq™-B0253),
FIGURE 2

An illustration of the scaled HIV read abundance levels across the HIV genome for predicted latently infected cells (blue dash curve, left panel), with
the same transcriptional profiles as in cells from people with HIV (solid black line), and cells with more active provirus (red dash curve, right panel).
For both the cells from people with HIV and the predicted latently infected cells, peaks at the 3’ half of the genome are sparse and shorter than
peaks at the 5’ half. For cells with more active HIV provirus, read peaks are more equally distributed and more comparable by height throughout the
HIV genome. Relative abundance = (the number of reads that aligned in a specific region)/(total number of reads). Of note, relative abundance is
calculated for each of the bins separately for the cells from people with HIV and cells from the in vitro models. Thus, comparisons between ex vivo
and in vitro samples cannot be made. Rather, the heights of each peak where reads are piled up are comparable across the HIV genome within each
of the groups of cells. The top panel represents cells from the 14-day model, and the bottom panel, the 10-day model of HIV latency.
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and CFSEhigh (hashed with TotalSeq™-B0254) cells. The identified

differentially expressed genes were compared between cell subsets,

between the different models, and latency established using

CXCR4- and CCR5-tropic viruses.

For the identification of differentially expressed genes shared by

cells in which latency was established under different conditions, the

lists of genes were assessed for overlaps. We have deliberately not

chosen to identify common genes by combining all the data into

one large dataset, because, if all the individual samples were

combined, the resulting dataset would be dominated by cells in

which latency was established in a resting state. Thus, the majority
Frontiers in Cellular and Infection Microbiology 07
of the identified markers would be expected to represent markers of

resting cell infection.
2.10 Validation of differentially expressed
genes using cells from people with HIV

The integrated dataset of samples from people with HIV was used

for validation. Differential gene expression analysis was conducted

between cells that had at least one HIV read and HIV-negative cells.

Genes for validation were selected based on the following criteria: 1)
A

B

FIGURE 3

Levels of HIV RNA expression in the models of HIV latency and exclusion of cells with potential productive HIV infection. HIV expression was
assessed in all sets of experiments, first by visualizing the levels of HIV RNA expression normalized to the library size using a histogram (top), and
then visually on all individual cells using the FeaturePlot function (bottom). Feature plots are shown both before (bottom left) and after (bottom right)
exclusion of cells with high levels of HIV RNA. (A) Experiment #1 assessing gene expression profiles of latency in the two different in vitro models.
(B) Experiment #2 assessing gene expression profiles of latency established with isogenic CXCR4- and CCR5-tropic viruses.
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genes were identified for cells under both definitions of latency; 2)

proteins encoded by the genes localize to the plasma membrane; 3)

genes were upregulated in latently infected cells. For the assessment of

protein localization, the GeneCards database was used (Stelzer et al.,

2016). Internally, it uses the Compartments subcellular localization

database integrated from literature based on manual curation, high

throughput microscopy screens, predictions from primary sequence

and automatic text mining, resulting in an overall “confidence score”

(scale 1-5, least to greatest confidence). Proteins with membrane

localization scores of 4 or 5 were considered “localized to plasma

membrane” in the present study. The FindMarkers function was used

with selected genes as input, with all thresholds set to 0 to ensure that

analysis is conducted on all selected genes, regardless of the fold change

or percent of cells that express them. The FindMarkers function

conducts multiple testing correction based on all genes detected, not

the list of a priori selected genes. Therefore, we have conducted

Bonferroni correction using the p.adjust function in R, which allows

using a priori gene lists for the total number of actual tests conducted.

A nominal p-value < 0.1 was considered a significant difference.
2.11 Statistical analyses

Tests of proportions were conducted to compare sets of

overlapping genes identified as biomarkers of latency established

in different conditions and to compare frequencies of infection with
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CXCR4- and CCR5-tropic viruses. The chi-squared test was used; a

p-value < 0.05 was considered a significant difference.
3 Results

3.1 ScRNA-seq data quality assessment and
cell filtering

The total number of detected cells, number of reads per cell, and

number of genes detected per cell were first assessed in all

experiments (Table 1). Data quality was assessed by identifying

multiplets where possible (see Materials and Methods) and

determining the percentages of reads mapping to mitochondria

genes, which is indicative of cells that might be dead or dying.

Multiplets and dead/dying cells were excluded from any further

analyses (see Table 1 for the number of cells analyzed in each sample).
3.2 Gene expression profiles of cells
latently infected with HIV depend on
exposure and responsiveness of CD4+
T cells to the TCR stimulus

Our prior observations indicated that active HIV infection

induced differential transcriptomic remodeling in CD4+ T cells
TABLE 1 Summary of read coverage and the number of cells analyzed for all samples.

Total cells sequenced Mean reads per cell Median genes per cell Cells analyzed

Experiment #1: model comparison

14-day model, Donor 1 2773 34198 1852 2167

14-day model, Donor 2 7551 23185 1310 4421

14-day model, Donor 3 5789 23791 1788 4634

10-day model, Donor 1 4263 33389 1561 3101

10-day model, Donor 2 8110 21406 1046 6249

10-day model, Donor 3 5593 23944 1442 5129

Experiment #2: CXCR4 vs CCR5

10-day model, CXCR4, Donor 4 10041 92136 1846 6729

10-day model, CXCR4, Donor 5 5612 40532 1832 5019

10-day model, CXCR4, Donor 6 3819 61908 1865 3737

10-day model, CCR5, Donor 4 9900 93510 1926 7088

10-day model, CCR5, Donor 5 2648 100584 2200 2287

10-day model, CCR5, Donor 6 9814 26595 1417 9166

Experiment #3: cells from people with HIV

Donor 7_1 7843 35003 1787 7245

Donor 7_2 7666 38425 1893 7070

Donor 8 7439 30790 1424 6705

Donor 9 5227 37946 1596 4603
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with robust, modest, and no proliferative response to the TCR

stimulus (Zhang et al., 2023). Here, we aimed to determine whether

gene expression profiles of latently infected cells were likewise

affected by the recent exposure and responsiveness to stimulation.

To this end, the two in vitromodels of HIV latency were used. In the

first model (14-day), cells were exposed to the TCR stimulus, and

activated cells were allowed to return to quiescence (Soto et al.,

2022). Proliferative responsiveness to the stimulus was assessed by

using the CFSE dye to track the number of cell divisions. Our

second model (10-day) implemented direct infection of resting

CD4+ T cells via cell-to-cell virus transmission from the

autologous infected, activated CD4+ T cells (Beliakova-Bethell

et al., 2019; Soto et al., 2022).

Since both in vitro models of HIV latency represent short-term

infection, we took extra precautions to evaluate the levels of HIV

expression in individual cells using our scRNA-seq data. For both

models, HIV expression levels (UMI) exhibited a bimodal

distribution, with most cells exhibiting low levels of HIV RNA

(Figure 3A). The cells with high levels of HIV RNA had UMI values

in the same range as in our prior study of active HIV infection

(Zhang et al., 2023), and these cells were, therefore, excluded from

the analyses (Figure 3A).

The gene expression profiles of cells that divided many times, a

few times, or remained non-dividing in response to the TCR

stimulus were analyzed separately. Specifically, gene expression in

latently infected cells (cells with low levels of HIV RNA expression)

in each group was compared to gene expression in cells with no

HIV RNA from the same group. One hundred forty-three genes

were differentially expressed for cells that divided many times, 20

genes for cells that divided a few times, and 22 genes for cells that

remained non-dividing (Supplementary Table 1). Six genes were

commonly modulated in latency regardless of CD4+ T cell

responsiveness to the TCR stimulus (Figure 4A): macrophage

migration inhibitory factor (MIF), cysteine rich protein 1

(CRIP1), interferon induced transmembrane protein 1 (IFITM1),

signal transducer and activator of transcription 1 (STAT1),

ribosomal protein S10 (RPS10), and MT-RNR2 like 12

(MTRNR2L12). The majority of the remaining genes that were

identified for cells that divided a few times were also found among

genes expressed differentially in cells that divided many times, but

only one gene was in common between dividing and non-dividing

cells (Figure 4A).

The most useful biomarkers for cell targeting are represented by

proteins upregulated at the surface of latently infected cells. We,

therefore, attempted to prioritize these markers by selecting

upregulated genes and using information available in the

GeneCards database (Stelzer et al., 2016) regarding the likelihood

of protein association with the plasma membrane. Figure 4B depicts

such markers identified for all cell types in common, shared by two

cell types, or unique to one cell type.

Because cells not responsive to the TCR stimulus are only

minimally activated (Soto et al., 2022), we next hypothesized that

signatures of HIV latency established directly in resting cells would

be most similar to those of non-dividing cells exposed to the TCR

stimulus. To test this hypothesis, we used the 10-day model of HIV

latency established via cell-to-cell virus transmission from
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autologous productively infected cells. Because of our paired

experimental design, we were able to ensure that observed

differences would not be due to biological differences between cell

donors, but only due to the model used. Again, gene expression in

latently infected cells (cells with low levels of HIV RNA) was

compared to gene expression in cells with no HIV RNA. One

hundred and five genes were identified as differentially expressed

(Supplementary Table 2). Differentially expressed genes identified

in cells exposed to the TCR stimulus were then compared to the

markers identified for the resting cells. For cells that remained non-

dividing after the TCR stimulus exposure, 11 out of 22 genes (50%)

overlapped with the markers identified for the resting cells. For cells

that divided a few times in response to the TCR stimulus, 8 of 20

(40%) genes overlapped with the markers identified for the resting

cells. Finally, the overlap between genes identified for cells that

divided many times and the resting cells constituted 28 of 143

(~20%) genes. The overlap between resting and non-dividing cells

(p-value = 0.002139) or cells that divided a few times (p-value =

0.038) was significantly greater than the overlap between resting

cells and cells that divided many times. These results are consistent

with the idea that the biomarkers of cells with no or minimal

proliferative response to the TCR stimulus are similar to those of

latency established directly in resting cells. Genes that were

significantly upregulated (Bonferroni-adjusted p-value < 0.05) in

the latently infected cells from the 10-day model are indicated with

asterisks in Figure 4. Overall, STAT1 was upregulated consistently

in all conditions.
3.3 Gene expression profiles of latently
infected cells depend on the tropism of the
infecting virus and the biological variation
between the study participants

CXCR4- and CCR5-tropic viruses induce different signaling

pathways in cells at the time of infection. For example, CCR5-tropic

viruses increase the levels of cell proliferation and expression of

activation markers (Locher et al., 2005) and can replicate in the

absence of TCR-mediated re-stimulation (Vicenzi et al., 1999). On

the other hand, induction of pathways associated with cytoskeleton

reorganization and actin filament processing was unique for the

CXCR4-tropic virus (Cicala et al., 2006), consistent with a reported

induction of the cofilin pathway via engagement of the CXCR4 co-

receptor (Yoder et al., 2008). Since we observed that different degree

of responsiveness to the TCR stimulus was associated with different

molecular signatures when latency was established, we hypothesized

that exposure to different viruses may likewise cause variation in

gene expression profiles of latently infected cells. To minimize the

initial response associated with productive infection, the 10-day

model of latency established directly in resting cells was used for

these experiments. The paired design allowed to eliminate the

variation in identified genes due to different biological replicates,

and ensured that the gene expression differences would be due

solely to the tropism of the infecting virus. Because participants who

donated blood for experiments #1 and #2 were different, it was

possible to evaluate the effect of biological variation on the
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biomarkers of latency identified from the two sets of three 10-day

models established with CXCR4-tropic infection in the two

independent experiments. Of note, in Experiment #1, cells were

viably frozen for four days and thawed, while in Experiment #2,

freshly isolated CD4+ T cells were used. However, we believe that

differences due to variable experimental conditions are negligible

because the gene expression readout was conducted after 10 days

of culture.

As before, cells with high levels of HIV RNA were excluded from

the analyses (Figure 3B). Because infection with CCR5-tropic virus is

less efficient in vitro compared to CXCR4-tropic infection, we first

evaluated the proportions of cells infected with viruses of different

tropisms. For CXCR4-tropic infection, a total of 15,485 cells were

analyzed, of which 10,891 did not have detectable HIV RNA, and

4,346 had low levels of RNA expression (248 cells had high levels of

RNA expression and were excluded). Therefore, cells with low levels

of HIV RNA represented 28.1%, and cells with high levels of HIV
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RNA 1.6% of all cells sequenced. For CCR5-tropic infection, a total of

18,541 cells were analyzed, of which 16,643 did not have detectable

HIV RNA, 1,829 cells had low levels of HIV RNA expression (69 cells

had high levels of HIV RNA expression and were excluded).

Therefore, cells with low levels of HIV RNA represented 9.9%, and

cells with high levels of HIV RNA 0.37% of all cells sequenced. As

expected, infection with the CCR5 virus was less frequent compared

to infection with the CXCR4 virus (p-value < 0.001). Nonetheless, a

sufficient number of latently infected cells was sequenced to identify

gene expression profiles of latency established with viruses of

different tropisms.

Thirteen genes were significantly upregulated in cells with low

levels of CXCR4-tropic HIV RNA (Supplementary Table 3). Thirty

genes were identified as differentially expressed for CCR5-tropic

infection, 28 of which were upregulated (Supplementary Table 3).

Twelve genes were upregulated in common for CXCR4- and CCR5-

tropic infection (Figure 5A). Of note, in this experiment, an order of
A

B

FIGURE 4

Evaluation of gene expression profiles of latency established in cells with different exposure and responsiveness to the TCR stimulus. (A) A Venn
diagram of all significant markers for cells that were exposed to the TCR stimulus and divided many times, a few times, or remained non-dividing
(the 14-day model). Overlapping genes are listed. Red, upregulated genes; blue, downregulated genes. (B) Expression of genes that were identified
as differentially expressed in common or uniquely for different cell subsets (the 14-day model) visualized using the DotPlot function; their expression
is also shown for the 10-day model. The size of the circle indicates the percentage of cells where each marker is expressed; the color indicates the
average level of expression (log normalized scaled UMI). The red boxes emphasize cases where genes were significantly differentially expressed
between HIV-negative cells and cells with low levels of HIV RNA in the 14-day model (Bonferroni-corrected p-value < 0.05). The red asterisks
indicate genes that were also upregulated in latency established directly in resting cells via cell-to-cell viral transmission from the autologous
activated productively infected cells (the 10-day model). Proteins encoded by genes highlighted in brown are localized to the plasma membrane
(scores 4 or 5 in the GeneCards database). Key to the left of the dot plot shows HIV expression in cells represented in each row (- or +), model (10-
or 14-day), and cell division (R, resting for the 10-day model; N, non-dividing; F, dividing a few times; M, dividing many times).
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magnitude fewer genes were identified for CXCR4-tropic infection,

compared to the set described in Experiment #1 that assessed the

effect of environmental stimuli. Therefore, there appears to be a

donor effect on identifying differentially expressed genes. To test for

this possibility, we have merged all three of our datasets generated

with the 10-day model. We then plotted all the positive markers

identified with the CCR5 tropic virus for all three datasets

(Figure 5B). The majority of genes identified as markers for

CCR5-tropic infection were also identified as markers of CXCR4-

tropic infection in Experiment #1 with the 10-day model (Figure 5B,

red asterisks), consistent with the idea that viral tropism may have a

lesser contribution to signatures of latency than the results from the

paired analysis initially implied.

To better understand the contribution of donor-to-donor

variation and the tropism of the infecting virus to gene expression

profiles of latently infected cells, we have relaxed the fold change

threshold in the FindMarkers function from the default 0.25 to 0.1

(log scale), and repeated differential gene expression analysis for all

the datasets that used the 10-day model of HIV latency. Seven

hundred ninety-four genes were identified for the 10-day model set

from Experiment #1, 142 genes were identified for CXCR4-tropic

infection, and 278 genes for CCR5-tropic infection in Experiment #2.

We then analyzed the overlap of differentially expressed genes

between the two sets of different donors infected with the CXCR4-

tropic virus and between the CXCR4- and CCR5-tropic infections.

Keeping the CXCR4-tropic set from Experiment #2 as a constant for

both comparisons, we identified 35 genes out of 790 to overlap for the
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donor-to-donor comparison, and 37 of 278 genes to overlap for the

tropism comparison. The percentage of overlapping genes for the

tropism comparison (13%) was significantly greater (p-value < 0.001)

than the percentage of overlapping genes for the donor-to-donor

comparison (4%). We, therefore, conclude that donor-to-donor

variation plays a greater role in biomarker identification than the

tropism of the infecting virus. Despite the sparsity of the observed

substantial differences in signatures of CXCR4- and CCR5-tropic

latency, we have noticed that among genes identified in our dataset,

the interleukin 7 receptor (IL7R) was upregulated in latently infected

cells for CCR5-tropic infection only (Figure 5B). In both sets of

CCR4-tropic infection, the difference was not large, and even in the

opposite direction for the Experiment #1 dataset.
3.4 Differentially expressed genes identified
using a stricter definition of latently
infected cells based on HIV transcript
profiles in people with HIV

Because our in vitro models of HIV latency are short-term,

proviral activity in cells infected with HIV is likely higher compared

to that resulting from long-term infection in vivo. Our prior studies

that utilized the same in vitro models demonstrated negligible

production of p24 protein without reactivation (Trypsteen et al.,

2019; Soto et al., 2022), consistent with the idea that the vast

majority of cells are latently infected. ScRNA-seq experiments
A

B

FIGURE 5

Evaluation of the gene expression profiles of latency established in cells with viruses of different tropism. (A) A Venn diagram of all significant markers for
cells from Experiment #2 that were infected with either CXCR4- or CCR5-tropic viruses. (B) The 10-day model datasets from Experiment #1 (CXCR4_set1),
and Experiment #2 (CXCR4_set2 and CCR5) were merged to plot the expression of genes that were identified as differentially expressed between HIV-
negative and latently infected cells. The size of the circle indicates the percentage of cells where each marker is expressed; the color indicates the average
level of expression (log normalized scaled UMI). The red boxes emphasize cases where genes were significantly differentially expressed between HIV-
negative cells and cells with low levels of HIV RNA in the tropism experiment (Bonferroni-corrected p-value < 0.05). The red asterisks indicate genes that
were also upregulated in latency established directly in resting cells from Experiment #1. Proteins encoded by genes highlighted in brown are localized to
the plasma membrane (scores 4 or 5 in the GeneCards database). Key to the left of the dot plot shows HIV expression in cells represented in each row
(- or +), and the tropism of the infecting virus (X4, CXCR4; R5, CCR5; set1 and set2 refer to Experiments #1 and 2).
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described here were consistent with these prior observations as the

number of cells with high levels of HIV RNA was small. However,

scRNA-seq data allowed us to observe that in a subset of cells with

low levels of HIV RNA, HIV reads mapped throughout the HIV

genome. These results indicate the presence of transcription events

that result in the generation of full-length and potentially

spliced transcripts.

Using CD4+ T cells from people with HIV, we have visualized

the distribution of HIV reads, observing the predominant location

of reads to the LTRs and the 5’ half of the HIV genome (Figure 2).

The minority of reads mapping to the 3’ half of the genome were

represented by 16 of 71 (22.5%) cells. This profile was used to define

“predicted latently infected cells” in vitro, as described in Materials

and Methods. Cells from both models were assessed individually

and compared to the profiles observed in cells from people with

HIV (Figure 2). In both models, we labeled any cell with the

majority of reads mapping to the LTRs and the 5’ half of the HIV

genome as “predicted latent” (left panels on Figure 2), while cells

with peaks of reads in the 3’ half of the HIV genome as cells with

more active HIV provirus (right panels on Figure 2). For differential

expression analysis, only the cells that were labeled “predicted

latent” were used for comparison to cells that did not have

detectable HIV RNA.

When the differential expression analysis was conducted for

each of our datasets, fewer genes were identified as differentially

expressed (Supplementary Table 4), with a substantial subset of

genes overlapping with those identified in the initial analyses where

latency was defined more broadly as cells with low levels of HIV

RNA (Table 2).
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3.5 Validation of differentially expressed
genes using samples from people with HIV

Next, we selected promising biomarker candidates from our

discovery in vitro for validation using the dataset obtained using

cells from people with HIV. First, we noticed that the gene

expression profiles of latently infected cells differed most based on

the exposure and responsiveness to the TCR stimulus, and less so

based on different sets of selected study participants or the viral

tropism. Therefore, we have separately evaluated the markers

identified using our two different in vitro models of HIV latency.

In all cases, we have focused on biomarkers that can be more readily

moved into the testing phase: those upregulated in latency and

expressed on the cell surface. Gene sets identified as differentially

expressed when using the stricter definition of HIV latency were

selected based on these criteria. Table 3 summarizes these genes,

their overlap between different conditions tested, up- or

downregulation, and plasma membrane localization.

The integrated dataset of samples from people with HIV was

used to validate the selected genes. Because of the small sample size

for HIV-positive cells in this dataset (N=71 cells), we have relaxed a

definition under which we considered genes validated to nominal p-

value < 0.1. For the 14-day model, 12 genes were tested, of which

four were undetected in samples from people with HIV. Of the eight

detected genes, two (25%) were validated with the relaxed criteria

(Table 4). For the 10-day model, 27 genes were tested, of which

three were undetected in samples from people with HIV. Of the 24

detected genes, eight (33.3%) were validated with the relaxed

criteria (Table 4). Some of these genes remained significant
TABLE 2 Differentially expressed genes identified in different experiments between predicted latently infected and uninfected cells.

Cell
subset

Latency
defined as
“low levels

of HIV
RNA”,

total genes

Latency defined
as “same tran-
script profiles as
in people with

HIV”, total genes

Latency defined
as “same tran-
script profiles as
in people with
HIV”, % overlap

Overlapping genes

Dividing
many
times

143 43 76.7

FAU, MIF, RPS17, EEF1A1, RPL37, S100A11, NME2, RPL37A, CRIP1, TMSB10,
RBPMS, IFITM1, RPL39, RPS21, IL2RA, TNFRSF18, ACTB, NDFIP2, SNRPF,
TOMM5, RPL36, MT-ATP8, RPS10, SAMSN, HNRNPA1, ACTG1, RPSA, RPL4,

CAPG, UQCRQ, DUT, ITM2B, SQSTM1

Dividing
a

few times
20 12 66.7 CRIP1, RPS17, NME2, TPM4, CD52, IL2RA, BCOR, SESN3

Non-
dividing

22 4 50.0 MIAT, ALOX5AP

Resting 105 45 100.0

BHLHE40, RGS16, MIAT, GPRIN3, S100A4, NEAT1, LGALS1, CLIC1, CCL5,
RPS10, FXYD5, CD99, POLR2J3.1, REEP5, CD2, PLEC, PMEPA1, HCST, SOS1,
CLDND1, S100A11, SAMSN1, IL2RA, TXN, H3F3B, CD74, CD7, MTRNR2L12,
GBP5, RAC2, IFITM2, CYBA, GPR171, STAT1, KLF6, ARHGDIB, IRF1, MAF,

PFN1, MT-ND6, IRF4, PPIA, KLRB1, IL32, HIST1H1D

CXCR4 13 7 100.0 AHNAK, S100A4, ITGB1, KLRB1, ANXA1, IL32, KLF6

CCR5 30 30 83.3
CCL5, HLA-B, IL32, LYAR, GZMA, IL7R, AHNAK, ITGB1, KLRB1, CD2,

S100A4, TIMP1, CST7, KLF6, HCST, CD226, ANXA1, MIAT, GPR171, CLIC1,
FXYD5, SYNE2, ITGAL, CYBA, PASK
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following correction for multiple testing using the Bonferroni

method (Table 4).

Proportions of genes validated in people with HIV were similar

for genes identified following cell exposure to the TCR stimulus and

directly in resting cells (25% vs 33.3%, p-value = 1). These results are

consistent with the idea that the heterogeneity of cell exposure to

stimuli in vivo likely contributes to the heterogeneity of markers

expressed in latently infected cells. Furthermore, identification of

the same markers upregulated in latently infected cells in vitro and

ex vivo provides a framework for future experimental validation of

these biomarkers for the ability to enrich for latently infected cells

and to target them for elimination.

4 Discussion
In the recent past, the discovery of molecules that are

differentially expressed in latently infected cells has been

conducted using gene expression profiling methods from

mixtures of latently infected and uninfected cells, or having to

enrich for infected cells using reporter viruses (Iglesias-Ussel et al.,

2013; White et al., 2016; Descours et al., 2017; Beliakova-Bethell

et al., 2022). However, these studies had limitations such as the

inability to differentiate between gene expression profiles of latency

and exposure to virus, or contamination with productively infected

cells. Moreover, in vitro studies varied by methods of latency

establishment, specifically – using activated cells that were

allowed to return to quiescence or direct infection of resting cells.

The identified markers, not surprisingly, were different across

studies, consistent with the idea that gene expression profiles of

latency may depend on the history of cell exposure to

various stimuli.

With the advancement of single-cell profiling technologies, it

became possible to undertake biomarker discovery at the single-cell

level. In the present study, we have taken advantage of the property

of latent HIV provirus to not be entirely silent (Lassen et al., 2004;

Wiegand et al., 2017; Yukl et al., 2018), to detect and identify cells

with latent HIV infection based on low levels of HIV RNA

expression ex vivo and in vitro. Overall, we identified genes

expressed differentially between latently infected and uninfected

cells that were reproducible across different conditions (Figures 4,

5). Cells that underwent a robust proliferative response to the TCR

stimulus had gene expression profiles of latency that were most

distinct from other conditions (39 unique genes in Table 3).

Biological variation between study participants was the next
TABLE 3 Comparison of gene expression profiles under a stricter
definition of latency established in different experimental conditions.

Model Conditions Genes

14-
day

model

Cells that
divided
many times

CYP1B1, MIF, TNFRSF18, NME2, FAU,
PLPP1, MT-ATP8, EEF1A1, RPS17, NDFIP2,
RPL37A, RBPMS, RPL37, CAPG, ACTB, RPS21,
DCTN4, IFITM1, STIP1, TNFRSF4, TMSB10,
TOMM5, RPL23A, DUT, SQSTM1, FABP5,
CRIP1, RPL39, RPSA, SNRPF, HNRNPA1,
FDFT1, ITM2B, ACTG1, UQCRQ, RPL36,
YBEY, ARF5, RPL4

Cells that
divided a
few times

CRIP1, RPS17, NME2, TPM4, CD52,
BCOR, SESN3

Cells that
remained
non-dividing

ALOX5AP

Both
models

Cells dividing
many times, a
few times, and
direct infection
of resting
cells
(CXCR4_set1)

IL2RA

Cells dividing
many times and
direct infection
of resting
cells
(CXCR4_set1)

SAMSN1, RPS10, S100A11

Cells that
remained non-
dividing and
direct infection
of resting cells
with CXCR4-
(set 1) or
CCR5-
tropic viruses

MIAT

10-
day

model

Direct infection
of resting cells,
CXCR4_set1,
CXCR4_set2
and CCR5

IL32, KLRB1, AHNAK, S100A4, KLF6

Direct infection
of resting cells,
CXCR4_set1
and CCR5

CCL5, CD2, CLIC1, HCST, GPR171,
FXYD5, CYBA

Direct infection
of resting cells,
CXCR4_set2
and CCR5

ITGB1, ANXA1

Direct infection
of resting
cells,
CXCR4_set1

BHLHE40, GPRIN3, LGALS1, RGS16, NEAT1,
CD99, REEP5, CLDND1, SOS1, IRF4, CD7,
H3F3B, PMEPA1, TXN, CD74, IFITM2,
POLR2J3.1, RAC2, STAT1, MTRNR2L12,
ARHGDIB, PPIA, MAF, IRF1, GBP5, PLEC,
PFN1, MT-ND6, HIST1H1D

(Continued)
TABLE 3 Continued

Model Conditions Genes

Direct infection
of resting
cells, CCR5

HLA-B, MALAT1, IL7R, RPS26, LYAR, GZMA,
TIMP1, CD226, CST7, PASK, SYNE2, LRRN3,
ITGAL, ATF7IP2, LIMS1
Red, upregulated genes; blue, downregulated genes; bold, confidence score of localization to
the plasma membrane = 4; bold and underlined, confidence score of localization to the plasma
membrane = 5.
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factor contributing to differences in identified differentially

expressed genes (29 unique genes for CXCR4_set1 in Table 3).

Finally, viral tropism had the least contribution (15 unique genes for

CCR5 infection in Table 3). Because of long-term viral suppression

in vivo, we also speculated that gene expression profiles of latency ex

vivo would be more similar to those of latency established directly in

resting cells in vitro. However, the percentage of validated genes

identified for resting cells (33.3%) was only marginally and

insignificantly (p-value = 1) higher than that for validated genes

identified for cells that were exposed to the TCR stimulus (25%). It

is likely that cells in vivo are exposed to ongoing activation stimuli

due to chronic inflammation caused by HIV (Jordan et al., 2001;

Hunt et al., 2008; Ishizaka et al., 2016), or possibly due to

encounters with other antigens. It is therefore possible that gene

expression signatures in latently infected cells may be labile and

reflect recent encounters of cells in the environment. Importantly in

our study, no individual upregulated gene in latently infected cells

defined the entire latently infected cell population (Figures 4, 5).

Rather, the identified markers were expressed on fewer than 100%

of latently infected cells, consistent with the idea that multiple

markers will be needed to define and target the entire HIV reservoir.

An advantage of single-cell gene expression profiling studies is

the ability to compare cells with and without HIV RNA from the

same sample, where all cells were equally exposed to the virus (in

culture or in vivo). This is contrary to bulk RNA sequencing

experiments, where a model of HIV latency, represented by a

mixture of infected and uninfected cells, is compared to control

“mock-infected” cells never exposed to the virus. Conducted at the

single-cell level, the present study resulted in identifying gene
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expression profiles representative of HIV latency, and not the

exposure to virus. Prior studies profiling bulk RNA from mixtures

of cells may still prove informative if mined for overlaps with

scRNA-seq data. Such overlapping genes further increase the

confidence of identified biomarkers. We therefore used a 10-day

model dataset previously published by our group (Trypsteen et al.,

2019), where all the cells exposed to the virus (both latently infected

and uninfected) were compared to mock-infected controls, to assess

similarities with Experiment #1 in the present study. Eleven of the

17 genes identified in both studies (Figure 6A), were regulated in

latency in the same direction (Figure 6B), further validating them as

biomarkers of resting cells latently infected with HIV.

Productive infection and CD4+ T cell activation are additional

important factors to consider. Some gene expression profiles may be

shared between productive and latent infection. This is not

necessarily a reason to exclude such molecules as candidate

biomarkers for developing strategies to target the latently infected

cells for elimination. If a molecule is upregulated in all HIV-infected

cells and these cells are targeted, then all HIV-infected cells,

including both productively and latently infected cells would be

eliminated. However, before selecting shared genes to develop

latency eradication strategies, caution must be taken in assessing

the expression of these molecules across different conditions,

including activated uninfected cells. As an example of such an

assessment, we have visualized the expression of upregulated

plasma membrane localized biomarkers identified in the present

study for the 14-day model for both the latently infected cells

analyzed here and productively infected cells analyzed previously

(Zhang et al., 2023) (Figure 6C). We note several examples of
TABLE 4 Gene expression profiles of HIV latency validated in CD4+ T cells from people with HIV.

Gene
symbol

Gene name
p-

value
average log2
fold change

percent latently
infected

cells expressing

percent uninfected
cells expressing

Bonferroni cor-
rected p-value

Activated cells that returned to quiescence (14-day model)

ACTB Actin beta 0.001 0.2159 0.986 0.924 0.011

RPSA
Ribosomal
protein SA 0.027 0.1571 0.986 0.977 0.214

Direct infection of resting cells (10-day model)

ITGB1
Integrin subunit
beta 1 0.000 0.4897 0.62 0.42 0.006

GZMA Granzyme A 0.001 0.1020 0.127 0.045 0.033

CLDND1
Claudin domain
containing 1 0.002 0.2870 0.479 0.311 0.049

CD74 CD74 molecule 0.005 0.1724 0.465 0.295 0.131

HCST
Hematopoietic cell
signal transducer

0.015 0.2802 0.62 0.497 0.367

PLEC Plectin 0.037 0.1529 0.352 0.23 0.885

ITGAL
Integrin subunit
alpha L 0.037 0.1661 0.451 0.328 0.892

AHNAK
AHNAK
nucleoprotein 0.072 0.2119 0.761 0.64 1.000
Red, genes identified in several, not just one, in vitro sets.
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expression patterns for genes detected as markers of both

productive and latent infection. First, a gene may be upregulated

during productive infection and increase in expression during

latency (Example #1 in Figure 6C). In this example, the

percentage of cells that express this marker is increased in the

infected cell subset, compared to the uninfected cells. Using such

molecules to target latently infected cells will also destroy cells that

happen to be productively infected, and only minimally eliminate
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the uninfected cells. A cell enrichment strategy based on such genes

would most likely be more specific to the latently infected, not the

productively infected cells. Second, a gene may have a higher

expression on more cells during productive infection, including

the uninfected cells, compared to cells that returned to quiescence

(Example #2 in Figure 6C). Of note, this particular example is

specific to cells with robust proliferative response to the TCR

stimulus. In this scenario, while both latently and productively
A

B

C

FIGURE 6

Considerations of gene expression profiles of cell exposure to the virus and productive HIV infection. (A) A Venn diagram of differentially expressed
genes identified in a study that used bulk RNA sequencing of the 10-day model of latency compared to mock-infected cells (Trypsteen et al., 2019)
and genes identified in the present study in Experiment #1 for the 10-day model. (B) Expression of the 17 genes found in common between the
studies conducting gene expression profiling using bulk RNA (Trypsteen et al., 2019) vs single cells (the present study) visualized using the DotPlot
function. The size of the circle indicates the percentage of cells where each marker is expressed; the color indicates the average level of expression
(log normalized scaled UMI). Blue, genes that were upregulated in the present study in single latently infected cells and downregulated in the model
of HIV latency relative to mock-infected cells. Red, genes that were downregulated in the present study but upregulated in the study by Trypsteen
et al. These discrepancies may indicate the differences between reliable biomarkers of latency and signals associated with exposure to virus induced
in uninfected cells. (C) Comparison of signatures of latent (this study) and productive (Zhang et al., 2023) HIV infection. Expression of all the genes
found in both datasets that localized to the plasma membrane was visualized using the DotPlot function. For the latent infection dataset, cells with
high levels of HIV RNA were excluded; for the productive infection dataset, cells with low and high levels of HIV RNA were visualized separately. The
size of the circle indicates the percentage of cells where each marker is expressed; the color indicates the average level of expression (log
normalized scaled UMI). Red boxes demonstrate four examples of optimal and suboptimal choices of biomarkers for cell targeting and enrichment
strategies (see text for details). Key to the left of the dot plot shows HIV expression in cells represented in each row (- or + for the latency model
and -; L, low; and H, high, for active infection), infection (L, latent; A, active) and cell division (N, non-dividing; F, dividing a few times; M, dividing
many times).
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infected cells may be targeted, there is a risk of eliminating a

substantial number of activated uninfected cells. Likewise, using

genes like this for cell enrichment will likely result in a mixed

population with a predominant population of activated

productively infected, or uninfected cells. The third, perhaps

worst-case scenario, is when gene expression in uninfected

activated cells is higher than in productively infected cells and in

resting cells, both uninfected and latently infected (Example #3 in

Figure 6C). In this case, the activated uninfected cells would be

targeted or enriched most efficiently. Fourth, the magnitude of gene

expression may vary across conditions, while the percentage of cells

expressing this gene stays constant (Example #4 in Figure 6C). This

gene may not be a good candidate for a targeting strategy since such

a strategy will likely tend to eliminate all cells, regardless of gene

expression level. Based on these observations, we highlight the

importance of investigating gene expression profiles in different

conditions before selecting the most robust biomarkers for testing

for their ability to enrich or target latently infected cells.

Interestingly, some previously identified markers validated in

samples from people with HIV (Iglesias-Ussel et al., 2013; Beliakova-

Bethell et al., 2022) were not found or confirmed in our dataset. Some

explanations for this observation may include: (1) biological variation

between study participants; (2) detection of expression at the RNA level

in the present study vs testing proteins expressed on the cell surface; (3)

expression of some markers on very few cells, both HIV-infected and

uninfected, so that differential gene expression is underpowered.

Indeed, biological variation in the present study appeared to be an

important factor contributing to biomarker identification even when

using the same method. This observation was also consistent with a

prior study conducted in the laboratory of Dr. Nadia Roan using

cytometry by time of flight (CyTOF) (Neidleman et al., 2020). The

authors demonstrated that latently infected cells were more similar in

longitudinal samples from the same person with HIV than cells

obtained from different people (Neidleman et al., 2020). This

limitation of biological variation may be mitigated by collecting data

from a large number of study participants, which is usually not feasible

in a single research project. Variation in molecular signatures identified

at the RNA and protein levels was observed in earlier studies (White

et al., 2015; Beliakova-Bethell et al., 2022), consistent with the

possibility that this could be a factor here. Finally, the limitation

associated with the number of cells tested particularly applies to the

samples from people with HIV. In our study, a total of 25623 cells from

people with HIV were analyzed, 71 of which expressed HIV RNA.

Along the same lines, some of the genes that were identified here as

unique signatures for some, but not other conditions of latency

establishment, could be classified as “false negatives” if they are

expressed in only a small number of cells. This observation

highlights higher confidence of biomarkers found under more than

one condition in the present study. Overall, our study has discovered

novel biomarker candidates; however, independent validation of their

expression in latently infected cells at the protein level in an

independent set of study participants remains an important

future direction.

A limitation of the present study is the inability to detect cells

with integrated HIV DNA that are transcriptionally silent. Because

these cells represent a minority among cells without HIV RNA,
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their contribution to the HIV-negative group is negligible and

unlikely to affect the identification of the differentially expressed

genes between latently infected and uninfected cells. What is absent

is an ability to identify molecular signatures of the silent HIV

reservoir. A recent study was able to sort cells with integrated HIV

DNA and perform transcriptomic analysis of HIV DNA-positive

cell population, compared to HIV DNA-negative cells (Clark et al.,

2023). While gene expression profiles of these cells could be

identified and were consistent with signatures reported in other

studies (Neidleman et al., 2020; Collora et al., 2022; Sun et al., 2023),

this experiment was not performed at the single-cell level, and it was

not possible to attribute any observed signal to cells that do or do

not express HIV RNA. In fact, the study reported detecting

hundreds of RNA reads in some of their HIV DNA-positive cell

aliquots (Clark et al., 2023). Moreover, the similarity of the

identified signatures with the other studies that profiled cells with

detectable HIV RNA [such as elevated expression of markers

limiting proviral activity and enhancing cell survival (Clark et al.,

2023; Sun et al., 2023)] suggests that signatures in the mixture of

cells with the silent and active proviruses are likely driven by cells

actively transcribing HIV. Better methods need to be developed to

conduct single-cell studies to detect HIV DNA and the entire

transcriptome from individual cells. Despite the current

unavailability of such methods, single-cell studies of cells that

express HIV RNA have merit, because the reservoir that is not

entirely silent is likely responsible for viral rebound upon

interruption of ART (Kearney et al., 2015), and thus constitutes

the reservoir component that should be prioritized for targeting.

In conclusion, the present study has conducted a detailed

characterization of gene expression profiles of HIV latency

established in different conditions. Contribution of the exposure and

responsiveness to the TCR stimulus, the tropism of the infecting virus,

and the biological variation of the study participants were the factors

that, to different degrees, contributed to variation in gene expression

profiles of latently infected cells. These condition-dependent

biomarkers may need to be considered in developing targeting

strategies to eliminate the entire HIV reservoir. Importantly, shared

differentially expressed genes were identified and assessed as potential

biomarkers for reservoir enrichment and targeting. The important

considerations for biomarker prioritization that we highlight include:

(1) differentially expressed genes are shared between several conditions

of latency establishment; (2) expression of these genes has to be specific

to cells latently or productively infected with HIV, and not uninfected

cells, whether they are resting or activated. Thus, the present study

provides a framework for future experiments aimed at testing the

candidate biomarkers and developing cell enrichment and

targeting strategies.
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