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Unravelling staphylococcal
small-colony variants in cardiac
implantable electronic device
infections: clinical
characteristics, management,
and genomic insights
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Yuyao Yin1, Xiaoyang Zhang1, Shangyu Tu1 and Hui Wang1*

1Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China,
2Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, China
Objectives: Staphylococcal small-colony variants (SCVs) are common in

cardiac implantable electronic device (CIED) infections. This is the first

retrospective and multi-case study on CIED infections due to

staphylococcal SCVs, aiming to provide a theoretical basis for the clinical

management of CIED and device-related infections caused by

staphylococcal SCVs.

Methods: Ninety patients with culture positive CIED infections were enrolled

between 2021 and 2022. We compared the demographic and clinical

characteristics of patients with and without SCVs and performed genomic

studies on SCVs isolates.

Results: Compared to patients without SCVs, those with SCVs had a longer

primary pacemaker implantation time and were more likely to have a history

of device replacement and infection. They showed upregulated

inflammatory indicators, especially higher NEUT% (52.6 vs. 26.8%, P =

0.032) and they had longer hospital stays (median 13 vs. 12 days, P =

0.012). Comparative genomics analysis was performed on Staphylococcus

epidermidis wild-type and SCVs. Some genes were identified, including aap,

genes encoding adhesin, CHAP domain-containing protein, LPXTG cell wall

anchor domain-containing protein, and YSIRK-type signal peptide-

containing protein.

Conclusion: Staphylococcal SCVs affect the clinical characteristics of CIED

infections. The process of staphylococcal SCVs adherence, biofilm

formation, and interaction with neutrophils play a vital role.
KEYWORDS

small-colony variants (SCVs), Staphylococcus epidermidis, Cardiac implantable
electronic device (CIED) infection, whole-genome sequencing (WGS),
epidemiological survey
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1 Introduction

Cardiac implantable electronic devices (CIED) such as cardiac

pacemakers (CPs), implantable cardioverter defibrillators (ICDs), and

devices for cardiac resynchronisation therapy (CRT) play vital roles in a

variety of cardiac diseases (Döring et al., 2018). Unfortunately,

infections after CIED implantation pose a significant public health

concern (Tarakji et al., 2019).

Numerous studies have reported that staphylococci are the main

culprit (Chua et al., 2000; Sohail et al., 2007a; Athan et al., 2012).

Some infections are predominantly Staphylococcus aureus (Athan et al.,

2012), while others are dominated by coagulase-negative staphylococci

(CoNS) (Chua et al., 2000; Sohail et al., 2007a). Notably, staphylococcal

small-colony variants (SCVs) have been reported in several cases (von

Eiff et al., 1999; Seifert et al., 2003; Maduka-Ezeh et al., 2012;

Tumbarello et al., 2012; Chen et al., 2018; Kussmann et al., 2018; Liu

et al., 2023), both in S. aureus and CoNS. However, large-scale

epidemiological surveys are lacking at the present stage.

Staphylococcal SCVs often emerge in recurrent and persistent

infections such as device-associated infections, bone and tissue

infections, and airway infections in patients with cystic fibrosis (Kahl

et al., 2016). They are characterised by a slow growth rate, atypical

colony morphology, and unusual biochemical features, which shows as

a quasi-dormant and persistent phenotype (Pascoe et al., 2014; Conlon

et al., 2016; Lee et al., 2020; Gunn et al., 2021; Peyrusson et al., 2022).

Moreover, they have a strong ability to survive inside host cells without

being killed and an increased resistance to antibiotics than their wild-

type (WT) counterparts, making clinical treatment a challenge (Proctor

et al., 2006).

However, although there are a number of studies on CIED

staphylococcal SCVs infection, most are case reports, and there are

no epidemiological investigations. To our knowledge, this is the first

systematic, multi-case, retrospective analysis of CIED SCV

infections. Molecular, epidemiological, and genomic analyses were

performed on the isolates.

Herein, we pose several questions. What factors are most likely to

contribute to the development of SCVs? How do SCVs affect patient

clinical management and prognosis? Which features of these SCVs are

superior to their WT counterparts isolated from the same patients,

making them persistent and difficult to remove from the patients? We

enrolled patients with CIED infection with or without SCVs for

comparison of demographics and clinical characteristics, and

collected the isolates for molecular epidemiology and genomic

studies, aiming to provide a theoretical basis for clinical management

of patients with CIED infection and clues for subsequent research on

staphylococcal SCVs device-related infections.
2 Materials and methods

2.1 Study design, patients, and strains

This single-centre retrospective cohort study was conducted at

the Peking University People’s Hospital. From January 2021 to
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January 2022, 90 patients with culture positive CIED infection were

enrolled and case information was collected (Supplementary

Figure 1). All strains from the patients were isolated when they

were admitted to the hospital and stored at -80°C for further use. In

this study, 149 isolates were collected and confirmed using MALDI-

TOF (TOF/TOF) mass spectrometry (Autoflex Speed, Bruker,

Germany). Antimicrobial susceptibility was evaluated according

to the Clinical and Laboratory Standards Institute guidelines. The

enrolled patients were grouped according to the presence or absence

of the SCVs.
2.2 Culturing conditions

All isolates were plated on blood agar plate (Columbia, 5%

sheep blood) and incubated overnight at 37°C. Single colony was

selected from the plates and incubated overnight in tryptone soy

broth (Oxoid, Thermo Scientific™) with shaking and used for DNA

extraction. Alternatively, we incubated plates with both SCVs and

WT for 24h in order to quantify colony size.
2.3 Statistical analysis

We compared two mutually exclusive groups of patients: (i)

patients with staphylococcal SCVs and (ii) patients without

staphylococcal SCVs. Quantitative variables were expressed as

median with interquartile range. Qualitative variables were

expressed as frequencies and percentages. Continuous variables

were compared using the Mann–Whitney U test or Student’s t-

test, as appropriate. Categorical variables were compared using the

Pearson’s chi-square test, continuity correction, or Fisher’s exact

test, as appropriate. P < 0.05 was considered statistically significant.

SPSS Statistics (version 23.0, IBM Corp., Armonk, NY, USA) was

used for all statistical analyses.
2.4 Library construction, quality control
and whole-genome sequencing (WGS)

Total genomic DNA of the 39 isolates was extracted using a

TIANamp Bacteria DNA Kit (Tiangen Biotech Co. Ltd., Beijing,

China). A total amount of 0.2 mg DNA per sample was used as input

material for the DNA library preparations. Sequencing library was

generated using Rapid Plus DNA Lib Prep Kit for Illumina

(Cat.No.RK20208) fllowing manufacturer’s recommendations and

index codes were added to each sample. Briefly, genomic DNA

sample was fragmented by sonication to a size of 350 bp. Then DNA

fragments were endpolished, A-tailed, and ligated with the full-

length adapter for Illumina sequencing, followed by further PCR

amplification. After PCR products were purified by AMPure XP

system (Beverly, USA). Subsequently, library quality was assessed

on the Agilent 5400 system (Agilent, USA) and quantified by QPCR

(1.5 nM). The qualified libraries were pooled and sequenced on

Illumina platforms (Illumina Inc., San Diego, CA, USA).
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2.5 Bioinformatic analysis

The Mash (Ondov et al., 2016) tool was used to identify the best-

matching chromosomal reference. The reads were mapped and single

nucleotide polymorphisms (SNPs) were identified using breseq

(Deatherage and Barrick, 2014). Sequencing reads were assembled

using SPAdes v3.13.0 (Bankevich et al., 2012), then performed quality

assessment by QUAST v4.6.3 (Gurevich et al., 2013) (Supplementary

Report). Contigs were annotated using Prokka v1.13.7 (Seemann,

2014). For phylogenetic analysis, the core genome of all strains was

identified using the pangenome analysis pipeline Roary v3.12.2 (Page

et al., 2015). Maximum likelihood phylogenetic trees were

constructed using IQ-TREE software (Nguyen et al., 2015). Finally,

a tree was plotted and annotated using the iTOL Web tool (https://

itol.embl.de/). Multilocus sequence typing (MLST) was performed

us ing the Cente r fo r Genomic Ep idemio logy too l s

(www.genomicepidemiology.org/services/). Resistance genes were

identified using ResFinder (https://cge.food.dtu.dk/services/

ResFinder/) (Florensa et al., 2022) and the Comprehensive

Antibiotic Resistance Database (CARD; https://card.mcmaster.ca)

(Alcock et al., 2023), and virulence genes were identified using

VirulenceFinder (cge. food. dtu. dk/services/VirulenceFinder/) and

the Virulence Factor Database (www.mgc.ac.cn/VFs/main.htm) (Liu

et al., 2022).
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3 Results

3.1 Demographic and
clinical characteristics

Ninety patients with culture positive CIED infection were

included in the cohort (Supplementary Figure 1). Of these, 19

(21.1%) had isolated staphylococcal SCVs and 71 (78.9%) were

without SCVs. We enumerated the relevant features of all patients

and compared the two groups with and without SCV, as shown

in Table 1.
3.2 Isolates profiles and antimicrobial
susceptibility testing

A total of 142 Staphylococcus strains and seven other species were

isolated from the pacemaker, pacemaker pocket, or lead specimens of

90 patients. S. epidermidis accounted for more than half of the total

number of isolates (55.7%), followed by Staphylococcus hominis and S.

aureus (16.1 and 8.1%, respectively) (Supplementary Figure 2).

Clinical antimicrobial susceptibility testing of 142 Staphylococcus

isolates was performed and duplicate results from one patient’s

specimen were removed. Methicillin-resistant Staphylococcus
TABLE 1 Demographic and clinical characteristics.

Total
(n=90)

Patients without SCVs
(n=71)

Patients with SCVs
(n=19)

P Value

Demographic features

Sex, male 61 (67.8%) 47 (66.2%) 14 (73.7%) 0.535

Age, years 68 (59–74) 68 (61–74) 61(58–74) 0.54

Implant-related feature

CIED type

CP 74 (82.2%) 57 (80.3%) 17 (89.5%) 0.553

ICD 6 (6.7%) 6 (8.5%) 0 0.427

CRT 10 (11.1%) 8 (11.3%) 2 (10.5%) 1

Interval between primary pacemaker
implantation and the current infection, years

9 (3–12.25) 8 (2.5–12) 10 (6–14) 0.143

Times the device replacement/revision
before the current infection, times

0 44 (48.9%) 38 (53.5%) 6 (31.6%) 0.089

1 35 (38.9%) 24 (33.8%) 11 (57.9%) 0.056

2 11 (12.2%) 9 (12.7%) 2 (10.5%) 1

Interval between the last device replacement/revision
and the current infection, years

2 (1–3) 2 (1–3) 3 (1–4) 0.425

History of device infection 15 (16.7%) 9 (12.7%) 6 (31.6%) 0.106

Implantation site inflammatory reaction 80 (88.9%) 61 (85.9%) 19 (100%) 0.185

Systemic inflammatory reaction 11 (12.2%) 6 (8.5%) 5 (26.3%) 0.086

(Continued)
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TABLE 1 Continued

Total
(n=90)

Patients without SCVs
(n=71)

Patients with SCVs
(n=19)

P Value

Fever > 38°C 19 (21.1%) 14 (19.7%) 5 (26.3%) 0.757

Infection degree

Superficial infection 5 (5.6%) 5 (7%) 0 0.531

Pocket infection 75 (83.3%) 59 (83.1%) 16 (84.2%) 1

Bacteremia 5 (5.6%) 5 (7%) 0 0.531

Infective endocarditis 5 (5.6%) 2 (2.8%) 3 (15.8%) 0.103

Underlying diseases

Diabetes mellitus 33 (36.7%) 24 (33.8%) 9 (47.4%) 0.276

Renal insufficiency 8 (8.9%) 7 (9.9%) 1 (5.3%) 0.864

COPD 2 (2.2%) 1 (1.4%) 1 (5.3%) 0.38

Cancer 4 (4.4%) 3 (4.2%) 1 (5.3%) 1

Anticoagulants 3 (3.3%) 2 (2.8%) 1 (5.3%) 0.513

Skin disease 2 (2.2%) 1 (1.4%) 1 (5.3%) 0.38

Thyroid disorder 6 (6.7%) 5 (7%) 1 (5.3%) 1

Cerebral infarction 8 (8.9%) 7 (9.9%) 1 (5.3%) 0.864

Smoking 13 (14.4%) 11 (15.5%) 2 (10.5%) 0.857

HLP 15 (16.7%) 12 (16.9%) 3 (15.8%) 1

Hypertension 39 (43.3%) 31 (43.7%) 8 (42.1%) 0.903

CHD 14 (15.6%) 12 (16.9%) 2 (10.5%) 0.745

Heart failure/DCM 13 (14.4%) 11 (15.5%) 2 (10.5%) 0.857

Atrial fibrillation 8 (8.9%) 7 (9.9%) 1 (5.3%) 0.864

Laboratory examination

Higher WBC count 17 (18.9%) 12 (16.9%) 5 (26.3%) 0.548

Higher NEUT% 29 (32.2%) 19 (26.8%) 10 (52.6%) 0.032

Anaemia 46 (51.1%) 34 (47.9%) 12 (63.2%) 0.454

CRP, mg/L 10.35 (1.60–33.78) 6.55 (1.25–27.93) 28.05 (7.73–73.63) 0.057

PCT, ng/ml 0.05 (0.03–0.15) 0.05 (0.03–0.083) 0.12 (0.03–1.56) 0.074

ESR, mm/h 28 (7–38) 17 (6.5–35) 35.5 (25–50.25) 0.069

BNP, pg/ml 127 (53–250) 123.5 (53–251) 154 (42–290.5) 0.844

Abnormal myocardial injury biomarkers
(Mb, hs-TnI, CK-MB)

39 (43.3%) 30 (42.3%) 9 (47.4%) 0.648

Echocardiography

Vegetation on device lead 6 (6.7%) 3 (4.2%) 3 (15.8%) 0.202

Any valvular vegetation 2 (2.2%) 1 (1.4%) 1 (5.3%) 0.38

Clinical treatment and outcomes

Temporary pacing 42 (46.7%) 32 (45.1%) 10 (52.6%) 0.557

Reimplantation 69 (76.7%) 54 (76.1%) 15 (78.9%) 1

Interval between extraction and reimplantation, days 2 (1-6) 2.5 (1-6) 1 (1-6) 0.492

(Continued)
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accounted for 53.2% of the total, methicillin-resistant coagulase-

negative staphylococci, and methicillin-resistant S. aureus occupied

55.1, and 33.3% in CoNS and S. aureus, respectively. All Staphylococcus

isolates were susceptible to vancomycin, daptomycin, linezolid, and

tigecycline, while 2.2% were intermediate to teicoplanin. All S. aureus

strains were susceptible to ceftaroline (Supplementary Table 1). CoNS

WT strains showed more resistance to most antimicrobials, especially

erythromycin, with resistance rates of 73.8 and 34.8% in CoNSWT and

CoNS SCVs, respectively. However, rifampin showed 8.7% resistance

in CoNS SCVs and only 4.7% resistance in the CoNS WT

(Supplementary Table 2).
3.3 Molecular epidemiology of
staphylococcal SCVs

Thirty staphylococcal SCVs were isolated from 19/90 patients

(cp1–cp19), meanwhile, nine WT strains were isolated from the

same specimen. The WT and SCV colony morphologies of one pair

of these S. epidermidis were shown in Figure 1, with significant

differences in size. The 39 isolates consist offive species, including S.

epidermidis (34/39), S. aureus (2/39), Staphylococcus pettenkoferi (1/

39), Staphylococcus warneri (1/39), and Staphylococcus capitis (1/

39). WGS was performed on these strains. A phylogenetic tree was

constructed on S. epidermidis isolates (Figure 2). Comparable strain

pairs with close genetic relationships were selected for subsequent
Frontiers in Cellular and Infection Microbiology 05
studies. Multilocus sequence typing (MLST) of these strains was

scattered and largely patient-related, with three patients isolating

ST89 strains (Figure 2).

Among 39 isolates, 25 antibiotic resistance genes and 113

virulence genes were identified (Figure 3). Genes resistant to

fluoroquinolone antibiotic (norA), b-lactam antibiotics (blaZ,

mecA), diaminopyrimidine antibiotic (dfrC , dfrG), and

phosphonic acid antibiotic (fosB) were detected in half or more

strains, mainly through antibiotic efflux, inactivation or target

replacement to resistance. Most virulence genes were discovered

in S. aureus (cp18WT and cp18SCV), while some were frequently

detected in CoNS, such as hld, ebpS, sdrG, sdrH, aae, gehC, and

gehD, etc. By categorising virulence factors, we found that those

related to adhesion were the most widely distributed, including

ebpS, sdrG, sdrH, and aae. However, there were no differences in the

resistance and virulence genes between the SCVs and WT strains

isolated from the same patient.
3.4 SNPs related to staphylococcal SCVs

Owing to the limited information available on resistance and

virulence genes alone, we aimed to identify SNPs between

staphylococcal WT and SCVs based on WGS to identify key genes

related to SCVs formation and persistence. We selected S. epidermidis

WT and SCVs that were isolated from one patient, and then selected
TABLE 1 Continued

Total
(n=90)

Patients without SCVs
(n=71)

Patients with SCVs
(n=19)

P Value

Length of stay, days 12 (10-15.25) 12 (9-14) 13 (12-20) 0.012

Antibiotics adjustment 31 (34.4%) 22 (31%) 9 (47.4%) 0.182

Death 2 (2.2%) 2 (2.8%) 0 1

Microbiological features

Staphylococcus aureus 11 (12.2%) 10 (14.1%) 1 (5.3%) 0.517

Staphylococcus epidermidis 55 (61.1%) 40 (56.3%) 15 (78.9%) 0.073

Staphylococcus hominis 22 (24.4%) 15 (21.1%) 7 (36.8%) 0.265

Staphylococcus haemolyticus 7 (7.8%) 6 (8.5%) 1 (5.3%) 1

Staphylococcus capitis 7 (7.8%) 5 (7%) 2 (10.5%) 0.983

Staphylococcus caprae 2 (2.2%) 2 (2.8%) 0 1

Staphylococcus warneri 2 (2.2%) 1 (1.4%) 1 (5.3%) 0.38

Staphylococcus cohnii 1 (1.1%) 1 (1.4%) 0 1

Staphylococcus pettenkoferi 1 (1.1%) 0 1 (5.3%) 0.211

Staphylococcus lugdunensis 1 (1.1%) 1 (1.4%) 0 1

Other species 7 (7.8%) 6 (8.5%) 1 (5.3%) 1
fro
Quantitative variables are expressed as median (interquartile range), and qualitative variables are expressed as numbers (%).
SCVs, small-colony variants; CIED, Cardiac implantable electronic devices; CP, cardiac pacemaker; ICD, implantable cardioverter defibrillator; CRT, cardiac resynchronization therapy; COPD,
chronic obstructive pulmonary disease; HLP, hyperlipidaemia; CHD, coronary heart disease; DCM, dilated cardiomyopathy; WBC, white blood cell; NEU%, neutrophil ratio; CRP, C-reactive
protein; PCT, procalcitonin; ESR, erythrocyte sedimentation rate; BNP, brain natriuretic peptide.
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strains close to the phylogenetic tree (Figure 2). Subsequently, eight

pairs of S. epidermidisWT and SCVs were obtained from six patients

(cp1, cp6, cp8, cp10, cp14, and cp19) to explore the universal and vital

factors associated with SCVs. Numerous SNPs were detected in the

CDS of genes and intergenic regions of the six patients

(Supplementary Figure 3; Supplementary Table). After filtering, the

17 mutated genes shared by two or more patients are listed in Table 2
Frontiers in Cellular and Infection Microbiology 06
and were divided into classes based on the UniProt website and Gene

Ontology database.

Approximately one-third of these genes were associated with

the cell wall. Accumulation-associated protein (Aap) contributes to

S. epidermidis corneocyte adherence (Roy et al., 2021) and biofilms

formation on abiotic surfaces (Schaeffer et al., 2015). In addition,

surface adhesins enable it to attach to the host and form biofilms on
FIGURE 1

Schematic representation of Staphylococcal SCVs in CIED infection. The potential factors, clinical features and management, and laboratory
examinations of CIED infection of staphylococcal SCVs were listed. Colony morphology of S. epidermidis WT and SCVs was showed on blood agar
plate (Columbia, 5% sheep blood) at 37°C overnight. The diameters of thirty colonies (only ten were shown) were measured by imageJ and analysed
by Student’s t-test. Adhesion and biofilm formation of staphylococcal SCVs on the device contribute to persistence of SCVs and are difficult to clear.
The interaction between planktonic staphylococcal SCVs and neutrophils leads to inflammatory response in the host. ****, P ≤ 0.0001.
FIGURE 2

Phylogeny and multilocus sequence typing (MLST) of 39 staphylococcal SCVs and WT strains. Nine WT strains isolated from the same specimen with
SCVs. Each branch in the tree represented one isolate. Information on MLST and strain species are mapped on the tree from inner to outer circle.
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implanted foreign bodies (Sabate Bresco et al., 2017), causing S.

epidermidis to emerge as an important opportunistic pathogen in

patients receiving medical devices. The CHAP domain is found in a

wide range of protein architectures associated with several families

of amidases, suggesting that many of these proteins have multiple

peptidoglycan hydrolytic activities (Bateman and Rawlings, 2003).

LPxTG cell wall anchor domain-containing proteins are known to

be anchored to bacterial peptidoglycans by sortases involved in

LPxTG protein-dependent biofilm formation (Khodaparast et al.,

2016). YSIRK/GS motif signal peptides are involved in cell division

in staphylococci through the delivery of surface proteins to unique

locations in the cell wall envelope (DeDent et al., 2008).
4 Discussion

4.1 Potential factors for CIED infection
caused by staphylococcal SCVs

Several studies have reported the underlying diseases in patients

with CIED infections, such as diabetes mellitus (Bloom et al., 2006),

renal dysfunction (Bloom et al., 2006; Lekkerkerker et al., 2009),

COPD (Sohail et al., 2011), oral anticoagulants (Bloom et al., 2006;

Lekkerkerker et al., 2009), long-term corticosteroid use (Sohail

et al., 2007b; Cengiz et al., 2010) and heart disease (Bloom et al.,

2006; Hercé et al., 2013). Most of these factors were considered in

our study and some additional factors have been included (Table 1).

However, we did not find any underlying diseases related to SCVs in
Frontiers in Cellular and Infection Microbiology 07
these patients. Also, age and sex have no correlation to SCVs, which

were reported in CIED infections (Bloom et al., 2006; Cengiz et al.,

2010; Johansen et al., 2011).

Device replacement and a history of device infection have been

reported as contributors to CIED infections in numerous studies

(Bloom et al., 2006; Klug et al., 2007; Sohail et al., 2007b;

Lekkerkerker et al., 2009; Landolina et al., 2011). Although there

was no statistically significant difference, patients with isolated

SCVs were more likely to have a history of device replacement or

revision and previous device infection based on this cohort, which

was regarded as a potential factor contributing to the development

of SCVs. SCVs often cause persistent and recurrent infections.

Coincidentally, we found that the duration of primary pacemaker

implantation was longer and the risk of SCVs formation was higher,

although the difference was not statistically significant (Table 1).
4.2 Inflammatory response in patients with
staphylococcal SCVs

von Eiff et al. reported two cases of pacemaker electrode

infections caused by SCVs in S. epidermidis and S. capitis (von

Eiff et al., 1999). All patients showed anaemia, elevated CRP protein,

and ESR levels, and one had an increased white blood cell (WBC)

count. Seifert et al. described a case of pacemaker-related

bloodstream infection caused by S. aureus SCVs (Seifert et al.,

2003). Laboratory studies also showed high CRP and increased ESR

levels. Consistent with these reports, an elevated inflammatory
FIGURE 3

Heatmap of antibiotic resistance and virulence genes among the 39 staphylococcal SCVs and WT isolates. The “virulence factor (VF) Category” of
virulence genes was classified based on Virulence Factor Database (VFDB) website (www.mgc.ac.cn/VFs/main.htm). The “Resistance Mechanism” and
“Drug Class” of resistance genes were categorized by Comprehensive Antibiotic Resistance Database (CARD) website (//card.mcmaster.ca/).
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response was observed in this study. Compared to patients without

SCVs, patients with isolated SCVs had heightened CRP, ESR, and

PCT levels and were more likely to have a higher WBC count and

NEUT%, and the proportion of patients with anaemia was more

than half. In addition to laboratory examinations, clinical

manifestations found that systemic inflammatory reactions were

more common in patients with SCVs.

When infection occurs, vascular neutrophils and phagocytic

cells are actively recruited via chemotaxis to the infection site via

chemokine gradients and pathogen-associated molecular patterns

(Howden et al., 2023). The interactions between neutrophils and

SCVs are complex. S. aureus SCVs infections increase neutrophilic

inflammation (Bollar et al., 2022). In another study, S. aureus SCVs

significantly reduced neutrophil chemotaxis relative to their WT

counterparts (Guérillot et al., 2019). Although neutrophils have

long been regarded as essential for host defence against S. aureus

infection, they sometimes, facilitate S. aureus infection (Siwczak

et al., 2022). By surviving inside neutrophils, they are used as nests

for systemic dissemination to other organs (Siwczak et al., 2022;

Howden et al., 2023). In addition to S. aureus, CoNS have also

developed strategies to evade bactericidal attack by neutrophils

(Cheung et al., 2010; Bogut and Magryś, 2021). S. epidermidis

SCVs can survive inside macrophages and neutrophils for at least

3 days (Bogut and Magryś, 2021).

Thus, is a higher neutrophil proportion advantageous for

controlling infection or making things worse? The mechanism

underlying increased inflammatory response in patients with

CIED infections caused by staphylococcal SCVs remains unknown.
4.3 Prolonged hospital stay and antibiotic
adjustments in patients with
staphylococcal SCVs

The formation of staphylococcal SCVs seemed to have no effect

on temporary pacing and reimplantation operations; however, the

length of hospital stay was longer in patients with SCVs than in

those without. The median hospital stay was 8 days for patients with

infections involving implantable cardiac electrophysiological

devices (Chua et al., 2000). Prolonged hospital stay may have

been caused by poor response to a variety of antimicrobials and

vegetation formed on the device (von Eiff et al., 1999; Maduka-Ezeh

et al., 2012; Tumbarello et al., 2012).

Preoperative administration of antibiotics is an effective way to

reduce the risk of CIED infections (Tarakji et al., 2019). Beginning

with the empiric antibiotic therapy, nearly half of the patients with

SCVs infections in our study underwent antibiotic adjustments. It

has been reported that the application of high-dose daptomycin in

staphylococcal CIED endocarditis, may be associated with high

microbiological responses and clinical success (Durante-Mangoni

et al., 2012). Tumbarello et al. used a similar regimen to treat device-

related endocarditis caused by staphylococcal SCVs (Tumbarello

et al., 2012). In a case reported by Seifert et al., a patient with

pacemaker lead infection caused by S. aureus SCVs underwent

multiple antibiotic adjustments, including gentamicin, cefuroxime,
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meropenem, vancomycin, rifampin, and flucloxacillin (Seifert et al.,

2003), indicating that antibiotic therapy for CIED infections caused

by staphylococcal SCVs is frequently unsatisfactory.

According to the in vitro antimicrobial susceptibility testing in

our study, compared to CoNS WT, CoNS SCVs showed similar

resistance rates to most antibiotics, except that they were more

susceptible to erythromycin and more resistant to rifampicin.

However, in vivo antibiotic sensitivity may be more complex,

posing challenges for clinical antibiotic adjustments.
4.4 Capabilities of adhesion and biofilm
formation of S. epidermidis SCVs

Owing to the prolonged hospital stay of patients with CIED

infections caused by staphylococcal SCVs, we aimed to determine

the advantages of staphylococcal SCVs in terms of persistent

survival inside the host. Numerous studies have reported

interactions between S. aureus and its host as one of the foremost

opportunistic bacterial pathogens in humans (Howden et al., 2023).

Although CoNS is less aggressive than its close relative, S. aureus,

they have the ability to evade host defences, and the biofilm mode of

growth is believed to be a protective strategy (Schilcher and

Horswill, 2020). First, we performed phylogenetic analysis and

MLST of 39 staphylococcal WT and SCVs, and a few features

were found (Figure 2). Subsequently, we identified and classified the

virulence and resistance genes of the isolates and found that

virulence factors related to adhesion had the most concentrated

distribution (Figure 3). However, there were no significant

differences in the expression of these genes between the WT and

SCVs pairs isolated from the same patient. This may be because a

part of the WT was on the way to becoming an SCVs.

In our cohort, S. epidermidis was responsible for more than half

of the infections in both SCV and non-SCV groups. Therefore, we

focused on S. epidermidis and mutant strains. To further explore the

differences between S. epidermidis WT and SCVs, the whole

genomes of the filtered isolates were analysed to identify

significant SNPs. Many mutated genes were related to the cell

wall (Table 2).

As expected, some mutations were strongly associated with

adhesion and biofilm formation, such as accumulation-associated

protein (aap) (Schaeffer et al., 2015; Roy et al., 2021), adhesin

(EQW00_01465) (Sabate Bresco et al., 2017) and LPXTG cell wall

anchor domain-containing protein (EQW00_00920) (Gill et al.,

2005; Khodaparast et al., 2016), contributing by adhering to the

implanted device or valvular tissue, and forming biofilm. The

CHAP domain is associated with other domains that cleave

peptidoglycan (Bateman and Rawlings, 2003). Peptidoglycan is an

essential component of the cell wall that provides bacteria with a

strong protective outer layer. Thus, CHAP domain-containing

proteins play a vital role in cell wall biogenesis and degradation

and are closely related to cell division. Another mutation, in the

YSIRK-type signal peptide-containing protein, is also involved in

cell division (DeDent et al., 2008) and was found in three patients

(cp1, cp8, and cp10). In addition, DNA primase are essential for
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DNA replication (Larson et al., 2010). A mutation in DNA primase

was also found in another report of S. aureus SCVs cardiac device-

related endocarditis (Kussmann et al., 2018).

Our study is the first to provide a retrospective and multi-case

research on staphylococcal SCVs CIED infections. We systematically
Frontiers in Cellular and Infection Microbiology 09
analysed the demographics, clinical characteristics, and microbiological

features of 90 patients grouped according to staphylococcal SCVs

presence or absence, and performed genomic studies on SCV isolates.

Based on this study, potential factors for SCVs formation in patients

with CIED infection were identified. The clinical features and
TABLE 2 Mutated genes shared by two or more patients.

Class Gene name/ID Protein Strains

Cell wall aap accumulation‐associated protein cp1WT/cp1SCV
cp8WT/cp8SCV2

EQW00_01465 adhesin cp1WT/cp1SCV
cp8WT/cp8SCV2

EQW00_02070 CHAP domain‐containing protein cp1WT/cp1SCV
cp10WT/cp10SCV2
cp10WT/cp10SCV3

EQW00_00920 LPXTG cell wall anchor domain‐containing protein cp1WT/cp1SCV
cp8WT/cp8SCV2

EQW00_08490 YSIRK‐type signal peptide‐containing protein cp1WT/cp1SCV
cp10WT/cp10SCV2
cp10WT/cp10SCV3

EQW00_10990 YSIRK‐type signal peptide‐containing protein cp1WT/cp1SCV
cp8WT/cp8SCV2
cp10WT/cp10SCV2
cp10WT/cp10SCV3

DNA-binding EQW00_00200 DNA primase cp1WT/cp1SCV
cp8WT/cp8SCV2

EQW00_00250 SAM‐dependent DNA methyltransferase cp1WT/cp1SCV
cp8WT/cp8SCV2

Membrane EQW00_07660 ABC transporter permease cp8WT/cp8SCV2
cp10WT/cp10SCV2
cp10WT/cp10SCV3

EQW00_00780 tandem‐type lipoprotein cp8WT/cp8SCV2
cp10WT/cp10SCV2
cp10WT/cp10SCV3

Other EQW00_09465 IS1182-like element ISSep1 family transposase cp8WT/cp8SCV2
cp10WT/cp10SCV2
cp10WT/cp10SCV3

EQW00_00140 IS6 family transposase cp6WT1/cp6SCV1
cp6WT1/cp6SCV2
cp8WT/cp8SCV2

EQW00_01285 2‐oxo acid dehydrogenase subunit E2 cp1WT/cp1SCV
cp10WT/cp10SCV3

EQW00_00380 DUF1643 domain‐containing protein cp1WT/cp1SCV
cp8WT/cp8SCV2

EQW00_00285 DUF1643 domain‐containing protein cp8WT/cp8SCV2
cp10WT/cp10SCV2
cp10WT/cp10SCV3

ebh hyperosmolarity resistance protein Ebh cp1WT/cp1SCV
cp10WT/cp10SCV2
cp10WT/cp10SCV3

EQW00_07700 phage head morphogenesis protein cp1WT/cp1SCV
cp8WT/cp8SCV2
The table shows only the genes with mutations located in the CDS. The ‘Class’ is manually annotated based on the Uniprot website (www.uniprot.org). The ‘Gene’ and ‘Protein’ are extracted from
S. epidermidis strain ATCC 14990 chromosome genome (GenBank: CP035288.1). In the ‘Strains’, each row is two comparable S. epidermidis strains (wild-type and SCVs) of the same patient
which are closely related on the phylogenetic tree.
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management were also analysed. Through comparative genomics

analysis of S. epidermidis SCVs and WT isolates, key genes and

physiological processes related to the formation and persistence of

SCVs were identified (Figure 1). These findings provide a solid

preliminary basis for the clinical characteristics and management of

patients with CIED infections caused by staphylococcal SCVs,

especially S. epidermidis, and subsequent research on staphylococcal

SCVs device-related infections.

However, this study had some limitations. First, the data were

collected retrospectively and the analysis was limited by the small

number of patients. Second, only analyses at the genomic level were

performed using bioinformatics without experimental verification,

and the analyses mainly focus on S. epidermidis and was not

representative of the whole. Third, the interaction between

staphylococcal SCVs and the host can lead to inflammation;

however, the underlying mechanism requires further studies.

In summary, our findings provide new insights into CIED

infections caused by staphylococcal SCVs.
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