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For decades, the defined antibody reactive proteins of Ehrlichia chaffeensis and

E. caniswere limited to a small group with linear antibody epitopes. Recently, our

laboratory has utilized an immunomics-based approach to rapidly screen and

identify undefined Ehrlichia chaffeensis and E. canis antigenic proteins and

antibody epitopes. In this study, we analyzed the remaining portion (~50%) of

the E. chaffeensis and E. canis proteomes (n = 444 and n = 405 proteins,

respectively), that were not examined in previous studies, to define the complete

immunomes of these important pathogens. Almost half of the E. chaffeensis

proteins screened (196/444) reacted with antibodies in convalescent HME

patient sera, while only 43 E. canis proteins reacted with CME dog sera. New

major immunoreactive proteins were identified in E. chaffeensis (n = 7) and E.

canis (n = 1), increasing the total number of E. chaffeensis (n = 14) and E. canis

proteins (n = 18) that exhibited antibody reactivity comparable to well-defined

major antigenic proteins (TRP120 and TRP19). All of the E. chaffeensis but only

some E. canis major immunoreactive proteins contained major conformation-

dependent antibody epitopes. The E. chaffeensis immunoreactive proteins were

generally small (< 250 amino acids; ~27kDa) and the E. canis proteins were

slightly larger (> 320 amino acids; ~35 kDa). The majority of these new Ehrlichia

major immunoreactive proteins were predicted to be type I secreted effectors,

some of which contained transmembrane domains. Characterization of the

immunomes of E. chaffeensis and E. canis and understanding the host specific

Ehrlichia immune responses will facilitate identification of protective antigens

and define the biophysical epitope characteristics vital to effective vaccine

development for the ehrlichioses.
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Introduction

Ehrlichia spp. are tick-transmitted, obligate intracellular

bacteria that cause disease in animals and humans, ranging from

mild to severe and life-threatening (Paddock and Childs, 2003;

McBride and Walker, 2011). E. chaffeensis is the etiologic agent of

human monocytotropic ehrlichiosis (HME), an emerging zoonosis.

E. canis is the etiologic agent of canine monocytic ehrlichiosis

(CME), a highly prevalent globally distributed hemorrhagic disease

in dogs (Paddock and Childs, 2003; Harrus and Waner, 2011).

Conventional immunoblotting approaches have helped identify

major antibody reactive proteins from E. chaffeensis and E. canis,

including major outer membrane proteins (OMPs) (Ohashi et al.,

1998a; Ohashi et al., 1998b), tandem repeat proteins (TRPs) (Doyle

et al., 2006; McBride et al., 2007; Luo et al., 2008; Luo et al., 2009;

McBride et al., 2011) and ankyrin repeat proteins (Anks) (Nethery

et al., 2007; Luo et al., 2010), that contain linear antibody epitopes.

Many of these proteins elicit protective immune responses in

Ehrlichia infection models (Li et al., 2001; Crocquet-Valdes et al.,

2011; Kuriakose et al., 2012; Nambooppha et al., 2022). Moreover,

experimental studies have demonstrated protection against

infection using live-attenuated vaccines and subunit vaccines

(Rudoler et al., 2012; McGill et al., 2016; Budachetri et al., 2022);

however, there are no commercial human or veterinary vaccines

available for HME or CME.

Until recently, the number of defined E. chaffeensis and E. canis

antigenic proteins has been limited (McBride and Walker, 2010),

compared to a large number of antigenic proteins (~7-20% of the

proteome) identified in other pathogens, such as Chlamydia,

Coxiella, Burkholderia and Bartonella (Barbour et al., 2008;

Felgner et al., 2009; Vigil et al., 2010a; Vigil et al., 2010b; Cruz-

Fisher et al., 2011; Vigil et al., 2011). Since the completion of whole-

genome sequencing of the first bacterium Haemophilus influenzae

in 1995, a variety of multiomics approaches are now available,

including genomics, proteomics, transcriptomics, and immunomics

which integrates these omics approaches to study the immunome

(Sette et al., 2005; Loman and Pallen, 2015; De Sousa and Doolan,

2016; Babu and Snyder, 2023). The immunome is defined as the set

of antigens or epitopes that interface with the host immune system.

Genome-based in silico reverse vaccinology has also accelerated the

identification of new vaccine candidates, but it largely relies on the

accuracy of a serial of computational prediction tools, which are

limited by the validated protective antigens in which the algorithm

is based (Bidmos et al., 2018).

Intracellular bacteria E. chaffeensis and E. canis have relatively

small genomes (1.2 Mbp and 1.3Mbp, respectively) that encode less

than 1000 proteins (Dunning Hotopp et al., 2006; Mavromatis et al.,

2006). In recent years, access to commercial gene synthesis and

cloning has made experimental screening of antigenic proteins

feasible. Therefore, we established a high-throughput

immunomics-based antigen discovery approach to rapidly

identify undiscovered antigenic proteins from E. chaffeensis and

E. canis (Luo et al., 2020; Luo et al., 2021). Since previous

investigations suggested that hypothetical proteins were potential

antigens, our initial studies prioritized hypothetical proteins and a

group of annotated proteins with high antigenicity scores predicted
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by ANTIGENpro, a sequence-based predictor of protein

antigenicity (Magnan et al., 2010). About half of the proteins in

the E. chaffeensis and E. canis proteome have been screened, and

many new immunoreactive ehrlichial proteins were identified (Luo

et al., 2020; Luo et al., 2021). Most of the recently discovered

Ehrlichia immunoreactive proteins were predicted to be secreted

effector proteins with antibody epitopes that exhibit complete or

partial conformation dependence (Luo et al., 2020; Luo et al., 2021).

In this study, we used our established immunomics-based

strategy to screen the remaining proteins (~50%) in the E.

chaffeensis and E. canis proteomes. This comprehensive screening

provides a detailed analysis of the antibody-reactive immunomes of

E. chaffeensis and E. canis 30 years after E. chaffeensis GroEL was

identified as the first antibody-reactive protein in 1993 (Sumner

et al., 1993). The comprehensive identification and analysis of these

Ehrlichia spp. immunomes reported herein will accelerate

diagnostic, vaccine, and immunotherapeutic development for

human and canine ehrlichiosis.
Materials and methods

Gene synthesis and cloning

E. chaffeensis (Arkansas strain) and E. canis (Jake strain) gene

sequences are available in the Integrated Microbial Genomes (IMG)

(https://img.jgi.doe.gov/) (Chen et al., 2019) and GenBank (https://

www.ncbi.nlm.nih.gov/genbank). Ehrlichia genes were codon-

optimized, chemically synthesized and cloned into pIVEX2.3d

vector (containing a 6×His-tag sequence) by Twist Bioscience

(San Francisco, CA) or GenScript (Piscataway, NJ). Plasmids were

transformed into Escherichia coli to amplify, then extracted and

lyophilized by the manufacturer.
In vitro transcription and translation (IVTT)

In vitro expression of Ehrlichia proteins was performed using

the NEBExpress cell-free E. coli protein synthesis system (New

England Biolabs, Ipswich, MA). Lyophilized plasmids were

reconstituted in water and purified using the UltraClean 96 PCR

cleanup kit (Qiagen, Germantown, MD). Plasmids were then added

to E. coli extract and a reaction premix in a 96-well plate and

incubated at 37°C for 3 h with orbital shaking (300 rpm) according

to the manufacturer’s instructions.
HME and CME antisera

HME patient sera were kind gifts from the Centers for Disease

Control and Prevention (Atlanta, GA), Vanderbilt University

School of Medicine (Nashville, TN), Washington University and

the St. Louis Children’s Hospital (St. Louis, MO). CME sera were

obtained from naturally infected dogs from the United States and

Colombia. All sera were confirmed to be positive against E.

chaffeensis or E. canis by both indirect fluorescent-antibody assay
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(IFA) and enzyme-linked immunosorbent assay (ELISA). To avoid

reactions with non-specific polyreactive IgM antibodies, which have

been previously described in humans (Jones et al., 2012), assays

were performed with convalescent sera and bound antibody

detected with anti-IgG (H+L) secondary antibodies.
Dot immunoblot

The expression of Ehrlichia proteins by IVTT was confirmed by

dot immunoblot with horseradish peroxidase (HRP)-labeled mouse

anti-His tag monoclonal antibody (1:500; GenScript) as described

previously (Luo et al., 2020). The immunoreactivity of native and

denatured proteins was also examined by dot immunoblot using

IVTT-expressed proteins purified by MagneHis protein purification

system (Promega, Madison, WI) according to the manufacturer.

Immunoblots were probed with either HME or CME serum (1:200)

and developed with TMB 1-component substrate (Kirkegaard &

Perry Laboratories, Gaithersburg, MD).
ELISA immunoscreening

The immunoreactivity of Ehrlichia IVTT-expressed proteins

was performed by capturing His-tagged IVTT proteins on an ELISA

plate coated with anti-His tag antibody as previously described with

minor modifications (Luo et al., 2020). ELISA was performed with

HME or CME sera (1:200) and bound antibody detected with

alkaline phosphatase-labeled rabbit anti-human IgG (H+L)

(1:7,000; Abcam, Cambridge, MA) or anti-dog IgG (H+L)

secondary antibodies (1:5000) and BluePhos substrate

(Kirkegaard & Perry Laboratories). Dilution buffer containing 4

M urea was used to denature IVTT-expressed proteins and the

diluted protein was incubated for 10 min at 99°C before cooling on

ice and coating the plate (or membrane for dot blot). Optical density

was measured at 650 nm (OD650) on a SpectraMax iD5 plate reader

(Molecular Devices, Sunnyvale, CA) and OD650 values represent the

mean reading from 3 wells (± standard deviation) after negative

control (IVTT negative protein control and a normal human or

canine serum control) background subtraction. A sample ELISA

OD650 value of ≥ 0.2 was considered positive and ≥ 0.5 a strong

positive after subtracting the negative control OD650 reading

(background). The proteins with mean ELISA OD650 of > 1.0

from multiple sera were considered immunodominant and

proteins with mean ELISA OD650 of 0.5~1.0 subdominant.
Peptide ELISA

To identify linear antibody epitopes, ELISAs were performed

using overlapping peptides (17-23 amino acids; 6 amino acid

overlap) (Luo et al., 2009). All peptides were commercially

synthesized and supplied as a lyophilized powder (GenScript) and

resuspended in molecular biology grade water (1 mg/ml). A small

amount of NH4OH, acetic acid or dimethyl sulfone was added to
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help dissolve some acidic, basic, or hydrophobic peptides,

respectively, according to peptide solubility guidelines from

the manufacturer.
IFA

The antibody titers in sera from HME patients and CME dogs

were determined by IFA as previously described (Luo et al., 2020).

Antigen slides were prepared from E. chaffeensis (Arkansas)-

infected THP-1 cells or E. canis (Jake)-infected DH82 cells. Slides

were examined with a BX61 epifluorescence microscope

(Olympus, Japan).
Bioinformatic analysis

Online bioinformatic prediction tools used in this study include

ANTIGENpro (http://scratch.proteomics.ics.uci.edu), TMHMM

2.0 (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0),

SignalP 6.0 (https://services.healthtech.dtu.dk/service.php?SignalP-

6.0), SecretomeP 2.0 (https://services.healthtech.dtu.dk/

service.php?SecretomeP-2.0), S4TE 2.0 (https://sate.cirad.fr), and

PREFFECTOR (http://draco.cs.wpi.edu/preffector).
Results

E. chaffeensis and E. canis immunomics-
based screening

Previously, we analyzed the predicted E. chaffeensis (Arkansas

strain) and E. canis (Jake strain) ORFs in both databases of Integrated

Microbial Genomes (IMG) and GenBank. After RNA genes,

pseudogenes and short ORFs (coded proteins < 42 aa) were

excluded, the total number of ORFs in E. chaffeensis and E. canis

genome was determined to be 882 and 928, respectively (Luo et al.,

2021). The predicted antigenicity of all proteins was determined using

ANTIGENpro and respective antigenicity scores obtained (between 0

and 1). We previously investigated the immunoreactivity of all

proteins distributed in the top 350 (with antigenicity scores >

~0.6), excluding previously characterized antigens (such as TRPs

and OMPs). In addition, we also previously prioritized hypothetical

proteins (including proteins with domain of unknown function

[DUF]) regardless of ANTIGENpro rank (Luo et al., 2020; Luo

et al., 2021) (Supplementary Figure 1).

To define the complete antigenic repertoire of E. chaffeensis and

E. canis, in this study we further investigated the remaining proteins

(n = 444 and n = 405, respectively) that were not examined in our

previous studies. Proteins were expressed in the cell-free IVTT

system, and the expression was confirmed by dot blot of randomly

selected proteins (n = 22) from both E. chaffeensis and E. canis

(Figure 1A). Since ELISA plate wells can be saturated by IVTT-

expressed proteins, the differences in expression levels did not

influence the relative immunoreactivity between different proteins
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as established in our previous investigations (Luo et al., 2020; Luo

et al., 2021).

The E. chaffeensis and E. canis proteins (n = 444 and n=405,

respectively) were screened for immunoreactivity by ELISA using

pooled convalescent HME or CME sera, respectively, which had

indirect fluorescent-antibody assay (IFA) titers of 1600. A total of

196 (44%) E. chaffeensis and 43 (11%) E. canis proteins reacted with

pooled sera (mean optical density at 650 nm [OD650] ≥ 0.2 with

background subtracted). All E. chaffeensis and E. canis proteins were

ranked according to ELISA OD value (from high to low) and are

listed in Supplementary Tables 1, 2, respectively. The E. chaffeensis

(n = 40; mean OD650 > 0.8) and E. canis proteins (n = 31; mean

OD650 > 0.3) that exhibited the strongest immunoreactivity with

pooled sera are shown in Figures 1B, C.
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Identification of E. chaffeensis and E. canis
immunodominant proteins

To further define and compare the antibody reactivity of these

E. chaffeensis and E. canis proteins by ELISA, a panel of 8 HME and

8 CME sera were used. All patient and canine sera recognized E.

chaffeensis or E. canis by IFA, respectively, with antibody titers

ranging from 200 to 3200 (Figure 2). As previously described, well-

defined immunodominant proteins (E. chaffeensis TRP120 or E.

canis TRP19) were used as positive controls, respectively (Cardenas

et al., 2007; Luo et al., 2010; Pritt and Dumler, 2019; Taques

et al., 2020).

E. chaffeensis immunoreactive proteins (n = 56) were recognized

by all or most of 8 HME sera. The top 7 proteins, including
B

C

A

FIGURE 1

Expression of E. chaffeensis and E. canis proteins by IVTT and immunoreactivity screening by ELISA. (A) Detection of IVTT expression of selected
proteins of E. chaffeensis and E. canis by dot immunoblot with anti-His-tag antibody. CTL, the negative control (IVTT reaction without plasmid
template). Pooled sera of HME patients or CME dogs were used to screen E. chaffeensis (B) and E. canis (C) proteins, respectively. ELISA OD values
represent the mean optical density reading from 3 wells (± standard deviation) after background subtraction. A sample OD of ≥0.2 was considered
positive and ≥0.5 a strong positive after subtracting negative control (an IVTT reaction with empty plasmid template and a normal human or canine
serum control) readings. TRP120 (B) and TRP19 (C) were used as positive controls.
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Ech_1061, 0725, 0350, 0506, 0679, 0494 and 0905, reacted strongly

with all HME sera (similar to TRP120 positive control) and were

considered immunodominant (mean OD650 values > 1.0)

(Figure 2A). Additionally, some proteins (n = 49) reacted with all

sera at lower levels (mean OD650 = 0.5~1.0), and only reacted

strongly with some HME sera. Thus, these immunoreactive

proteins were considered subdominant.

E. canis immunoreactive proteins (n = 15; mean OD650 values of

> 0.5) were identified using 8 CME sera, but only 1 (Ecaj_0647)

reacted strongly with most canine sera (mean OD650 value of > 1.0)

and was considered immunodominant (Figure 2B). The positive

control TRP19 reacted strongly with all CME sera. In addition, 3 E.

canis proteins (Ecaj_0710, 0026 and 0274) with screening OD650

values of > 1.0 exhibited mean OD650 values of 0.5-1.0 with 8 CME

sera, and thus were considered subdominant.
Antibody epitopes of
immunodominant proteins

Recently, we have revealed that most immunoreactive proteins

of E. chaffeensis and E. canis identified previously have

conformation-dependent antibody epitopes (Luo et al., 2020; Luo

et al., 2021). Thus, in this study we also investigated the

conformation-dependence of 7 E. chaffeensis and 1 E. canis

immunodominant proteins by denaturing ELISA. After

denaturation using urea, only 2 E. chaffeensis immunodominant

protein (Ech_1061 and 0905) among top 7 still reacted weakly with

2 HME sera (mean OD650 < 0.2 from 8 sera), compared to the native

IVTT proteins (mean OD650 = 1.25 and 1.01, respectively). The

remaining denatured E. chaffeensis proteins did not react with any

HME patient sera, while the linear epitope-containing major
Frontiers in Cellular and Infection Microbiology 05
immunoreactive protein control (TRP120) was not affected by

denaturation (Figure 3A) (McBride and Walker, 2010). These

results indicate that these E. chaffeensis immunoreactive proteins

have conformation-dependent antibody epitopes.

We also used a synthetic peptide ELISA to confirm the absence

of major linear epitopes and presence of conformation-dependent

epitopes in 2 selected E. chaffeensis immunodominant proteins

(Ech_1061 and 0725) (Luo et al., 2008; Luo et al., 2009; McBride

et al., 2011). Overlapping peptides (17-23 amino acids; 6 amino-

acid overlap) covering each entire protein sequence were

synthesized. The pooled HME sera used in our initial screening

was used to test all peptides by ELISA (Figure 3B). None of these

peptides reacted with HME sera, demonstrating that these E.

chaffeensis immunodominant proteins do not contain major

linear epitopes, consistent with ELISA results using native and

denatured IVTT products (Figures 2A, 3A). We further examined

the conformational dependence of epitopes in 7 new E. chaffeensis

immunodominant proteins by dot immunoblot (Figure 3C). The

immunoreactivity of native and denatured proteins was compared

using an HME serum. After denaturation, these proteins did not

react or reacted weakly with E. chaffeensis antibodies, consistent

with our ELISA data in Figures 3A, B. These results support the

conclusion that the many immunodominant proteins of E.

cha ff e ens i s are defined by conformat ion-dependent

antibody epitopes.

The immunoreactivity of E. canis protein (Ecaj_0647) was only

slightly reduced after denaturation by ELISA, indicating a major

linear and minor conformation-dependent antibody epitopes were

present. The well-defined E. canis major immunoreactive protein

TRP19 containing a major linear antibody epitope was not affected

by denaturation (Figure 4A). By dot immunoblot, denatured

Ecaj_0647 protein reacted strongly with the E. canis antibodies,
BA

FIGURE 2

Immunoreactivity of new E. chaffeensis and E. canis immunodominant proteins. (A) Immunoreactivity comparison of 7 E. chaffeensis
immunodominant proteins and TRP120 by ELISA. IVTT-expressed proteins were probed with a panel of convalescent sera from 8 HME patients.
(B) Immunoreactivity comparison of E. canis immunodominant protein Ecaj_0647 and TRP19 by ELISA. IVTT-expressed proteins were probed with a
panel of convalescent sera from 8 CME dogs. OD650 values represent the mean optical density reading from 3 wells (± standard deviation) after
background subtraction. A sample OD650 of ≥ 0.2 was considered positive and ≥ 0.5 a strong positive after subtracting negative control (an IVTT
reaction with empty plasmid template and a normal human or canine serum control) readings.
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but at a lower level compared to native proteins, whereas TRP19

protein reacted at a level similar to the native proteins (Figure 4B).

This result is consistent with our ELISA data in Figure 4A.
Analysis of antigenic proteins

To compile the antigenic repertories of E. chaffeensis and E.

canis, we combined data from this study with our recent studies and

summarized the results (Supplementary Figure 1). In total, our

studies investigated 857 E. chaffeensis proteins and 817 E. canis

proteins, excluding known antigens (such as TRPs and OMPs) and

ribosomal proteins, and found 272 (32% of 857) and 112 (14% of

817) immunoreactive proteins, respectively. More importantly, we

iden t ified a l a r ge number o f prev ious l y undefined

immunodominant proteins in E. chaffeensis (n = 14) and E. canis

(n = 18). In addition, we identified numerous Ehrlichia

subdominant proteins (n = 70 and n = 16, respectively) and other
Frontiers in Cellular and Infection Microbiology 06
proteins exhibiting low immunoreactivity (n = 188 and n = 78,

respectively) (Supplementary Figure 1). Figure 5 shows the quantity

analysis of antigenic proteins in E. chaffeensis and E. canis

immunomes, including previously known antigens. Both Ehrlichia

immunomes contain ~3% immunodominant proteins; however, E.

chaffeensis has more subdominant proteins and proteins exhibiting

low immunoreactivity than E. canis (9% and 21% vs. 2% and 9%,

respectively). Therefore, the proportion of the proteome that was

not antigenic in E. canis and E. chaffeensis was 86% and

67%, respectively.

We performed a comprehensive analysis of all new

immunodominant proteins of E. chaffeensis and E. canis. The

immunoreactivity, E. canis orthologs and bioinformatic analysis

of E. chaffeensis immunodominant proteins ranked by ELISA OD

values are shown in Tables 1, 2. All these proteins contain major

conformational epitopes, and a majority of these proteins (n = 11)

were small (< 250 amino acids) (Table 1). Among E. chaffeensis

immunodominant proteins (n = 14), there were 6 hypothetical
B

C

A

FIGURE 3

Conformation-dependent immunoreactivity of E. chaffeensis immunodominant proteins. (A) Immunoreactivity of the denatured IVTT-expressed E.
chaffeensis proteins compared with TRP120 by ELISA using a panel of 8 HME sera. (B) Immunoreactivity of overlapping synthetic peptides spanning
2 E. chaffeensis immunoreactive proteins by ELISA with pooled HME sera. Positive control, a TRP120 epitope peptide. OD650 values represent the
mean optical density reading from 3 wells (± standard deviation). A sample OD650 of ≥ 0.2 was considered positive and ≥ 0.5 a strong positive after
subtracting negative control (A: an IVTT reaction with empty plasmid template and a normal human or canine serum control; B: a negative peptide)
readings. (C) Conformation-dependent immunoreactivity of E. chaffeensis proteins by dot immunoblot. Immunoreactivity of the native and
denatured proteins and TRP120 was detected with serum from an HME patient. All proteins were IVTT expressed and purified.
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protein and 8 annotated proteins, including an outer membrane

beta-barrel protein, a type IV secretion system component VirB3

and 6 enzymes involved in important biological processes, such as

dehydrogenase, transferase, kinase, and phosphatase (Table 2). A

bioinformatic analysis using multiple online prediction tools found

that most E. chaffeensis immunodominant proteins (n = 8) were

predicted to contain at least 1 (up to 8) transmembrane domain by
Frontiers in Cellular and Infection Microbiology 07
TMHMM 2.0; however, using SignalP 6.0 and SecretomeP 2.0, only

3 proteins (Ech_0745, 0678 and 0679) were predicted to be secreted

by a standard secretory signal peptide or a nonclassical (not signal

peptide-dependent) protein secretion. Notably, most E. chaffeensis

immunodominant proteins (n = 8) were identified as effectors by

PREFFECTOR (Dhroso et al., 2018). Therefore, these proteins were

also further analyzed to identify the type of secretion system
B

A

FIGURE 4

Immunoreactivity of new E. canis immunodominant protein. (A) Immunoreactivity of the denatured IVTT-expressed Ecaj_0647 protein compared
with TRP19 by ELISA using a panel of 8 CME sera. OD650 values represent the mean optical density reading from 3 wells (± standard deviation). A
sample OD650 of ≥ 0.2 was considered positive and ≥ 0.5 a strong positive after subtracting negative control (an IVTT reaction with empty plasmid
template and a normal human or canine serum control) readings. (B) Immunoreactivity of native and denatured Ecaj_0647 protein compared with
TRP19 by dot immunoblot with pooled CME sera. Both proteins were IVTT-expressed and purified.
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substrates. Type I and type IV secretion systems (T1SS and T4SS)

have been identified in Ehrlichia; however, a consensus sequence of

type IV secretory motif R-X(7)-R-X-R-X-R (Vergunst et al., 2005)

was not identified in any E. chaffeensis protein and none of the

immunodominant proteins identified in this study were predicted
Frontiers in Cellular and Infection Microbiology 08
to be type IV substrates by the S4TE 2.0 tool (Noroy et al., 2019). In

contrast, a putative type I secretion signal (LDAVTSIF-enriched

and KHPMWC-poor) (Delepelaire, 2004; Wakeel et al., 2011) was

identified in the last 50 C-terminal residues of these proteins,

suggesting that these proteins are type I secreted substrates.
FIGURE 5

Quantity analysis of antigenic proteins in E. chaffeensis and E. canis immunomes.
TABLE 1 Immunoreactivity analysis of new E. chaffeensis immunodominant proteins.

Protein
(Ech_
tag no.)

Mean
ELISA
OD650

a

Conformational
epitope

ANTIGENpro
score

E. canis ortholog

Ecaj_
tag no.

ANTIGENpro
score

Immunoreactivityb

1065 1.91 major 0.70 0857 0.75 ++

0578 1.30 major 0.80 *c * *

1061d 1.25 major 0.11 0853 0.24 –

0875 1.20 major 0.06 0223 0.17 –

0725d 1.18 major 0.06 0339 0.10 –

1053 1.15 major 0.76 0846 0.58 –

0207 1.12 major 0.06 0796 0.04 –

0350d 1.12 major 0.45 0659 0.44 –

0745 1.11 major 0.92 0324 0.92 –

0506d 1.10 major 0.15 * * *

0678 1.07 major 0.54 0369 0.51 –

0679d 1.03 major 0.13 0368 0.06 –

0494d 1.03 major 0.10 0534 0.10 +

0905d 1.01 major 0.27 0200 0.23 –
a Mean OD650 from 8 HME patient sera.
b +, immunoreactive in immunoscreening; -, not immunoreactive in immunoscreening; ++, immunodominant.
c *, E. canis ortholog not identified.
d Proteins identified in this study. Others were identified in our recent studies.
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Ech_0875 protein showed the greatest difference between the

residue occurrences of LDAVTSIF (72%) and KHPMWC (8%) in

the last 50 C-terminal amino acids, whereas Ech_0745 showed the

least difference (32% versus 18%). These results are consistent with

our previous reports and support the conclusion that many of these

E. chaffeensis immunodominant proteins are type I secreted

effectors, although additional experimental validation is

required (Table 2).

The analysis of E. canis immunodominant protein, ranked

ELISA OD values, and comparison with E. chaffeensis orthologs

are shown in Tables 3, 4. The majority of these proteins (n = 14)

contained major linear epitopes, including 5 proteins that also

contained minor conformational epitopes. Four proteins

(Ecaj_0128, 0348, 0857 and 0104) contained only major

conformational epitopes (Table 3). A majority of E. canis

immunodominant proteins (n = 11) were hypothetical, except for

7 annotated proteins including electron transport protein SCO1/

SenC, an extracellular solute-binding protein, translation

elongation factor 1A (EF-1A), 2-oxoglutarate dehydrogenase E2

component, peptidyl-prolyl cis-trans isomerase and 2 heat shock

proteins (HSP60 and HSP70). Only 8 of these immunodominant

proteins were smaller than 250 amino acids. Bioinformatic analysis

identified 7 E. canis proteins predicted to contain transmembrane

domains and 5 proteins that were predicted to be secreted (all by

nonclassical mechanism). Importantly, many of E. canis
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immunodominant proteins (n = 9) were identified as effectors by

PREFFECTOR (Dhroso et al., 2018). Although 3 proteins

(Ecaj_0126, 0259 and 0334) were predicted to be type IV

substrates by the S4TE 2.0 tool, no type IV secretory signal (R-X

[7]-R-X-R-X-R) was identified in any of these E. canis proteins.

Moreover, a putative type I secretion signal (LDAVTSIF-enriched

and KHPMWC-poor) in the C-terminus of these proteins suggested

that most of these proteins are type I secreted substrates, consistent

with our previous conclusion (Luo et al., 2020; Luo et al., 2021)

(Table 4). Ecaj_0104 protein had the largest difference between the

residue occurrences of LDAVTSIF (70%) and KHPMWC (6%) in

the last 50 C-terminal amino acids, whereas the predicted type IV

substrate Ech_0259 had the least difference (36% versus 24%).
Discussion

The development of new and affordable biotechniques, such as

next-generation genome sequencing, commercial gene synthesis

and cloning, and in vitro protein expression, has made the

analysis of entire bacterial immunomes feasible. Our recent

studies have established a rapid high-throughput antigen

discovery strategy and we have used this approach to successfully

identify many previously undiscovered immunoreactive proteins

from E. chaffeensis and E. canis (Luo et al., 2020; Luo et al., 2021). In
TABLE 2 Predicted features of new E. chaffeensis immunodominant proteins.

Protein
(Ech_
tag no.) Product

No. of AAs/
mass (kDa)

Transmembrane
domaina,b Secretion T4Sc Effectord

1065 2-oxoglutarate dehydrogenase E2 component 404/44 – – – –

0578 Hypothetical protein 185/21 – – – –

1061e FMN adenylyltransferase/riboflavin kinase 317/35 – – – +

0875 Phosphatidylglycerophosphatase A 226/25 + – – –

0725e Methyltransferase domain-containing protein 264/29 – – – –

1053 Hypothetical protein 193/22 + – – +

0207 Hypothetical protein 176/19 + – – +

0350e 2-amino-4-hydroxy-6-
hydroxymethyldihydropteridine-

pyrophosphokinase

169/19 – – – +

0745 Hypothetical protein 118/13 – +f – +

0506e Hypothetical protein 96/11 + – – +

0678 Hypothetical protein 230/25 + +g – +

0679e Outer membrane beta-barrel protein 233/26 + + – +

0494e Type IV secretion system protein virb3 97/11 + – – –

0905e Phosphatidylglycerophosphatase A 168/18 + – – –
f

a Predicted by TMHMM.
b +, positive; -, negative.
c Predicted by S4TE.
d Predicted by PREFFECTOR.
e Proteins identified in this study. Others were identified in our recent studies.
f Predicted by SecretomeP.
g Predicted by SignalP.
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this investigation, we identified many new immunodominant and

subdominant ehrlichial proteins allowing us to reveal the antibody

reactive antigenic repertoires of E. chaffeensis and E. canis. This

information will ultimately expand and accelerate vaccine and

diagnostic development for the ehrlichioses.

The application of IVTT in antigen discovery is the key to

identification of conformation-dependent immunoreactive

proteins, because IVTT generally expresses soluble proteins in

native conformation, although posttranslational modifications

may not exist (Shimizu et al., 2006; Carlson et al., 2012). The

majority of bacterial B-cell epitopes are estimated to be

conformational, and many pathogens are known to have

immunoreactive proteins with conformational antibody epitopes

(Portnyagina et al., 2018; Andrade et al., 2019; Liu et al., 2019; He

et al., 2020). However, prior to our studies, the defined E. chaffeensis

and E. canis immunoreactive proteins were limited to those with

only major linear epitopes due to the limitations in the approaches

used for screening (McBride and Walker, 2010; Lina et al., 2016).

Our recent studies have revealed many immunoreactive proteins of

E. chaffeensis and E. canis are predominated by conformation-

dependent epitopes (Luo et al., 2020; Luo et al., 2021). Considering

the antibody reactive proteins identified in our studies, including

the present, all of the new E. chaffeensis immunodominant proteins
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contain major conformation-dependent epitopes; however, linear

antibody epitopes are predominant in E. canis immunodominant

proteins, although we have also identified many conformation-

dependent epitopes in immunoreactive protein repertoires of

E. canis.

Overall, E. canis immunodominant proteins appear to have

higher ANTIGENpro score and rank than E. chaffeensis proteins,

which may be related to the differences in the number of linear

antibody epitopes found in E. canis antigenic proteins (Tables 1, 3).

All previously characterized major immunoreactive proteins of E.

chaffeensis and E. canis that contain major linear epitopes, including

TRPs, Ank200, OMPs and MSP4, are represented in the top 250 list

predicted by ANTIGENpro (Luo et al., 2020), suggesting that the

machine learning model of ANTIGENpro may have a bias as it

relates to known immunoprotective proteins used to train the

algorithm that likely have a predominance of linear epitopes.

Many ehrlichial proteins that were previously considered to

have unknown function (hypothetical), including TRPs and Anks,

are now known to have defined functions during infection (Wakeel

et al., 2009; Luo et al., 2011; Luo andMcBride, 2012; Luo et al., 2018;

Byerly et al., 2021). Of proteins that make up the E. chaffeensis and

E. canis proteomes, ~25% are considered hypothetical or proteins

with domain of unknown function (DUFs). Studies with other
TABLE 3 Immunoreactivity analysis of new E. canis immunodominant proteins.

Protein
(Ecaj_
tag no.)

Mean
ELISA
OD650

a

Conformational
epitope

ANTIGENpro
score

E. chaffeensis ortholog

Ech_
tag no.

ANTIGENpro
score

Immunoreactivityb

0919 2.29 no 0.84 1147 0.96 –

0126 2.13 no 0.96 0187 0.97 –

0717 1.85 no 0.80 *c * *

0151 1.72 no 0.85 0976 0.77 +

0128 1.53 major 0.90 0189 0.88 +

0636 1.52 no 0.76 0377 0.84 –

0073 1.51 no 0.89 0122 0.76 +

0920 1.44 no 0.95 1148 0.85 +

0213 1.44 no 0.61 * * *

0259 1.27 minor 0.93 0825 0.92 +

0162 1.25 no 0.60 0960 0.43 –

0348 1.22 major 0.77 * * *

0554 1.20 minor 0.84 0471 0.85 –

0857 1.19 major 0.75 1065 0.70 ++

0334 1.10 minor 0.87 0731 0.86 +

0647d 1.08 minor 0.57 0365 0.58 ++

0104 1.02 major 0.39 0159 0.77 +

0737 1.00 minor 0.56 * * *
a Mean OD650 from CME patient sera.
b +, immunoreactive in immunoscreening; -, not immunoreactive in immunoscreening; ++, immunodominant.
c *, E. chaffeensis ortholog not identified.
d Proteins identified in this study. Others were identified in our recent studies.
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intracellular pathogens including our own empirical data in

Ehrlichia have determined that a large number of these proteins

are immunoreactive (Cruz-Fisher et al., 2011; Liu et al., 2019). As a

result, we have recently reported that many immunoreactive

proteins in the E. chaffeensis and E. canis proteomes are

dominated by hypothetical proteins (Luo et al., 2020; Luo et al.,

2021). An analysis of immunodominant proteins in Ehrlichia

showed that while many hypothetical proteins are E. chaffeensis

antigenic proteins, more immunoreactive hypothetical proteins

exist in E. canis (Tables 2, 4).

Among new immunodominant proteins identified in E.

chaffeensis and E. canis in these studies, there were notable

proteins with known functions. Interestingly, most E. chaffeensis

proteins were predicted to be enzymes involved in important

biological processes, such as energy production and conversion,

coenzyme transport and metabolism, glycerophospholipid

metabolism and protein regulation, demonstrating that these

metabolically functional Ehrlichia proteins are also antigenic.

Other more antigenically established proteins included an outer
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membrane beta-barrel protein and a type IV secretion system

protein VirB3 (Table 2). Multiple Ehrlichia/Anaplasma outer

membrane proteins and type IV secretion system proteins, such

as TRP, OMP, VirB and VirD, have also been previously identified

as antigenic and protective (Sutten et al., 2010; Crocquet-Valdes

et al., 2011; Kuriakose et al., 2012). Of new immunodominant

proteins of E. canis identified in these studies, the antigenic

annotated proteins are different from those identified in E.

chaffeensis. For example, a peptidyl-prolyl cis-trans isomerase, an

electron transport protein, an extracellular solute-binding protein, a

translation elongation factor, and a heat shock protein HSP70 were

identified in E. canis but not in E. chaffeensis (Table 4). Another heat

shock protein GroEL (HSP60) has an ortholog in E. chaffeensis that

was identified as the first immunodominant protein in 1993

(Sumner et al., 1993). Immunization with E. muris GroEL peptide

is protective in a mouse model (Thomas et al., 2011). Notably, many

immunodominant proteins of E. chaffeensis and E. canis were

predicted to contain transmembrane domains, further

highlighting this feature in many antigenic proteins.
TABLE 4 Predicted features of new E. canis immunodominant proteins.

Protein
(Ecaj_
tag no.)

Product No. of amino acids/
mass (kDa)

Transmembrane
domaina,b

Secretionc T4Sd Effectore

0919 Hypothetical protein 120/14 – + – +

0126 Hypothetical protein 671/78 – + + +

0717 Hypothetical protein 226/25 + – – +

0151 Electron transport protein
SCO1/senC

205/23 + – – +

0128 Extracellular solute-binding protein,
family 1

347/39 + – – +

0636 Hypothetical protein 98/11 – – – –

0073 Hypothetical protein 92/10 – + – –

0920 Hypothetical protein 182/20 – + – +

0213 Hypothetical protein 328/36 + – – –

0259 Hypothetical protein 368/41 – + + +

0162 Translation elongation factor 1A
(EF-1A/EF-Tu)

395/43 – – – –

0348 Hypothetical protein 535/59 + – – –

0554 Heat shock protein HSP70 634/69 – – – –

0857 2-oxoglutarate dehydrogenase
E2 component

400/44 – – – –

0334 Peptidyl-prolyl cis-trans isomerase 630/72 + – + +

0647f chaperonin GroEL (HSP60 family) 552/61 – – – –

0104 Hypothetical protein 182/20 + – – –

0737 Hypothetical protein 194/21 – – – +
f

a Predicted by TMHMM.
b +, positive; -, negative.
c Predicted by SecretomeP.
d Predicted by S4TE.
e Predicted by PREFFECTOR.
f Proteins identified in this study. Others were identified in our recent studies.
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Unlike the previously identified immunoreactive protein

orthologs of Ehrlichia and E. canis that contain major linear

epitopes, such as TRPs, Anks and OMPs, only 2 respective E.

canis or E. chaffeensis orthologs (2-oxoglutarate dehydrogenase E2

component and GroEL) in these studies were also found to be

immunodominant, and only a minority of E. chaffeensis or E. canis

orthologs shared immunoreactivity, although the respective

orthologs were identified for the majority of Ehrlichia

immunodominant proteins (Tables 1, 3). These findings suggest

that E. chaffeensis and E. canis do not have similar orthologous

antigenic proteins as might be expected, and the antibody epitopes

in majority of Ehrlichia immunodominant proteins are not

conserved between E. chaffeensis and E. canis. Notably, E.

chaffeensis immunodominant proteins reacted with HME sera

more consistently than E. canis proteins with CME sera

(Figure 2). Hence, it is possible that E. canis immunoreactive

proteins are more antigenically variable among different E. canis

strains. Antigenic diversity in E. canis is well defined, including

TRP36, a major immunoreactive protein, and extensive

phylogenetic analysis of TRP36 genes has identified several E.

canis genogroups in North America, Central America, South

America, Africa, Europe and Asia, which have antigenic

variability (Zhang et al., 2008; Aguiar et al., 2013; Arroyave et al.,

2020). Therefore, antigenic variability in some E. canis proteins may

also contribute to the lower ratio of immunoreactive proteins we

found in E. canis compared to E. chaffeensis in this study and the

entire immunomes. In addition, the average size of new E.

chaffeensis immunodominant proteins appear to be smaller than

that of E. canis. A vast majority of 14 new E. chaffeensis

immunodominant proteins (n = 11) are small (< 250 amino

acids), while only 8 of 18 E. canis proteins are small (Tables 2, 4).

Collectively, these results indicate the fundamental differences in

antigenic protein profiles between E. chaffeensis and E. canis, which

is potentially valuable information for development of specific

diagnostics and vaccines for these Ehrlichia species.

Consistent with our recent reports (Luo et al., 2020; Luo et al.,

2021), the majority of E. chaffeensis and E. canis immunodominant

proteins were predicted to be type I secreted effectors, despite that

fact that only 8 proteins were predicted to be secreted by SignalP or

SecretomeP. This reinforces the conclusion that in addition to

previously defined major immunoreactive proteins that have

linear epitopes, such as TRPs and Ank200, there are also other

proteins with conformational epitopes that appear to be T1SS

substrates. These results further support an important role of the

T1SS in Ehrlichia infection and potentially immunity (Wakeel et al.,

2011). We have shown that several ehrlichial T1S substrates (TRPs)

play important roles in pathobiology by regulating important

cellular processes to promote ehrlichial survival (Dunphy et al.,

2013; Lina et al., 2016; Bui et al., 2023).

Collectively, this investigation and combined with our other

recent studies, has successfully defined the antigenic proteins

contained in the E. chaffeensis and E. canis proteomes. We

expect that this information will provide a defined set of

antigens from which a rational vaccine and diagnostic

development strategy can be implemented and tested for HME

and CME. Further studies are also needed to determine the T-cell
Frontiers in Cellular and Infection Microbiology 12
epitopes, secretion mechanism and roles of these proteins in

ehrlichial pathobiology and immunity.
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