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Introduction: As a growing direction, nano-based therapy has become a

successful paradigm used to address the phytogenic delivery-related problems

in overcoming multivirulent vancomycin-resistant Staphylococcus aureus

(VRSA) infection.

Methods: Hence, our aim was to develop and assess a novel nanocarrier system

(mesoporous silica nanoparticles, MPS-NPs) for free berberine (Free-BR) as an

antimicrobial alkaloid against strong biofilm-producing and multi-virulent VRSA

strains using in vitro and in vivo mouse model.

Results and discussion: Our outcomes demonstrated vancomycin resistance in

13.7% of Staphylococcus aureus (S. aureus) strains categorized as VRSA. Notably,

strong biofilm formation was observed in 69.2% of VRSA strains that were all

positive for icaA gene. All strong biofilm-producing VRSA strains harbored a

minimum of two virulence genes comprising clfA and icaA with 44.4% of them

possessing all five virulence genes (icaA, tst, clfA, hla, and pvl), and 88.9% being

multi-virulent. The study findings affirmed excellent in vitro antimicrobial and

antibiofilm properties of BR-loaded MPS-NPs. Real-time quantitative reverse

transcription PCR (qRT-PCR) assay displayed the downregulating role of BR-
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loaded MPS-NPs on strong biofilm-producing and multi-virulent VRSA strains

virulence and agr genes in both in vitro and in vivomicemodels. Additionally, BR-

loaded MPS-NPs supplementation has a promising role in attenuating the

upregulated expression of pro-inflammatory cytokines’ genes in VRSA-infected

mice with attenuation in pro-apoptotic genes expression resulting in reduced

VRSA-induced apoptosis. In essence, the current study recommends the future

scope of using BR-loaded MPS-NPs as auspicious alternatives for antimicrobials

with tremendous antimicrobial, antibiofilm, anti-quorum sensing (QS), and anti-

virulence effectiveness against problematic strong biofilm-producing and multi-

virulent VRSA-associated infections.
KEYWORDS
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1 Introduction

Infectious bacterial diseases represent one of the substantial causes

of morbidity and death worldwide, especially in developing countries.

The growing incidence of antimicrobial resistance together with

inadequate drug choices make the therapy for various bacterial

infections more troublesome (Bialvaei and Samadi Kafil, 2015; Kafil

et al., 2016; Aghapour et al., 2019). One of the most serious bacterial

species developing a multidrug-resistance (MDR) phenomenon

worldwide is Staphylococcus aureus (S. aureus), particularly

methicillin-resistant Staphylococcus aureus (MRSA) (Ammar et al.,

2015). It constitutes a life-threatening bacterial pathogen causing

serious community, nosocomial, foodborne (Elmowalid et al., 2022)

and animal infections including pneumonia, cutaneous infections,

septic arthritis, endocarditis, and mastitis. This situation has recently

intensified with the emergence of vancomycin-resistant S. aureus

(VRSA) (Dhanalakshmi et al., 2012). The success of this bacterial

pathogen to avoid the impact of antimicrobial agents and host immune

response (Van Acker et al., 2014) is accomplished through its

antimicrobial resistance in addition to the possession of many

virulence related genes. The higher severity of VRSA infections is

attributable to its production of numerous toxins and biofilm-forming

aptitude, which facilitates its persistence and renders the

microorganisms more resistant with immune evasion characteristics

(Tristan et al., 2003; Laverty et al., 2013; Ren et al., 2020).

Staphylococcal virulence factors including biofilm capability are

controlled, to a large extent, by cell-to-cell communication quorum

sensing (QS), which is known as an accessory gene regulator (agr)

system (Le and Otto, 2015). Based on the vital role of QS in the

regulation of VRSA virulence and biofilm, numerous strategies have

been established targeting this signaling system (Jiang et al., 2019; Abd

El-Hamid et al., 2020). Therefore, there is a robust necessity for other

novel antimicrobials with anti-QS properties to monitor serious issues

related to bacterial virulence and antibiotic resistance spread (Barros et

al., 2009; Ibrahim et al., 2021a; Aljazzar et al., 2022; Ammar et al., 2022;

Awad et al., 2022). In this scenario, investigators are actively looking for

unique microbicides with pronounced efficacy and the lowest
02
hazardous impacts. One of the key answers for the abovementioned

problems is botanical antimicrobials, which could treat VRSA strains

(Karimi et al., 2018). Despite the beneficial outcomes of these plant-

derived antimicrobials, more advanced nanotechnologies are urgently

needed to improve their potency. Berberine (BR), an isoquinoline

alkaloid, has received much attention among recent medicinal herbs

with many pharmacological activities like antimicrobial (Amin et al.,

1969), anti-inflammatory (Kuo et al., 2004), and antipyretic (Küpeli

et al., 2002). In spite of these advantages, certain limitations

accompanied its clinical usage such as its low bioavailability, and

poor aqueous solubility and absorption via the gastrointestinal tract.

To justify these drawbacks, the successful choice of an excellent

nanocarrier delivery system is of utmost importance. Mesoporous

silica nanoparticles (MPS-NPs) are one of the novel therapeutic

nanocarriers with porosities, mesostructures, and tunable

morphologies as well as superior functionalization and

biocompatibility. This nanocarrier possesses several benefits

including affordable production, dissolvability, stability,

biocompatibility, and biodegradability along with the ability to

release a variety of antimicrobial agents at the desired site (Fang

et al., 2023). Considering all the foregoing indicators, for the first

time, the current research designed in vitro and in vivomodels aimed to

evaluate an innovative nanocarrier delivery system combining

berberine and MPS-NPs as a potential antimicrobial, anti-QS, and

antivirulence agent against strong biofilm-producing and multi-

virulent VRSA strains.
2 Materials and methods

2.1 Study design and characterization of
Staphylococcus aureus strains

In the current study, we explored 95 S. aureus strains isolated from

milk samples (n= 51) collected aseptically from mastitic cows before

antimicrobials treatment and from human pus samples (n= 44) in

Sharkia Governorate, Egypt. Human S. aureus strains were associated
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with infections and kindly obtained from patients admitted to

University hospitals, which had attained signed informed consents of

the contributing patients in the current study. Identification of S.

aureus strains was conducted phenotypically via standard conventional

phenotypic microbiological methods basing on mannitol fermentation

onto mannitol salt agar, formation of characteristic golden yellow

colonies, beta hemolysis onto blood agar, appearance of Gram-positive

grape like clusters and biochemical reactions utilizing coagulase and

catalase tests (Becker et al., 2015). Furthermore, the examined strains

were molecularly confirmed via PCR investigation of nuclease (nuc)

gene (Abd El-Hamid and Bendary, 2015). Human strains were

categorized as community associated MRSA as they were isolated

within 48 h of hospitalization. Moreover, community associatedMRSA

carriers did not meet any of the risk factors documented on hospital

patients’ databases; a medical history of infection with MRSA, a history

of hospitalization, residence in a long‐term care facility or surgery

within 1 year prior to the date of MRSA culture or permanent medical

devices or catheters at MRSA culture time. The remaining strains

originated from milk samples collected from mastitic cows were

categorized as livestock associated MRSA. Moreover, the recovered

strains were subsequently subjected to PCR assays for confirming the

existence of SCCmecIV and SCCmecV types and pvl gene, which are

strongly associated with community and livestock-associated MRSA as

described elsewhere (Zhang et al., 2005; Larsen et al., 2008).
2.2 Characterization of methicillin and
vancomycin resistant Staphylococcus
aureus strains

For methicillin and vancomycin resistance analyses, minimum

inhibitory concentrations (MIC) of oxacillin, cefoxitin and

vancomycin antibiotics (Oxoid, UK) was determined, in triplicate,

against all S. aureus strains via broth macrodilution method in

accordance with Clinical and Laboratory Standards Institute (CLSI)

guidelines (CLSI, 2020). For confirming the strains as MRSA and

VRSA, S. aureus methicillin resistance gene (mecA) in addition to

vancomycin resistance genes (vanA and vanB) were identified via

PCR assays, respectively (Niesche and Haase, 2012; Bamigboye

et al., 2018).
2.3 Detection of biofilm producing
VRSA strains

In vitro biofilm production among confirmed VRSA strains was

detected phenotypically using Congo red agar and microtiter plate

assays and genotypically via PCR detection of intercellular adhesion

gene A, icaA (Ciftci et al., 2009; Abd El-Hamid et al., 2020). Briefly,

Congo red agar medium was prepared by combining brain heart

infusion broth, agar, sucrose (5%) and Congo red stain (0.8 g/L).

The CRA plates were inoculated and then incubated at 37°C for

24 h, followed by storage for 48 h at room temperature. The VRSA

strains were characterized as strong biofilm-producers according to

their colonial morphologies as rough black colonies. The microtiter

plate assay was performed briefly as following: VRSA strains were
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cultured onto blood agar plates and incubated at 37°C for 24h. Pure

colonies were inoculated in trypticase soy broth and the suspensions

were incubated at 37°C for 24 h and then diluted in fresh broth

containing glucose. This dilution was further seeded on sterile 96-

well tissue culture polystyrene plates that were incubated overnight

for 18 h at 37°C. The plates were then rinsed three times with sterile

phosphate buffered saline and dried. The attached bacteria were

fixed via adding methanol for 15 minutes at room temperature.

Afterwards, the plates were stained with crystal violet aqueous

solution for 15 minutes at room temperature. After staining, the

plates were rinsed under running water until there was no trace of

stain and the bounded stain was dissolved by ethanol. The optical

density was measured at 570 nm using ELISA Microplate reader

(Thermo Fisher. Scientific, USA). Cut-off OD (ODc) is defined as

three standard deviations above the mean OD of the negative

control. Strong biofilm producers were interpreted as following:

4 × ODc < OD. Each strain was tested for biofilm production in

duplicate and the assays were repeated three times.
2.4 Virulence genes profiling and
agr genotyping

Amplification of four virulence genes; toxic shock syndrome

toxin (tst), clumbing factor A (clfA), alpha-hemolysin (hla) and

Panton-Valentine leukocidin (pvl) was done via Singleplex PCR

protocols, while identification of agr alleles within strong biofilm

producing VRSA strains was carried out through multiplex PCR

assay using EmeraldAmp® GT PCR Master Mix (TaKaRa Bio,

Shiga, Japan). Amplification procedures were applied as pointed out

formerly (Mehrotra et al., 2000; Li et al., 2019; Rasmi et al., 2022).

Each PCR assay incorporated positive and negative controls

comprising DNA extracted from strains of S. aureus; ATCC25923

and Escherichia coli; ATCC25922, respectively. The targeted

sequences of each primer employed in PCR amplification

reactions are depicted in Table 1.
2.5 Preparation, characterization and
release of berberine conjugated MPS-NPs

Berberine (98%) was purchased from Sigma-Aldrich Co. (St

Louis, MO, USA) and the preparation of MPS-NPs was done as

previously described by (Alandiyjany et al., 2022). The loading of

BR into MPS-NPs was carried out using the method of solvent

evaporation (Nafisi et al., 2018). Briefly, 10 mg of BR was dissolved

in methanol, then MPS-NPs was added to BR by 1:4 ratio. After

that, the prepared combination was sonicated for 10 min away from

light, stirred at 200 rpm for 24 h and the solvent was evaporated.

The newly formed BR loaded MPS-NPs were separated via

centrifugation for 15 min at 10000 rpm, washed to eliminate any

Free-BR and dried at 37°C for 24 h. Characterization of prepared

BR loaded MPS-NPs was determined by scanning electron

microscopy (SEM, Figure 1A). Moreover, a dialysis bag

(Molecular weight =12 kDa) was used to explore the in vitro

release rate of BR from MPS-NPs against phosphate buffered
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TABLE 1 Oligonucleotide primers’ sequences used for PCR amplification assays.

Target gene Primer sequence (5’-3’) Reference/accession No

nuc F: GCGATTGATGGTGATACGGTT
R: AGCCAAGCCTTGACGAACTAAAGC

(Brakstad et al., 1992)

mecA F: TCCAGATTACAACTTCACCAGG
R: CCACTTCATATCTTGTAACG

(Niesche and Haase, 2012)

vanA F: GGGAAAACGACAATTGC
R: GTACAATGCCGTTA

(Bamigboye et al., 2018)

vanB F: TCTGTTTGAATTGTCTGGTAT
R: GACCTCGTTTAGAACGATG

(Bamigboye et al., 2018)

icaA CCTAACTAACGAAAGGTAG
AAGATATAGCGATAAGTGC

(Ciftci et al., 2009)

tst F: ACCCCTGTTCCCTTATCATC
R: TTTTCAGTATTTGTAACGCC

(Mehrotra et al., 2000)

clfA F: ATTGGCGTGGCTTCAGTGCT
R: CGTTTCTTCCGTAGTTGCATTTG

(Li et al., 2019)

hla F: CTGATTACTATCCAAGAAATTCGATTG
R: CTTTCCAGCCTACTTTTTTATCAGT

(Rahman et al., 2018)

pvl F: ATCATTAGGTAAAATGTCTGGACATGATCCA
R: GCATCAAGTGTATTGGATAGCAAAAGC

(McClure et al., 2006)

agrI F: ATGCACATGGTGCACATGC
R: GTCACAAGTACTATAAGCTGCGAT

(Rushdy et al., 2007; Abd El-Hamid and Bendary, 2013)

agrII F:ATGCACATGGTGCACATGC
R:TATTACTAATTGAAAAGTGGCCATAGC

(Rushdy et al., 2007; Abd El-Hamid and Bendary, 2013)

agrIII F:ATGCACATGGTGCACATGC
R:GTAATGTAATAGCTTGTATAATAATACCCAG

(Rushdy et al., 2007; Abd El-Hamid and Bendary, 2013)

agrIV F:ATGCACATGGTGCACATGC
R:CGATAATGCCGTAATACCCG

(Rushdy et al., 2007; Abd El-Hamid and Bendary, 2013)

16S rRNA F:GTGGAGGGTCATTGGA
R:CGTTTACGGCGTGGACT

(Abd El-Hamid et al., 2020)

IL-1b F-TGACAGACCCCAAAAGATTAAGG
R-CTCATCTGGACAGCCCAAGTC

NM_031512.2

IL-6 F-CCACCAGGAACGAAAGTCAAC
R-TTGCGGAGAGAAACTTCATAGCT

NM_012589.2

TNF-a F-CAGCCGATTTGCCATTTCA
R-AGGGCTCTTGATGGCAGAGA

L19123.1

BAX F-CAAGAAGCTGAGCGAGTGTCT
R-CAATCATCCTCTGCAGCTCCATATT

NM_017059

iNOS F-ACCTTCCGGGCAGCCTGTGA
R-CAAGGAGGGTGGTGCGGCTG

NM_ 012611

COX-2 F-GCTCAGCC ATACAGCAAATCC
R-GGGAGTCGGGCAAT CATCAG

NM_017232

caspase-3 F-GCAGCTAACCTCAGAGAGACATTC
R-ACGAGTAAGGTCATTTTTATTCCTGACTT

NM_012922

GAPDH F-TGCTGGTGCTGAGTATGTCG
R-TTGAGAGCAATGCCAGCC

NM_017008
F
rontiers in Cellular and Infection M
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nuc, nuclease; mecA, methicillin resistance gene; van, vancomycin resistance gene; icaA, intercellular adhesion gene A; tst, toxic shock syndrome toxin; clfA, clumbing factor A; hla, alpha-
hemolysin; pvl, Panton-Valentine leukocidin; agr, accessory gene regulator; 16S rRNA, 16S ribosomal ribonucleic acid; IL, interleukin; TNF-a, tumor necrosis factor-alpha; BAX, Bcl-2-associated
X protein; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; F, forward; R, reverse.
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saline at pH=7.6 and 37°C over 0, 12, 24, 36, 48, 60, 72, 84 and 96

h (Figure 1B).
2.6 Berberine conjugated MPS-NPs efficacy
on strong biofilm producing
and multi-virulent VRSA strains

2.6.1 In vitro assays
2.6.1.1 Antibacterial activities of Free-BR
and BR loaded MPS-NPs

The antibacterial activities of Free-BR and prepared BR loaded

MPS-NPs against strong biofilm producing and multi-virulent

VRSA strains embracing all explored virulence genes; icaA, tst,

clfA, hla and pvl utilizing the agar well diffusion (Yadav et al., 2015)

and broth microdilution (Ammar et al., 2021b) methods were

assessed in triplicate. The potency of tested compounds was

affirmed via distinguishing largest inhibition zone diameters and

lowest values of MIC.
2.6.1.2 Antibiofilm activities of Free-BR
and BR loaded MPS-NPs

A quantitative assessment of the antibiofilm activity of Free-BR

and BR loaded MPS-NPs against the tested strains was performed

using a microtiter plate assay as described earlier (Abd El-Hamid

et al., 2020). The percentage of biofilm inhibition for each tested

compound was calculated using the formula pronounced previously

(Lopes et al., 2017). Briefly, wells of microplates were filled with

VRSA suspensions in trypticase soy broth supplemented with

glucose. Afterwards, the tested Free-BR and BR loaded MPS-NPs

were added, at their sub inhibitory concentrations (SICs), to each

well and the plates were then incubated at 37°C for 24 h. After

incubation, planktonic cells were removed and the microplate wells

were washed with sterile phosphate buffered saline to remove

unbound planktonic cells and the plates were then air-dried. The

biofilm was stained with crystal violet solution for 15 minutes,

solubilized by ethanol and the absorbance was read at 570 nm using

ELISA Microplate reader (Thermo Fisher. Scientific, USA).

Suspensions without adding Free-BR or BR loaded MPS-NPs
Frontiers in Cellular and Infection Microbiology 05
were tested as untreated controls. The percentage of biofilm

inhibition was calculated using the following formula: percentage

of inhibition = [(control OD 570 nm – treated OD 570nm)/control OD

570 nm] × 100.

2.6.1.3 Modulation of virulence and agr genes expression

A SYBR Green quantitative reverse transcriptase polymerase

chain reaction (qRT-PCR) approach (Ammar et al., 2021b) was

used for determining the efficacy of Free-BR and prepared berberine

conjugated MPS-NPs SICs on virulence and agr genes expression

among strong biofilm producing and multi-virulent VRSA strains.

The QIAamp RNease Mini Kit (Qiagen, USA) was employed to

extract RNA from Free-BR and prepared berberine conjugated

MPS-NPs treated or non-treated bacterial cells. In Stratagene

real-time PCR system (MX3005P; Thermo Fisher scientific, USA),

mRNA expression levels of target genes were estimated, in triplicate,

utilizing their corresponding primers (Table 1) and the kits of

QuantiTect SYBR Green PCR Master Mix (2X, Qiagen, USA). For

each amplification run, 16S ribosomal ribonucleic acid (16S rRNA)

gene was employed as a house keeping gene (Abd El-Hamid et al.,

2020). For assessing qRT-PCR specificity, DNAs’ melting curves of

PCR fragments were generated. Quantification of mRNA

expression levels of target genes in strains exposed to Free-BR

and prepared BR loaded MPS-NPs comparing with the non-

exposed ones was detected utilizing the 2-DDCt equation (Livak

and Schmittgen, 2001).

2.6.2 In vivo model
2.6.2.1 Experimental design

All experimental techniques were reviewed and approved by

Animal Ethics Review Committee of Suez Canal University (AERC-

SCU), Egypt; reference number, AERC-SCU 2023068. A total of 60

male mice aged 6–8 weeks and with an average weight of 22.3 g ±

0.5 were obtained from the farm of Faculty of Veterinary Medicine,

Zagazig University. Mice were housed in standard environmental

conditions; controlled temperature (21 ± 1°C) and humidity (57%)

and a 12:12 hour light/dark cycle, fed ad libitum and tested to be

free from VRSA. The experimental mice were randomly divided

into three experimental groups; VRSA challenged and non-treated
BA

FIGURE 1

Scanning electron microscopy characterization (A) and release (B) of berberine loaded mesoporous silica nanoparticles.
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and two challenged and treated ones. The challenge was carried out

subcutaneously using selected strong biofilm producing and multi-

virulent VRSA strain containing approximately 5x106 CFUs three

days apart (Elmowalid et al., 2022). Post appearance of clinical signs

specific for VRSA, topical treatment was done either by Free-BR

and BR loaded MPS-NPs at their SIC levels prepared in aqueous

phosphate-buffered saline solutions. The treatment was initiated on

the 3rd day post-challenge and continued for five days. The

challenged mice were kept under observation for appearance of

any clinical signs.

2.6.2.2 Gene expression analysis

Expression analysis of VRSA virulence and agr genes at 10 days

post infection (dpi) and genes encoding pro-inflammatory

cytokines; interleukin (IL)-6, IL-1b and tumor necrosis factor-

alpha (TNF-a) and pro-apoptotic indicators; Bcl-2-associated X

(BAX), inducible nitric oxide synthase (iNOS), cyclooxygenase-2

(COX-2) and caspase-3 at 5 and 10 dpi were further estimated as

previously detailed in section 2.6.1.3 utilizing glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) as a housekeeping gene. The

primer sequences used for expression analysis are listed in Table 1.
2.7 Statistical analysis

Impact of Free-BR and BR loaded MPS-NPs on experimental

tested parameters following VRSA challenge was analyzed via one-

way analysis of variance (ANOVA) of SPSS software (Version 11.0;

SPSS Inc., Chicago, IL, USA) and Tukey’s tests. Variations among

means were statistically significant at p < 0.05. All graphs were made

using GraphPad Prism software Version 8 (San Diego, CA, USA).
3 Results

3.1 Categorization of MRSA and VRSA
strains and VRSA biofilm producers

All 95 S. aureus strains originating from bovine and human

sources were characterized phenotypically using standard

microbiological tests, and genotypically via PCR amplifications of

nuc gene. Moreover, all strains were phenotypically resistant to

oxacillin and cefoxitin and were positive for mecA gene; thus, they

were confirmed as MRSA. With regard to the epidemiological

criteria, all the investigated community and livestock-associated

MRSA strains harbored pvl gene and contained SCCmec types IV

(72.7 and 60.8%) and V (27.3 and 39.2%) elements, respectively.

Notably, vancomycin resistance with MIC values ranging from 64-

1024 mg/mL was observed in 13 S. aureus strains (13.7%) being

classified as VRSA; 18.2% (8/44) and 9.8% (5/51) from human and

animal origins, respectively (Figure 2). PCR amplification of van

genes among 13 VRSA strains revealed the presence of vanA and

vanB genes in 6 and 5 strains (46.2 and 38.5%, respectively), and they

were both identified in 2 strains (15.4%). Out of 13 VRSA strains, 9

(69.2%) were identified phenotypically as strong biofilm producers

using Congo red agar and microtiter plate assays, and they were all
Frontiers in Cellular and Infection Microbiology 06
positive for icaA gene. Interestingly, human samples possessed higher

percentages of strong biofilm-forming VRSA (75%) than animal ones

(60%, Figure 2).
3.2 Virulence gene profiling and
agr genotyping

All 9 strong biofilm-producing VRSA strains were positive for

clfA gene (100%), while 8 (88.9%), 5 (55.6%), and 4 (44.4%) were

positive for hla, pvl and tst genes, respectively (Figure 3). Moreover,

hla and pvl genes prevailed among VRSA strains isolated from

animal (100 and 66.7%) compared to human (83.3 and 50%)

origins, respectively. Meanwhile, the prominent occurrence rate

for tst gene was observed in human strains (50%) rather than

animal ones (33.3%). There were no significant differences between

VRSA strains isolated from human and animal origins regarding

the distribution of virulence and agr genes (P = 0.924). Interestingly,

all 9 strong biofilm-producing VRSA strains possessed a minimum

of two virulence genes embracing clfA and icaA, and 8 strains were

multi-virulent (88.9%) with three or more examined virulence

genes. Among the recovered VRSA strains, four virulence gene

profiling was identified with 44.4% of these strains possessing all

five virulence genes (icaA, tst, clfA, hla, and pvl). Regarding agr

genotyping, agr I predominated among human and animal VRSA

strains (66.7% each), followed by agr III (33.3% each); meanwhile,

none of the strains was positive for agr types II and IV (Figure 3).
3.3 In vitro impact of Free-BR and BR-
loaded MPS-NPs on strong biofilm-
producing and multi-virulent VRSA strains

3.3.1 Antimicrobial activities of Free-BR and BR-
loaded MPS-NPs

The antimicrobial activities of Free-BR and prepared BR-loaded

MPS-NPs were detected on four strong biofilm-producing and

multi-virulent VRSA strains harboring all five virulence genes.
FIGURE 2

Distribution of vancomycin resistant Staphylococcus aureus (VRSA),
strong biofilm VRSA producers and van genes in human pus and
mastitis milk samples.
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Excellent antimicrobial properties of Free-BR and BR-loaded MPS-

NPs were found with more pronounced efficacy for the newly

formulated conjugate than Free-BR against investigated strains as

proved by diameters of inhibition zones of 25-30 and 20-23 mm,

respectively. More pronounced VRSA growth inhibition was

detected using BR-loaded MPS-NPs than Free-BR with MIC

values of 0.125-0.5 and 0.5-2 mg/mL, respectively (Table 2).

3.3.2 Antibiofilm activities of Free-BR and BR-
loaded MPS-NPs

Analyzing the quantitative phenotypic detection of biofilm post

exposure to Free-BR and BR-loaded MPS-NPs using the microtiter

plate assay revealed prominent decrease in the capacity of all strong

biofilm-producing and multi-virulent VRSA strains post exposure

to the examined compounds when compared with the untreated

ones with inhibitory capacity percentage up to 99.97%. Of note, BR-

loaded MPS-NPs exhibited more pronounced antibiofilm capacity

than Free-BR as evidenced by inhibitory capacity percentage ranges

of 99.76 to 99.97% for BR-loaded MPS-NPs and 99.16 to 99.52% for

Free-BR (Table 2). There was a significant difference between BR-

loaded MPS-NPs and FB in their inhibitory capacity percentage

(P < 0.001).

3.3.3 Gene expression analysis post exposure to
Free-BR and BR-loaded MPS-NPs

The qRT-PCR technique was utilized to evaluate the efficacy of

Free-BR and prepared BR-loaded MPS-NPs on the mRNA
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expression of virulence (icaA, tst, clfA, hla, and pvl) and agr genes

in the four strong biofilm-producing and multi-virulent VRSA

strains. The transcript levels of agr and virulence genes were

prominently (p > 0.05) reduced following VRSA strains exposure

to the explored compounds (up to 0.29 and 0.11-fold, respectively).

Notably, the broad-spectrum antivirulence activity of BR-loaded

MPS-NPs was achieved via striking downregulated expression

levels of VRSA target genes (up to 0.11-fold). Additionally, Free-BR

decreased examined genes expression (up to 0.33-fold). Remarkably,

Free-BR and formulated BR-loaded MPS-NPs displayed higher

suppression levels for agr, clfA, pvl, tst, hla, and icaA genes

(decreased by 0.50 and 0.29, 0.42, and 0.17, 0.43 and 0.18, 0.42 and

0.11, 0.67 and 0.49 and 0.33 and 0.11-fold, respectively (Figure 4).
3.4 In vivo impact of Free-BR and BR-
loaded MPS-NPs

3.4.1 Pro-inflammatory and pro-apoptotic
gene expression

Regarding gene expression analysis of IL-6, IL-1b, and TNF-a
pro-inflammatory cytokines, marked downregulation was noticed

at 10 dpi in VRSA-challenged groups treated with either Free-BR or

BR-loaded MPS-NPs. At 5 dpi, there was no significance difference

in the expression levels of IL-6, IL-1b genes between VRSA-

challenged group and VRSA-challenged group treated with Free-

BR. The most prominent downregulation of IL-6, IL-1b, and TNF-a
FIGURE 3

Prevalence of icaA, tst, clfA, hla, pvl and agr genes among strong biofilm producing VRSA strains recovered from human pus and mastitis
milk samples.
TABLE 2 Antimicrobial and antibiofilm activities of BR-loaded MPS-NPs and FB against strong biofilm producing and multi-virulent VRSA strains.

VRSA tested
strain

Antimicrobial activity Anti-biofilm activity

Zone Diameter (mm) MIC
(ug/mL)

Inhibitory capacity (%)

BR-loaded MPS-NPs Free-BR BR-loaded MPS-NPs Free-BR BR-loaded MPS-NPs Free-BR

VRSA I 27 21 0.25 1 99.76 99.27

VRSA II 29 22 0.125 1 99.84 99.16

VRSA III 30 23 0.125 0.5 99.97 99.43

VRSA IV 25 20 0.5 2 99.86 99.52
fr
VRSA, vancomycin resistant Staphylococcus aureus; BR-loaded MPS-NPs, berberine-mesoporous silica nanoparticles; Free-BR, free berberine; MIC, minimum inhibitory concentration; SIC; sub
inhibitory concentration.
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genes was detected in the VRSA-challenged group treated with BR-

loaded MPS-NPs (0.49, 0.42, and 0.33-fold change, respectively) at

10 dpi (Figure 5). The expression levels of pro-apoptotic genes

(BAX, iNOS, COX-2, and caspase-3) at 5 and 10 dpi are illustrated in
Frontiers in Cellular and Infection Microbiology 08
Figure 6. At 5 dpi, all investigated apoptotic genes were significantly

downregulated in VRSA-challenged groups treated either with

Free-BR or BR-loaded MPS-NPs unlike the untreated VRSA-

challenged group. At 10 dpi, notable downregulation of BAX,
B C

D E

A

F

G

FIGURE 4

Relative mRNA expression levels of agrI (A), agrIII (B), hla (C), icaA (D), clfA (E), tst (F) and pvl (G) genes expression among four strong biofilm
producing and multi-virulent vancomycin-resistant Staphylococcus aureus (VRSA) strains exposed to SICs of Free berberine (Free-BR) and prepared
berberine conjugated mesoporous silica nanoparticles (BR loaded MPS-NPs) comparing with unexposed ones (control) with an estimated value of 1.
The values expressed the means of three experiments ± standard error (error bar). a–c Means within the same column carrying different superscripts
are significantly different at p < 0.05.
FIGURE 5

Relative mRNA expression levels of pro-inflammatory cytokine genes; interleukin (IL)- 6, IL-1b and tumor necrosis factor-alpha (TNF-a) in
vancomycin resistant Staphylococcus aureus (VRSA) challenged mice and VRSA challenged mice and treated with Free-BR or BR loaded MPS-NPs at
5 and 10 days post infection (dpi). VRSA: mice challenged with vancomycin resistant Staphylococcus aureus; VRSA+Free-BR: mice challenged with
vancomycin resistant Staphylococcus aureus and treated with Free berberine; VRSA+BR loaded MPS-NPs: mice challenged with vancomycin
resistant Staphylococcus aureus and treated with berberine-loaded mesoporous silica nanoparticles. a–c Means within the same column carrying
different superscripts are significantly different at p < 0.05.
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iNOS, COX-2, and caspase-3 genes was recorded in the VRSA-

challenged group treated with BR- loaded MPS-NPs, followed by

that treated with Free-BR.

3.4.2 Antivirulence activities of Free-BR and BR-
loaded MPS-NPs

After the observation period of VRSA-challenged and VRSA-

challenged and treated mice, slight clinical signs in the form of skin

lesions were realized in mice treated with Free-BR and BR-loaded
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MPS-NPs compared to severe development of skin abscesses and

reduction in mice activity in the VRSA-challenged non-treated

group. Investigating virulence and agr gene expression revealed

most prominent downregulation in the VRSA-challenged and BR-

loaded MPS-NPs-treated group (up to 0.16 and 0.35-fold change,

respectively), which came concurrently with the suppression of the

severity of clinical signs in this group at 10 dpi. Notably, hla gene

was the most downregulated gene in the BR-loaded MPS-NPs

treated group (0.16-fold change) (Figure 7).
FIGURE 6

Relative mRNA expression levels of pro-apoptotic genes; cyclooxygenase-2 (COX-2), caspase-3, inducible nitric oxide synthase (iNOS), and Bcl-
2-associated X protein (BAX) in vancomycin resistant Staphylococcus aureus (VRSA) challenged mice and VRSA challenged mice and treated with
Free-BR or BR loaded MPS-NPs at 5 and 10 days post infection (dpi). VRSA: mice challenged with vancomycin resistant Staphylococcus aureus;
VRSA+Free-BR: mice challenged with vancomycin resistant Staphylococcus aureus and treated with Free berberine; VRSA+BR loaded MPS-NPs:
mice challenged with vancomycin resistant Staphylococcus aureus and treated with berberine-loaded mesoporous silica nanoparticles. a–c

Means within the same column carrying different superscripts are significantly different at p < 0.05.
FIGURE 7

Relative mRNA expression levels of agrI, agrIII, hla, icaA, clfA, tst and pvl genes expression at 10 days post experimental infection with strong biofilm
producing and multi-virulent vancomycin resistant Staphylococcus aureus (VRSA) strain in VRSA challenged mice and VRSA challenged mice and
treated with Free-BR or BR loaded MPS-NPs. VRSA: mice challenged with vancomycin resistant Staphylococcus aureus; VRSA+Free-BR: mice
challenged with vancomycin resistant Staphylococcus aureus and treated with Free berberine; VRSA+BR loaded MPS-NPs: mice challenged with
vancomycin resistant Staphylococcus aureus and treated with berberine-loaded mesoporous silica nanoparticles. The values expressed the mean of
three independent experiments ± standard error (error bar).
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1287426
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Abd El-Hamid et al. 10.3389/fcimb.2023.1287426
4 Discussion

In recent years, increasing rates of VRSA strains have spurred

more research toward novel antimicrobial agents (Thati et al.,

2011). Accordingly, natural antimicrobial substances have been

explored as candidates for controlling VRSA (Yu et al., 2005).

Among these agents, berberine alkaloids are considered to be major

components with broad-spectrum antimicrobial efficacy against a

variety of bacterial species (Jiao-Yang et al., 2014). Therefore, our

aim was to evaluate the antimicrobial, antibiofilm, anti-quorum

sensing, and antivirulence activities of an innovative nanocarrier

delivery system combining berberine and MPS-NPs against strong

biofilm-producing and multi-virulent VRSA strains. In the present

study, all S. aureus strains were characterized phenotypically via

conventional microbiological tests, and genotypically via PCR

amplifications of nuc gene as reported elsewhere (Ammar et al.,

2016) (Ammar et al., 2022).

Remarkably, the differences in the patterns of antimicrobial-

resistant S. aureus isolates among various districts are attributed to

the variations in the prescribed antimicrobial agents (Ammar et al.,

2021a). Our results revealed that all S. aureus strains (100%) were

resistant to oxacillin, which was estimated to be higher than the

findings of previous researches performed in Cameroon (74%)

(Bissong et al., 2020), South Africa (65.1%) (Pekana and Green,

2018), and Egypt (52.6%) (Abd El-Hamid and Bendary, 2015).

Meanwhile, a lower resistance rate of S. aureus strains was detected

against vancomycin (13.7%), which coordinated with the results of

an Egyptian previous study, 15.8% (Abd El-Hamid et al., 2020).

Therefore, opening new avenues for improving the efficacy of using

natural alternative phytogenics-based therapy in animals and

humans is urgently needed to mitigate the spread of antimicrobial

resistance (Elmowalid et al., 2019; Ibrahim et al., 2019; Bendary

et al., 2020; Ibrahim et al., 2021a; Ibrahim et al., 2021b; Ibrahim

et al., 2021c; Awad et al., 2022; Hashem et al., 2022; Ibrahim et al.,

2022a; Ibrahim et al., 2022b). Moreover, 69.2% of VRSA strains

were identified phenotypically as strong biofilm producers using

Congo red agar and microtiter plate assays, and they were all

positive for icaA gene. These findings are in line with a previous

study carried out in Egypt (Abd El-Hamid et al., 2020), where 36.7%

of VRSA isolates were biofilm producers and had icaA gene.

Herein, all recovered MRSA strains had clfa gene as proven

previously (Li et al., 2019). Moreover, a higher proportion of MRSA

strains possessed hla gene (88.9%), which exceeded the findings of a

previous study carried out in Egypt (37.3%) (Rasmi et al., 2022).

Interestingly, 88.9% of our VRSA strains were multi-virulent with

three or more investigated virulence genes. These outcomes are

lower than those of previous researches (100%) in Brazil

(Cavalcante et al., 2021) and China (Ren et al., 2020). The

differences in the existence of targeted virulence genes could be

attributed to variations in examined sources of the collected samples

as well as geographical areas (Aljazzar et al., 2022). In this study, agr

typing revealed that all VRSA strains were assigned to two agr allelic

groups with agr I predominated VRSA strains (66.7%), followed by

agr III (33.3%); meanwhile, none of the strains was positive for agr

types II and IV. These findings were reported in previous papers
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reported elsewhere (Ruzin et al., 2001; Peerayeh et al., 2009; Udo

et al., 2009; Abd El-Hamid and Bendary, 2013).

Free berberine (Free-BR) and BR-loaded MPS-NPs showed

excellent in vitro antimicrobial, antibiofilm, anti-QS, and

antivirulence effectiveness at their SICs against strong biofilm-

producing and multi-virulent VRSA strains with more

pronounced impact detected for BR-loaded MPS-NPs. Similarly,

MRSA growth and biofilm were completely suppressed after

berberine exposure at sub-MIC doses (Chu et al., 2016; Zhang

et al., 2020). Numerous researchers had explored berberine

mechanistic action against S. aureus (Severina et al., 2001; Wang

et al., 2008). This might be related to berberine actions that

penetrate the phospholipid bilayers of the bacterial membrane

(Severina et al., 2001) with a consequence of compromised cell

membrane integrity through lipid fluctuation. Extensive research

has been carried out on various types of nanoparticles containing

berberine as potential antibiofilm agents. In a recent research in

China, berberine-chitosan nanoparticles had noteworthy

concentration-dependent inhibitory effect on Candida albicans

biofilm (Lin et al., 2023). Encapsulation of berberine in liposomes

successfully augmented the antibiofilm activity of berberine via

enhancing its uptake in bacterial cells and this was evidenced by the

excellent in vitro effectiveness of the developed liposomes against

MRSA biofilm formation and its associated intracellular infection

(Bhatia et al., 2021). Moreover, self-assembling of berberine into

nanoparticles displayed a better inhibitory effect on multidrug-

resistant MRSA and stronger ability for biofilm removal (Huang

et al., 2020).

Recently, MPS-NPs constituted more safer and effective

therapeutic delivery vehicles for natural phytogenics. Herein, the

augmented antimicrobial role of BR-loaded MPS-NPs against

examined VRSA strains were correlated to berberine in

conjugation with MPS-NPs. Our success for the choice of MPS-

NPs as vehicles to load berberine resulted in BR-loaded MPS-NPs

conjugate with the following properties: attaining better

performance, allowing responsive delivery concurrently, and

providing a nanoplatform that cures infectious VRSA diseases

synergistically while avoiding drug resistance. Moreover, MPS-

NPs with admirable surface properties and porosity have proven

to be attractive materials (Fang et al., 2023) and effective and safe

therapeutic tools for increasing the concentration of loaded

bioactive compounds in the treatment region (Koohi Moftakhari

Esfahani et al., 2022).

Hypervirulent VRSA mostly disrupts the host defense via

suppressing phagocytic capacity and thus accelerating infection

(Diep et al., 2010). This highlighted the necessity for developing

efficient natural alternative therapeutic regimens to reduce

antibiotic therapeutic doses, adverse effects as well as treatment

duration (Liang et al., 2014). The SICs of numerous natural

antimicrobials could attenuate bacterial pathogenicity and

virulence via alteration of their virulence genes (Wagle et al.,

2019; Ammar et al., 2022). Our results revealed that BR-loaded

MPS-NPs at their SICs had significant roles in decreasing the

pathogenicity of strong biofilm-producing and multi-virulent

VRSA strains through reducing the expression levels of
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investigated virulence genes: icaA, tst, clfA, hla, pvl, and agr.

Notably, these results came alongside our in vivo findings on a

VRSA-infected mice model with subsiding the severity of clinical

signs and downregulating the expression of investigated virulence

genes, especially in mice treated with BR-loaded MPS-NPs.

Similarly, MRSA adhesion and intracellular invasion were notably

decreased post treatment with berberine (Yu et al., 2005). Moreover,

expression of MRSA cell wall hydrolysis, serine protease (Wang

et al., 2020), and biofilm (Zhang et al., 2022)-associated genes were

significantly repressed following treatment with berberine. A

previous study demonstrated that higher doses of berberine were

more effective in increasing cell membrane permeability of MRSA

(Xia et al., 2022). Therefore, the augmented effectiveness of BR-

loaded MPS-NPs in our study is outstanding for berberine

incorporation with an effective nanocarrier system: MPS-NPs. In

the same context, loading drugs with silica NPs had significant roles

on suppression of virulence genes and subsequent pathogenesis of

MRSA superbug (Tan et al., 2018).

In our experiment, the VRSA challenge induced significant

upregulation of pro-inflammatory cytokines, which indicated

excessive immune response post-infection causing tissue damage.

During infection, several pathogens have developed complicated

strategies to modify or disrupt host cell death programs (Lamkanfi

and Dixit, 2010). Staphylococcus aureus can trigger programmed cell

death to cause infection and invade host tissues via employing many

virulence factors with powerful toxigenic or immunomodulatory

properties (Zhang et al., 2017). In this manner, S. aureus not only

escapes from host immune cell responses, but also promotes tissue

injury with subsequent infiltration into deeper tissues, organs, or

circulating body fluids. In accordance, VRSA infection provoked

upregulated relative mRNA expression levels of pro-inflammatory

genes (IL-1b, TNF-a, and IL-6) and apoptosis-associated genes

(caspase-3, caspase-9, and Bax) (Shaukat et al., 2021). Moreover, BR

treatment suppressed activation of splenocytes and pro-inflammatory

cytokine release in staphylococcal enterotoxin B-stimulated splenocytes

(Du et al., 2018). Berberine, one of the well-studied medicinal plant

derivatives, has a promising anti-inflammatory role in inflammatory

conditions viamodifying unnecessary immune responses stimulated by

many immune cells (Li et al., 2023). Herein, the excessive immune

response following VRSA challenge subsided after berberine treatment.

Moreover, this unnecessary immune response was improved by

treatment with BR-loaded MPS-NPs. Pro-inflammatory cytokines

such as TNF-a and gamma interferon induce the transcription of

iNOS (Liew, 1994). Caspases play a potent role in apoptosis, and their

induction takes place upon intracellular complex mechanisms

accounting for pro-inflammatory cytokines maturation such as IL-1b
and IL-18 (Kostura et al., 1989; Lara-Tejero et al., 2006). Therefore,

they act on inflammation and innate immune host defense against

microbial pathogens (Martinon and Tschopp, 2004). In this manner, S.

aureus initiates a pro-apoptotic milieu that promotes extrinsic

apoptosis in the nearest host target cells. Expression of mRNA of the

inducible isoform of iNOS was induced in the spleens and kidneys of S.

aureus-infected mice (Sasaki et al., 1998). As expected, our findings

revealed upregulated mRNA levels of the pro-apoptotic genes: BAX,

COX-2, caspase-3, and iNOS induced by VRSA denoting infection and

promoting apoptosis. However, treatment with BR-loaded MPS-NPs
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significantly reduced apoptosis via downregulation of pro-apoptotic

genes. The augmented properties of berberine after loading on MPS-

NPs were attributed to its higher bioavailability (Li et al., 2019).
5 Conclusion

The current study highlighted for the first time the role of

incorporating Free-BR with MPS-NPs against the alarming

emergence of strong biofilm-producing and multi-virulent VRSA

strains. Hence, our findings demonstrated the promising in vitro

antimicrobial, antibiofilm, anti-QS, and anti-virulence activities of

BR-loaded MPS-NPs on this threatening superbug. Our in vivo

mice experimental model signified the potential therapeutic effect of

BR-loaded MPS-NPs against VRSA infection. Thus, the current

research endorses the prospective application of BR-loaded MPS-

NPs as an efficient therapeutic alternative for antimicrobials for

controlling multi-virulent VRSA strains.
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