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Introduction: Helicobacter pylori (H.pylori, Hp) affects billions of people

worldwide. However, the emerging resistance of Hp to antibiotics challenges

the effectiveness of current treatments. Investigating the genotype-

phenotype connection for Hp using next-generation sequencing could

enhance our understanding of this resistance.

Methods: In this study, we analyzed 52 Hp strains collected from various

hospitals. The susceptibility of these strains to five antibiotics was assessed

using the agar dilution assay. Whole-genome sequencing was then

performed to screen the antimicrobial resistance (AMR) genotypes of these

Hp strains. To model the relationship between drug resistance and genotype,

we employed univariate statistical tests, unsupervised machine learning, and

supervised machine learning techniques, including the development of

support vector machine models.

Results: Our models for predicting Amoxicillin resistance demonstrated 66%

sensitivity and 100% specificity, while those for Clarithromycin resistance

showed 100% sensitivity and 100% specificity. These results outperformed

the known resistance sites for Amoxicillin (A1834G) and Clarithromycin
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(A2147), which had sensitivities of 22.2% and 87%, and specificities of 100%

and 96%, respectively.

Discussion: Our study demonstrates that predictive modeling using

supervised learning algorithms with feature selection can yield diagnostic

models with higher predictive power compared to models relying on single

single-nucleotide polymorphism (SNP) sites. This approach significantly

contributes to enhancing the precision and effectiveness of antibiotic

treatment strategies for Hp infections. The application of whole-genome

sequencing for Hp presents a promising pathway for advancing personalized

medicine in this context.
KEYWORDS

antimicrobial resistance (AMR), Helicobactor pylori, genomic sequencing data,
machine learning methods, molecular mechanism
Introduction

Hp infection as the gram-negative pathogen, was estimated to

infect over 50% of the world population, which is the cause for

chronic gastritis (Salih, 2009). There are more evidences of the

adverse events of Hp infection, patients with chronic Hp infection

were more likely to have gastric cancer in their lifetime (Wroblewski

et al., 2010), and Combination of antibiotics and mucosa protection

drug is the standard of care for Hp infected patients. However,

antibiotic resistance posed a significant challenge in clinical

practice. The resistance of Hp to amoxicillin and tetracycline was

as high as 9% and 15% respectively in a north China cohort (Wang

et al., 2019). Both amoxicillin and tetracycline were first-line

antibiotics used in clinic. Trial and error strategy not only

increased cost and treatment time for the patients, but also

renders the patients a higher probability of side effects.

Antimicrobial susceptibility testing (AST) was adopted in clinic

for patients who have failed standard treatment options (Smith

et al., 2014). However, AST was limited by the culturing method

and typically required a lengthy time.

Next generation sequencing (NGS) has emerged to be a

powerful technology to characterize microbiome in the past

decade (Malla et al., 2018). NGS allows the analysis of microbial

composition within a sample and microbial subtyping with in-

depth sequencing and SNP calling. NGS derived bacterial genotype

has been related to phenotypes under a variety of circumstances

(van Opijnen and Camilli, 2012; Dutilh et al., 2013; Mousavizadeh

and Ghasemi, 2021). It has been reported that mutations in 23S

rRNA were associated with clarithromycin resistance in Hp
, Antimicrobial

Hp, Helicobacter

ngle-Nucleotide

Control.

02
(Versalovic et al., 1996). Previous studies have shown that

phenotypic resistance correlates well with genetic tests, while

failed to provide high confidence single locus to accurately

describe resistant patterns for different antibiotics (Camorlinga-

Ponce et al., 2020). The inaccuracy of predicting antibiotic

resistance was partially attributable to incomplete penetration of

mutations in dictating phenotypes. Researchers explored the

feasibility to use genotype-based machine learning methods to

model the antimicrobial res istance of Actinobaci l lus

pleuropneumoniae from Whole genome sequencing (WGS) data

(Liu et al., 2020). Currently, systemic effort to address the antibiotic

resistance of Hp using supervised machine learning is still lacking.

In this study, we established a workflow measure the phenotype

and genotype of Hp strains, including Hp culturing and single

colony picking, disk diffusion test and whole genome sequencing.

We interrogated the antibiotic resistance ofHp by combining whole

genome sequencing and machine learning approach. SNP was

determined for Hp strains and used as input for modeling

antibiotic resistance, with single SNP modeling, unsupervised and

supervised machine learning. The goal is to explore the possibility to

use WGS in clinical setting to predict antimicrobial resistance.
Results

Summary of patient cohort

A comprehensive summary of the patient cohort enrolled in our

study is presented in Supplementary Table 1. With patient age

spanning from 23 to 71 years, the broad age distribution

underscores the extensive impact of Hp infection across the entire

population. The diverse age range vividly reflects the ubiquitous

nature of Hp’s influence. Notably, Hp isolates derived from these

patients underwent rigorous drug testing to ascertain their
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susceptibi l i ty to six antibiot ics , namely Amoxici l l in ,

Clarithromycin, Levofloxacin, Metronidazole, Tetracycline, and

Furazolidone. Interestingly, 86.5% of strains (45/52) are resistant

to Metronidazole.

The statistic for enrolled patients and analyzed strains are

summarized in Supplementary Table 2. The patient cohort

included 21/52 (40.4%) male patients and 31/52 (59.6%) female

patients. The median age is 50. The rate of resistance are 17.3% for

Amoxicillin, 44.2% for Clarithromycin, 38.5% for Levofloxacin and

86.5% for Metronidazole. All strains are sensitive to Furazolidone.

Only one strain is resistant to Tetracycline.

To investigate how the genotype information of Hp can be used

to predict antibiotic resistance, we established a workflow to

measure drug sensitivity phenotype using disk diffusion test and

genotype using whole genome sequencing (Figure 1). The relation

between genotype and phenotype was modeled using univariate

statistical test, unsupervised machine learning (phylogenetic

analys i s ) and supervised machine learning (support

vector machine).
Overview of SNPs

The pivotal aspect of our investigation involved subjecting Hp

isolates obtained from the patients to cutting-edge next-generation

sequencing. This technological approach facilitated the

comprehensive acquisition of whole genome data. To ensure the

reliability and quality of our findings, patients lacking accurate

clinical data were thoughtfully excluded, as were patients yielding

insufficient SNP data due to data quality concerns. Seven patients

were excluded because lack of clinical information. Five patients

were removed from downstream analysis as the total number of

SNP is less than 3000. This stringent curation led to the inclusion of

a robust cohort comprising 52 patients. In total, our study unveiled

a median of 66,198 SNPs identified among these patients. The

significant SNPs for Amoxicillin, Clarithromycin, Levofloxacin,

Metronidazole and Tetracycl ine were summarized in

(Supplementary Tables 3–7).
Modeling approaches

Leveraging this pool of extracted SNPs, we conducted a series of

rigorous downstream analyses. These analyses encompassed single

SNP statistical tests, the construction of phylogenetic trees, and the

implementation of supervised machine learning using Support

Vector Machine. This multi-faceted approach allowed us to draw

comprehensive insights into the genetic intricacies underpinning

antibiotic resistance in Hp strains within our patient cohort.

Three modeling approaches were undertaken to address the

relationship between antibiotic resistance and genotype, including

univariate statistical test, unsupervised machine learning and

supervised machine learning. Univariate statistical test serves as a

foundational method to identify basic relationships and differences

between resistant and sensitive strains. This approach is valuable for

its simplicity and clarity, providing an initial understanding of the
Frontiers in Cellular and Infection Microbiology 03
data. For the unsupervised machine learning component,

phylogenetic analysis was employed. Phylogenetic trees facilitates

the visualization and clustering of different strains, offering insights

into how genetic variations might influence antibiotic resistance.

For supervised machine learning, the Support Vector Machine

(SVM) algorithm was selected for its effectiveness in classification

tasks, especially in high-dimensional spaces. This approach is

particularly beneficial when labeled data is available and

predictive modeling is desired.

To evaluate the model performance, we used sensitivity and

specificity throughout our study. Sensitivity and specificity are two

key metrics used to evaluate the performance of a diagnostic test or

model. Briefly, in our study sensitivity measures the proportion of

actual positives (resistant strains) that are correctly identified by the

model. Specificity measures the proportion of actual negatives

(sensitive strains) that are correctly identified by the model.
Prediction of amoxicillin resistance

We identified 2483 significant SNPs for Amoxicillin

(Supplementary Table 3), including one significant site on 23S

rRNA (A1834G). Using individual SNP for Amoxicillin resistance

prediction, we evaluated the model with sensitivity and specificity.

In this case the presence of a SNP suggested that the sequenced

strain was an Amoxicillin resistant one. This assumption allowed us

to determine the sensitivity and specificity of the individual models

based on one single SNP site. We plotted the sensitivity and

specificity of all resulted models (Figure 2A). The sensitivity

ranged from 0 to 1, with a mean sensitivity of 0.45. The

specificity also ranged from 0 to 1, with a mean specificity of

0.46. It was difficult to obtain a good tradeoff between model

sensitivity and specificity (Figure 2B). For A1834G of 23S rRNA,

the model achieved 100% specificity and only 22.2% sensitivity.

To enhance model performance, we took all 2483 significant

sites as input for the construction of phylogenetic tree. The

phylogenetic tree indicated that sensitive and resistant strains

were well separated (Figure 2C).
Prediction of clarithromycin resistance

In our investigation, we identified a total of 266 significant SNPs

associated with Clarithromycin resistance (Supplementary Table 4),

among which a noteworthy site was found on the 23S rRNA gene

(A2147G). To predict Clarithromycin resistance, we utilized

individual SNPs as predictive markers and assessed the model’s

performance. The model’s effectiveness was evaluated by plotting

the sensitivity and specificity of the resulting models (Figure 3A).

Sensitivity values ranged from 0 to 1, with a mean sensitivity of 0.4,

while specificity values ranged from 0 to 1, with a mean specificity of

0.58. Notably, except for A2147G, achieving a balanced tradeoff

between model sensitivity and specificity proved to be challenging

(Figure 3B). However, for the specific case of A2147G on the 23S

rRNA gene, the model demonstrated 87% sensitivity and

96% specificity.
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To further enhance the predictive capabilities of the models, we

incorporated all 266 significant SNP sites as input for the

construction of a phylogenetic tree. The outcome of this

phylogenetic analysis indicated that strains with different

sensitivities to Clarithromycin could be distinctly separated

(Figure 3C). This result highlighted that through phylogenetic

analysis, different strains of Helicobacter pylori were distinctly

categorized based on their individual reactions to the antibiotic

Clarithromycin, as evidenced by their separation in the

phylogenetic tree.
Prediction of Levofloxacin resistance

We identified a total of 200 significant SNPs associated with

Levofloxacin resistance (Supplementary Table 5), among which a

significant site was found on the 23S rRNA gene (A2147G). To

predict Levofloxacin resistance, we employed individual SNPs as

predictive markers and evaluated the model performance. The

performance metrics of the resultant models were assessed by

plotting sensitivity and specificity (Figure 4A). Sensitivity values

ranged from 0 to 1, with a mean of 0.4, while specificity values

ranged from 0 to 1, with a mean of 0.58. Interestingly, there
Frontiers in Cellular and Infection Microbiology 04
appeared to be a negative correlation between sensitivity and

specificity (Figure 4B). Notably, the model for A2147G of the 23S

rRNA gene achieved 65% sensitivity and 71% specificity.

To maximize the separation in resistant and sensitive strains, we

utilized all 200 significant SNP sites as input to construct a

phylogenetic tree. The resulting phylogenetic tree exhibited

distinct separation between Levofloxacin-sensitive and resistant

strains (Figure 4C). This phylogenetic analysis provided

additional support for the differentiation between bacterial strains

based on their Levofloxacin resistance profiles.
Prediction of Metronidazole resistance

We successfully identified a total of 379 significant SNPs

associated with Metronidazole resistance (Supplementary

Table 6), among which an important site on the 23S rRNA

(G1517A) stood out. Employing individual SNPs for

Metronidazole resistance prediction, we evaluated the

performance metrics of our models. The sensitivity and specificity

of all resulting models were plotted and analyzed (Figure 5A). The

spectrum of sensitivity scores ranged between 0 and 1, with an

average sensitivity value of 0.41. Correspondingly, specificity scores
FIGURE 1

Summary of the workflow. Schematic summary of our study. The phenotype and genotype of Hp strains were quantitatively measured and the
relationship between Hp phenotype and genotype was modeled by univariate analysis, unsupervised clustering and support vector machine.
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ranged between 0 and 1, yielding an average specificity of 0.52.

Remarkably, one single SNP model emerged as an outlier, achieving

nearly 100% sensitivity and an impressive 100% specificity

(Figure 5B). However, when focusing on the known G1517A

variant of the 23S rRNA, the model exhibited only 2% sensitivity

and 50% specificity.

For unsupervised clustering of all strains based on SNP

information, we leveraged all 379 significant sites as input for the

construction of a phylogenetic tree. The resulting tree compellingly
Frontiers in Cellular and Infection Microbiology 05
demonstrated that Metronidazole-sensitive and resistant strains

could be distinctly separated (Figure 5C).
Assessing clinical treatment outcomes

Furthermore, we conducted a comprehensive investigation into

the potential impact of two different gastric mucosal protective

agents (Group A and B) on treatment outcomes for Hp infections.
B

C

A

FIGURE 2

Amoxicillin resistance modeling using phylogenetic tree construction and single SNP classification. (A) Phylogenetic tree for Amoxicillin. Amoxicillin
resistance is color coded indicating sensitive (Dark Green), resistant (Red), intermediate (Grey) and lowly sensitive (Light Green); Treatment result is
color coded indicating Effective (Black) and Failed (Grey); Group is color coded to indicate two different gastric mucosa protection drugs A (Sky Blue)
and B (Light Yellow); Gender is color coded to indicate Male (Blue) and Female (Red); Age is color coded to indicated different ranges, with darker
color indicating larger age. (B) Sensitivity and specificity distribution for the models derived from single SNP site to predict Amoxicillin resistance.
(C) Relationship between model sensitivity and model specificity was visualized as scatter plot. Blue line is fitted linear model.
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More information about treatment scheme is documented in

method. Hp is eradicated in 83.3% of strains treated with A and

85.7% of strains treated with B (p = 1). For the eight strains not

successfully eradicated by Amoxicillin and Clarithromycin, four

strains are resistant to both Amoxicillin and Clarithromycin and the

other four stains are resistant to either Amoxicillin (n =2) or

Clarithromycin (n =2).
Frontiers in Cellular and Infection Microbiology 06
Prediction of amoxicillin resistance
using SVM

Using the known A1834G of 23S rRNA, the univariate model

achieved 100% specificity and only 22.2% sensitivity. The mean

sensitivity and specificity for single SNP model are only 0.45 and

0.46. All single SNP models with 100% specificity have sensitivity less
B

C

A

FIGURE 3

Clarithromycin resistance modeling using phylogenetic tree construction and single SNP classification. (A) Phylogenetic tree for Clarithromycin.
Clarithromycin resistance is color coded indicating sensitive (Dark Green), resistant (Red), intermediate (Grey) and lowly sensitive (Light Green);
Treatment result is color coded indicating Effective (Black) and Failed (Grey); Group is color coded to indicate two different gastric mucosa
protection drugs A (Sky Blue) and B (Light Yellow); Gender is color coded to indicate Male (Blue) and Female (Red); Age is color coded to indicated
different ranges, with darker color indicating larger age. (B) Sensitivity and specificity distribution for the models derived from single SNP site to
predict Clarithromycin resistance. (C) Relationship between model sensitivity and model specificity was visualized as scatter plot. Blue line is fitted
linear model.
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than 50%. Therefore, we aimed to investigate the application of the

supervised machine learning algorithm SVM in developing a predictive

model for Amoxicillin resistance. Here we employed all significantly

different SNP sites between resistant and sensitive strains to train SVM

model. The feature selection procedure reduced the number of

dimensions for the classification problem. Through this approach, we

successfully generated an SVM model with 100% sensitivity and 100%

specificity in predicting sensitive and resistant Hp strains (Figure 6).

For the four strains (two lowly sensitive strains and two intermediate

strains regarding Amoxicillin response) not used in model training, the

model predicted all four strains as Amoxicillin sensitive.
Frontiers in Cellular and Infection Microbiology 07
Although this model allows us to obtain a good tradeoff

between sensitivity and specificity, it is subjected to potential

bias as we have much more variables than observations. To

maximize the generalizability of the model, we implemented two

validation procedures. In the first procedure, the original dataset

was randomly split into training set (60%) and test set (40%).

We obtained a model with 66.6% sensitivity and 100% specificity

in the test set. In the second procedure, we employed 5-fold

cross-validation. All five resulted models displayed 100%

specificity, while the maximal sensitivity obtained is 50% in

three models.
B

C

A

FIGURE 4

Levofloxacin resistance modeling using phylogenetic tree construction and single SNP classification. (A) Phylogenetic tree for Levofloxacin.
Levofloxacin resistance is color coded indicating sensitive (Dark Green), resistant (Red), intermediate (Grey) and lowly sensitive (Light Green);
Treatment result is color coded indicating Effective (Black) and Failed (Grey); Group is color coded to indicate two different gastric mucosa
protection drugs A (Sky Blue) and B (Light Yellow); Gender is color coded to indicate Male (Blue) and Female (Red); Age is color coded to indicated
different ranges, with darker color indicating larger age. (B) Sensitivity and specificity distribution for the models derived from single SNP site to
predict Levofloxacin resistance. (C) Relationship between model sensitivity and model specificity was visualized as scatter plot. Blue line is fitted
linear model.
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Prediction of Clarithromycin resistance
using SVM

Using the known A2147G on the 23S rRNA gene, the model to

predict Clarithromycin resistance demonstrated 87% sensitivity and

96% specificity. We further asked whether we could improve the

model performance if we incorporate all significantly different SNP

between Clarithromycin sensitive and resistant strains.
Frontiers in Cellular and Infection Microbiology 08
Consequently, our investigation delved into the application of a

supervised machine learning algorithm, specifically Support Vector

Machine (SVM), in the development of a predictive model for

Clarithromycin resistance. Remarkably, our efforts yielded a model

that achieved 100% sensitivity and 100% specificity in predicting

Clarithromycin-sensitive and resistant Hp strains (Figure 7).

Similar to the case of Amoxicillin resistance prediction with

SVM, the resulted model strikes a perfect balance of sensitivity and
B

C

A

FIGURE 5

Metronidazole resistance modeling using phylogenetic tree construction and single SNP classification. (A) Phylogenetic tree for Metronidazole.
Metronidazole resistance is color coded indicating sensitive (Dark Green), resistant (Red), intermediate (Grey) and lowly sensitive (Light Green);
Treatment result is color coded indicating Effective (Black) and Failed (Grey); Group is color coded to indicate two different gastric mucosa
protection drugs A (Sky Blue) and B (Light Yellow); Gender is color coded to indicate Male (Blue) and Female (Red); Age is color coded to indicated
different ranges, with darker color indicating larger age. (B) Sensitivity and specificity distribution for the models derived from single SNP site to
predict Metronidazole resistance. (C) Relationship between model sensitivity and model specificity was visualized as scatter plot. Blue line is fitted
linear model.
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specificity that is subjected to overfitting. The validation was

implemented by two procedures. In the split procedure (60%

training and 40% test), the model reached 100% sensitivity and

100% specificity in the test data. Using 5-fold cross-validation, all

five resulted models exhibited 100% sensitivity and 100% specificity.
Frontiers in Cellular and Infection Microbiology 09
Discussion

Whole genome sequencing had been successfully adopted in the

clinic for Mycobacterium tuberculosis (Witney et al., 2016) and

played important roles in identification of mutant strains of SARS-
FIGURE 6

Support vector machine modeling of Amoxicillin resistance. SNP-patient matrix was displayed as a heatmap, with each row indicating one SNP site
and each column one patient. Model Prediction was color coded as Sensitive (Grey) and Resistant (Purple); Group was color coded as gastric
mucosa protection drugs A (Light Green) and B (Pink); Treatment outcome was color coded as non-responders (Orange) and Responders (Blue).
Amoxicillin sensitivity is color coded as sensitive (Grey), lowly sensitive (Pink), intermediate (Red) and resistant (Dark red); Gender is color coded to
indicate male (Blue) and female (Red); Age is color coded from white to Green. The confusion matrix for the entire cohort was also shown.
FIGURE 7

Support vector machine modeling of Clarithromycin resistance. SNP-patient matrix was displayed as a heatmap, with each row indicating one SNP
site and each column one patient. Model Prediction was color coded as Sensitive (Grey) and Resistant (Purple); Group was color coded as gastric
mucosa protection drugs A (Light Green) and B (Pink); Treatment outcome was color coded as non-responders (Orange) and Responders (Blue).
Clarithromycin sensitivity is color coded as sensitive (Grey), intermediate (Red) and resistant (Dark red); Gender is color coded to indicate male (Blue)
and female (Red); Age is color coded from white to Green. The confusion matrix for the entire cohort was also shown.
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Cov-2 (Oude Munnink et al., 2020). In our study, we employed a

comprehensive whole-genome sequencing approach to unravel the

intricate antibiotic resistance patterns of Hp . Although

antimicrobial resistance in Hp is a global threat to human health

and the underlying molecular mechanisms have been explored in

our study. In contrast to traditional phenotyping methods, which

are characterized by their time-consuming nature and notable

variability (Gerrits et al., 2006), our study showcases the

remarkable advantages of employing Whole Genome Sequencing

(WGS) for the prediction of Hp antibiotic resistance. The

conventional approach, reliant on bacterial culture and drug

testing, often consumes valuable time and yields results that are

prone to experimental variation. In stark contrast, WGS offers an

efficient, rapid, and precise alternative that holds immense potential

in clinical setting.

Our research did not perform an exhaustive comparison

between existing methodologies for predicting Helicobacter pylori

(Hp) resistance and our proposed approach. The primary objective

of our study was not to develop an optimal model, but rather to

investigate the capabilities of machine learning in predicting Hp

resistance. It is important to note that our final model might be

subject to overfitting due to the limited size of our dataset, despite

implementing cross-validation techniques. Traditional studies

employing WGS typically rely on univariate statistical methods.

One study frequently analyzed resistance-associated sites through

kappa concordance analysis to identify both known and novel Hp

resistance loci in WGS data (Zhou et al., 2022). Another study has

concentrated on recognized drug resistance genes, like multidrug-

resistant efflux pump genes (Iwamoto et al., 2014). The prediction of

antimicrobial resistance based on WGS and machine learning has

been explored using various supervised learning algorithms,

particularly in studies involving the whole genome sequencing of

Escherichia coli (Ren et al., 2022). Our study introduces a novel

feature selection strategy for constructing machine learning models,

diversifying the methodological approaches in this field.

Our findings underscored the challenge of achieving good

sensitivity and specificity concurrently with models based on a

single SNP site. Notably, a rare exception emerged with the single

A2147G mutation on the 23S rRNA, which exhibited high

sensitivity and specificity in predicting Clarithromycin resistance.

This alignment with previous research corroborates the clear link

between Clarithromycin resistance in Hp and A2146 and A2147

mutations (Lauener et al., 2019). We further demonstrated the

efficacy of constructing phylogenetic trees based on significant SNP

sites, revealing substantial separation between antibiotic-sensitive

and resistant strains. These results suggest that future investigations

aimed at building predictive models utilizing a combination of SNP

sites could be a fruitful avenue to explore.

The complex nature of antimicrobial resistance in Hp

underscores the limitations of predictive modeling based on

single SNP sites (Reygaert, 2018). For instance, Hp’s resistance to

Levofloxacin is likely linked to gyrase, an enzyme responsible for

DNA negative supercoiling. Point mutations at amino acids 87, 88,
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91, and 97 have been identified as potential Levofloxacin resistance

determinants (Moore et al., 1995). Nonetheless, our study did not

identify a single SNP site with the dual qualities of high sensitivity

and specificity in predicting Levofloxacin resistance.

The challenging balance between high sensitivity and specificity

for models based on single SNP sites primarily stems from the

diverse mechanisms that underlie antibiotic resistance in Hp.

Despite the promising potential of whole-genome sequencing in

clinical medicine, our study does have several limitations. Firstly,

our supervised machine learning approach relied on accurate

phenotyping through traditional culturing and drug testing,

which are susceptible to experimental variations (Su et al., 2019).

Secondly, genome sequencing and drug testing of a single Hp

colony oversimplify the complex clinical reality, where patients

may harbor heterogeneous Hp populations within an intricate

ecosystem of coexisting microbiota.

The construction of predictive modeling of antibiotic resistance

was enhanced by feature selection. Significantly different SNP sites

between sensitive and resistant strains were used as model input. In

the case of Amoxicillin resistance, the best model has a sensitivity of

66% and a specificity of 100% in test data, while the known A1834G

of 23S rRNA achieved 100% specificity and only 22.2% sensitivity.

For Clarithromycin resistance, all trained models exhibited 100%

sensitivity and 100% specificity in both training data and test data.

This improved the performance of the known A2147G on the 23S

rRNA gene, which has a sensitivity of 87% and a specificity of 96%.

As proof-of-concept, predictive modeling using SVM with feature

selection could lead to diagnostic model with higher

predictive power.

Our study used sensitivity and specificity to evaluate the

diagnostic models derived from different approaches. It’s

important to note that sensitivity and specificity are inversely

related. Increasing one often leads to a decrease in the other. The

ideal model would have both high sensitivity and high specificity,

but in practice, a balance is usually sought based on the

consequences of false positives and false negatives. In a clinical

setting, these metrics guide the choice of a diagnostic test based on

what is more critical: not missing the condition (high sensitivity) or

not incorrectly diagnosing it when it’s not there (high specificity).

High sensitivity ensures resistant strains are correctly identified

and treated.

One major limitation of our study is the small patient cohort. In

the case of Amoxicillin drug resistance, we only have nine resistant

strains. This limits our ability to train models with low variance. If

the test dataset is small, we could have few or no resistant strains for

Amoxicillin. In our small cohort, we did not have any resistant

strain for Furazolidone and we only had one resistant strain for

Tetracycline. This renders it impossible to address Furazolidone or

Tetracycline resistance. Nevertheless, our dataset might be used for

integration with other accessible datasets in the community for

future predictive modeling efforts.

Taken together, the intricate antibiotic resistance patterns

revealed by our whole-genome sequencing approach emphasize
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the need for a holistic perspective in understanding the dynamics of

antimicrobial resistance in Hp. The lack of single SNP sites with

simultaneous high sensitivity and specificity underscores the

multifaceted nature of resistance mechanisms that this pathogen

employs. As such, the incorporation of supervised machine learning

techniques may hold the key to achieving more accurate and

reliable predictive models for antibiotic resistance. Our findings

emphasize the need for continued multidisciplinary research efforts

that bridge genomics, microbiology, machine learning, and

clinical medicine.
Methods

Sample collection and ethical approval

In total we collected sample from 52 patients withHp infections.

All enrolled patients have no intake of antibiotics within one

month, no consumption of PPI or Chinese traditional medicine

within two weeks. UBT test was employed to confirm the positivity

ofHp infection. Biopsy samples were preserved in cultivation media

and transported to laboratory at 4 degree. The studies involving

human participants were reviewed and approved by the seventh

Medical Center of PLA General Hospital Ethics Committee

(No.2017-74) and other departments of gastroenterology from

different hospitals applied and followed this content ’s

introduction. The patients/participants provided their written

informed consent to participate in this study.
Stratification by treatment outcome

Patients were divided into two groups (A and B). The patients in

the group A were treated with 1000 mg tid of hydrotalcite, 20 mg

bid of rabeprazole, 1000 mg bid of amoxicillin and 500 mg bid of

clarithromycin; The patients in group B were treated with colloidal

bismuth pectin 300 mg bid + rabeprazole 20 mg bid + amoxicillin

1000 mg bid + clarithromycin 500 mg bid for 10 days. At least 28

days after the end of treatment, all patients received 13C urea breath

test to evaluate and compare the Hp eradication rate between

two groups.
Hp culture

Biopsy was inoculated onto Columbia blood agar plates

supplemented with designated antibiotics. Inoculation was

performed by direct contact of mucosa side and agar. The contact

is gentle and even to ensure successful inoculation. Preservation

media was applied to evenly cover the whole plate. The biopsy was

removed and used in to confirm the presence of Hp. Agar plates

were incubated in 5% O2, 10% CO2, 85% N2 at 37 degree for 3 or

4 days.
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Single colony inoculation and
cryo-preservation

Hp colony was validated with morphology (Gram negative) and

biochemical assays. Single Hp colony was transferred to a new

Columbia agar plate and inoculated evenly. After 3-4 days of culture

in incubator with 5% O2, 10% CO2, 85% N2 at 37 degree, Hp colonies

were cryo-preserved in -80 degree for next generation sequencing.
Antibiotic test

Determination of antibiotic sensitivity was performed with disk

diffusion test according to standardized Kirby-Bauer procedure.

White paper disks containing antibiotics were arranged onto the

agar plates. The size of circular zones of poor bacteria growth

surrounding paper disks was measured and used to define antibiotic

sensitivity using customized thresholds (Supplementary Figure 1).
DNA extraction

DNA extraction was performed with Magen HiPure Bacterial

DNA kits. Final DNA output was dissolved in 30 ml TE buffer and

analyzed with Qubit (Thermofisher) to determine concentration.
Library construction and sequencing

10 ng DNA was used for library construction. DNA was

fragmented with sonification to obtain fragments of 300 bp.

Beads-based selection was performed to select DNA fragments

after end repairing and adapter ligation. Library amplification was

performed with Super Canace High Fidelity enzyme. Amplified

libraries and size selected and purified. Agilent 2100 was used for

library QC. The resulted libraries were normalized by molar

concentration and sequenced with paired-end 150 bp mode on

illumina platform.
Mutation calling

Our mutation calling process commenced with rigorous quality

control measures aimed at eliminating adapters and low-quality reads,

ensuring the generation of clean reads. These clean reads were then

meticulously aligned to the Helicobacter pylori reference genome,

specifically the Helicobacter pylori 26695 genome (accessible at

https://www.ncbi.nlm.nih.gov/nuccore/AE000511) using BWA

(v0.7.17) with parameters “mem -t 2 -M -Y”. The resulting

alignment data, in BAM format, was sorted and indexed with

samtools (v1.9), which was the basis for mutation calling through the

use of bcftools (v1.9) with parameters “call -vmO z”. To enhance the

accuracy of our findings, only SNP sites demonstrating at least
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2x coverage across all samples were retained for subsequent analysis.

We performed “bcftools filter -O v -s LOWQUAL -e ‘\’’QUAL<10 ||

FMT/DP <5’\’’ –SnpGap 5 –set-GTs” to filter out SNPs of low quality.

The resulting SNPs were annotated with Annovar (v191024).
Identification of significant SNPs

The determination of significant SNPs was achieved via

rigorous statistical assessments. Our analysis incorporated two

independent statistical tests, namely the Chi-squared test and

Fisher’s exact test. Employing a stringent approach, only SNPs

exhibiting p-values below 0.05 in both tests were considered

significant and subsequently utilized in our downstream

analytical endeavors.
Calculation of sensitivity and specificity

To gauge the efficacy of our approach for each antibiotic, we

formulated confusion matrices specific to each significant SNP. The

calculation of Sensitivity involved determining the ratio between

true positives and model-predicted positives, while Specificity was

calculated as the ratio between true negatives and model-predicted

negatives. The confusion matrix is comprised of true positive (TP),

false positive (FP), false negative (FN) and true negative (TN). To be

precise, the formulars are “sensitivity = TP/(TP+FN)” and

“specificity = TN/(TN+FP)”. These calculations were executed in

the R programming environment.
Phylogenetic analysis

Phylogenetic trees were constructed using SNP data identified

in sample subsets of varying sizes, encompassing 5, 10, 20, 30, 40,

and 50 samples, yielding 56671, 22601, 18749, 13938, 10397, and

3470 SNPs, respectively. Furthermore, we also plotted phylogenetic

trees using only the significant SNPs identified through the

aforementioned statistical tests, providing a comprehensive visual

representation of genetic variation. The brief step for phylogenetic

analysis is as follows. The SNPs in VCF file were converted to

FASTA format and imported to MEGA (v10.2), then maximum

likelihood tree was constructed with default parameters. The

resulting tree file (nwk fomat) was then imported to an online

tool called iTOL (https://itol.embl.de) for visualization.
Support vector machine

To train classifier to predict antibiotic sensitivity using SNP

information, input data was prepared using significant SNP for

antibiotic under investigation. To facilitate the SVM modeling

process, SNP data was systematically converted into numeric

values, serving as the input for our SVM model. Briefly, input
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data was a patient-SNP matrix consisting of 0 or 1. SNP value of “1”

suggests a polymorphism (non-wild type status), while SNP value of

“0” indicates same genotype as the reference strain.

For Amoxicillin antibiotic resistance, we had 39 sensitive

strains, 9 resistant strains, 2 intermediate strains and 2 lowly-

sensitive strains. For Clarithromycin, we had 27 sensitive strains,

23 resistant strains and 2 intermediate strains. As the label

“intermediate” and “lowly-sensitive” had very few observations,

we aimed to build the two class SVM classifier using only sensitive

and resistant strains. As for Clarithromycine, we had 27 sensitive

strains, 23 resistant strains and 2 intermediate strains. Only

sensitive and resistant strains were used for SVM.

The implementation of Support Vector Machine (SVM)

modeling was facilitated through the e1017 package in the R

programming environment. Employing a “radial” kernel, with a

cost set at “1” for optimal SVM performance, we ensured model

reproducibility by utilizing set.seed before the SVM modeling

process. Sensitivity and specificity metrics were calculated using

the above mentioned formulars: “sensitivity = TP/(TP+FN)” and

“specificity = TN/(TN+FP)”.

In the model validation process for the Support Vector Machine

(SVM) analysis, two distinct validation procedures were implemented

to ensure the robustness and reliability of the model. The first

procedure involved partitioning the original dataset into two subsets:

60% of the data was used as the training set, where the SVMmodel was

trained to understand the patterns and relationships in the data. The

remaining 40% constituted the test set, which was utilized to evaluate

the model’s performance, specifically its ability to accurately predict

outcomes on new, unseen data. This approach of splitting the dataset

provides a straightforward way to check the model’s efficacy

and generalizability.

The second procedure employed was 5-fold cross-validation, a

more rigorous validation technique. In this method, the dataset was

divided into five equal parts. In each of the five iterations of the

process, a different fold was used as the validation set, while the

remaining four folds collectively served as the training set. This

cycle ensured that each part of the dataset was used both for training

and validation. Cross-validation is particularly valuable as it

mitigates the risk of overfitting, ensuring the model’s performance

is not overly tailored to a specific subset of data. By averaging the

results from all five folds, a more comprehensive and reliable

assessment of the model’s performance is obtained, enhancing

confidence in its predictive accuracy. Together, these two

validation procedures provide a thorough examination of the

SVM model’s capabilities, contributing to its credibility and

applicability in practical scenarios.
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