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Ghrelin widely exists in the central nervous system and peripheral organs, and has

biological activities such as maintaining energy homeostasis, regulating lipid

metabolism, cell proliferation, immune response, gastrointestinal physiological

activities, cognition, memory, circadian rhythm and reward effects. In many

benign liver diseases, it may play a hepatoprotective role against steatosis,

chronic inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic

reticulum stress and apoptosis, and improve liver cell autophagy and immune

response to improve disease progression. However, the role of Ghrelin in liver

Echinococcosis is currently unclear. This review systematically summarizes the

molecular mechanisms by which Ghrelin regulates liver growth metabolism,

immune-inflammation, fibrogenesis, proliferation and apoptosis, as well as its

protective effects in liver fibrosis diseases, and further proposes the role of

Ghrelin in liver Echinococcosis infection. During the infectious process, it may

promote the parasitism and survival of parasites on the host by improving the

immune-inflammatory microenvironment and fibrosis state, thereby

accelerating disease progression. However, there is currently a lack of targeted

in vitro and in vivo experimental evidence for this viewpoint.
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1 Introduction

Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor (GHSR)

discovered in rat and human stomach in 1999, and it is now recognized as the third

hormone that regulates growth hormone (GH) secretion except growth hormone releasing

hormone (GHRH) and somatostatin. It is an acylated peptide containing 28 amino acids,

and its N-terminal 10 amino acid sequence is highly conserved in mammals, suggesting the

importance of Ghrelin in performing biological functions (Yanagi et al., 2018). Ghrelin and
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its receptor GHSR1a are widely expressed in central systems such as

the hypothalamus, pituitary, cerebral cortex, and striatum, as well as

peripheral organs such as the gastrointestinal tract, liver, pancreas,

heart, thyroid, breast, adrenal gland, testis and ovary. The fundus of

the stomach is the main secretion area of Ghrelin, which is secreted

by X/A-like cells in rodents and by P/D1 cells in humans (Date

et al., 2000). Ghrelin exists in two forms in mammals: octanoylated

Ghrelin and non-octanoylated Ghrelin, the ratio of which is 2:1 in

the stomach and 1:10 in the plasma (Hosoda et al., 2000).

Octanoylated Ghrelin is catalyzed by O-acyltransferase (GOAT)

in the cytoplasm, and a form of octanoylation with octanoic acid in

serine 3 (Hosoda et al., 2000; Yang et al., 2008), which depends on

GHSR1a in the central system and peripheral target organs, plays

biological roles such as maintaining energy homeostasis, regulating

lipid metabolism, cell proliferation, immune response,

gastrointestinal physiological activities, cognition, memory,

circadian rhythm and reward effects (Al Massadi et al., 2011;

Müller et al., 2015). In the early days, it was believed that non-

octanoylated Ghrelin had no activity, but it was found that it also

has the effect of regulating glucose and lipid metabolism, but the

regulatory mechanism and dependent receptors are still unclear

(Heppner et al., 2014; Hopkins et al., 2017).

Ghrelin had been confirmed to be negatively correlated with

insulin resistance and positively correlated with cachexia (Müller

et al., 2010; Vergani et al., 2021), and it could improve ischemic

injury, inflammatory damage and fibrosis formation, accelerate

tissue repair and perform some other protective effects in diseases

of target organs including the brain, heart, gastrointestinal tract,

pancreas and kidney. There is also a complex regulatory

relationship between Ghrelin and the liver. Ghrelin, which could

improve the outcome of many benign liver diseases, especially liver

fibrotic diseases, could play a significant protective role. However,

liver Echinococcosis, as a chronic parasitic infectious disease that

could cause liver fibrosis and necrosis, it is still unclear whether

Ghrelin is involved in regulating the process and outcome of the

disease. Therefore, this review systematically summarizes the

molecular mechanisms by which Ghrelin regulates liver growth

metabolism, immune-inflammation, fibrosis state, proliferation and

apoptosis, as well as its protective effects in liver fibrotic diseases,

and combined with the current research status, proposes that

Ghrelin may be involved in regulating the disease process of

liver Echinococcosis.
2 Biological functions of Ghrelin in
the liver

The liver is an important central regulatory organ for metabolic

function. Various l iver diseases are accompanied by

pathophysiological changes caused by liver metabolic dysfunction,

including insulin resistance, chronic inflammation, oxidative stress,

mitochondrial dysfunction, endoplasmic reticulum stress,

apoptosis, autophagy abnormalities, etc (Alkhouri et al., 2011;

Harmon et al., 2011; Ezquerro et al., 2016). Studies have found

that Ghrelin can activate many interactive and crosstalk signaling

pathways through the central nervous system and peripheral target
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organs to regulate the metabolic activities of the liver and counteract

the “multiple hit effect” caused by liver metabolic dysfunction. It is

worth noting that the regulatory mechanism of Ghrelin has two

sides at the hypothalamic level and the liver level, and there are

unclear mechanisms that need to be further studied.
2.1 Ghrelin-GH-IGF- I growth axis
regulating liver activity

The Ghrelin-GH-insulin-like growth factor-I (IGF-I) growth

axis is the classic way for Ghrelin to regulate liver metabolic activity

through the “gastrointestinal-brain-liver axis” (Hevrøy et al., 2011;

Boguszewski et al., 2016; Wang et al., 2021). Under stress, such as

energy homeostasis imbalance in the body, glucose-sensing neurons

activate sympathetic nerves to mediate gastric Ghrelin secretion and

transport it to the hypothalamus through blood circulation and the

afferent vague nerve. At the level of the hypothalamus, Ghrelin is

centrally regulated, and after being acylated by GOAT, it binds to

GHSR1a to regulate GH secretion (Yanagi et al., 2018; Cornejo

et al., 2021). GH mediates fat oxidation breakdown and hepatic

gluconeogenesis, reduces insulin sensitivity of adipose tissue and

liver to maintain energy homeostasis (Doycheva et al., 2022), and

can activate Janus Kinase 2 (JAK2)/transcription factors STAT5 and

the mitogen-activated protein kinase (MAPK) signaling pathway to

play the role of promoting growth metabolism and maintaining

glycolipid homeostasis (Lanning and Carter-Su, 2006). A deficiency

of GH or STAT5 could cause major changes in fat distribution and

mobilization, leading to the occurrence of acquired metabolic liver

diseases (Barclay et al., 2011). At the liver level, the Ghrelin/GH

signaling pathway can regulate the expression and activity of IGF-I

in the liver (van der Velden et al., 2022), and IGF-I could reversely

inhibit GH secretion and play an important role in balancing GH

and insulin secretion (Fang et al., 2022), but the mechanism of this

negative feedback is unclear. IGF-I secreted by the liver is mainly

combined into the IGF/insulin-like growth factor binding protein-3

(IGFBP-3) complex in circulating blood to be transported, and

relying on the IGF-I receptor (IGF-IR), it plays an important role in

metabolic regulation (Adamek and Kasprzak, 2018). Ghrelin-GH-

IGF-I growth axis can inhibit the expression and activity of the fat-

degrading enzyme carnitine palmitoyl transferase 1 (CPT1) at the

liver level (Theander-Carrillo et al., 2006), and promote the

expression and activity of fat storage enzymes, including fatty acid

synthase (FAS), phosphorylated acetyl coenzyme A carboxylase a
(pACCa), non-phosphorylated acetyl coenzyme A carboxylase a
(ACCa), lipoprotein lipase (LPL), stearoyl-CoA desaturase 1

(SCD1), glucose-6 phosphate dehydrogenase (G6PDH), 6

phosphate dehydrogenase (6PGDH) and malonyl coenzyme A (M

CoA), and inhibit insulin secretion, increase glucose utilization in

adipose tissue, to promote the synthesis of lipid substances in the

liver (Shan and Yeo, 2011; Shimizu et al., 2022). This could explain

why high expression of Ghrelin leads to obesity and acquired

metabolic liver diseases. Inhibition of IGF-I in rats could reduce

adipose tissue by more than 25% within 3 months (Boucher et al.,

2016). In addition, the Ghrelin-GH-IGF-I growth axis, through the

mediation of insulin receptor substrate (IRS) and rat sarcoma (Ras),
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could regulate Mitogen-activated extracellular signal-regulated

kinase (MEK)/extracellular regulated proteinhnase l/2 (ERK1/2)

(Kotta et al., 2022) and phosphatidylinositide 3-kinases (PI3K)/

serine/threonine kinase AKT/mammalian target of rapamycin

(mTOR) signaling pathway (Zhu et al., 2018; Zhang and Xie,

2020), up-regulating the expression of cyclin D and cyclin-

dependent kinases CDK4, CDK6 and form cyclin D/CDK4

complex, promoting the release of transcription factor E2F

through ELK1 in the Est transcription factor family, increasing

the expression of cyclin E, up-regulating the expression of

autophagy gene p62, and inhibiting the anti-mitotic genes p21,

p27, phosphatase and tensin homolog (PTEN) and the expression

of autophagy genes Atg5 and Atg7, as well as reducing the ratio of

autophagy marker LC3B-II/I, to play a role in promoting cell

proliferation and protein synthesis, and resisting apoptosis and

abnormal autophagy (Sengupta and Henry, 2015; Firmenich et al.,

2020). It could also regulate the AKT signaling pathway to inhibit

the expression of pro-apoptotic protein BAD and transcription

factor FKHR, up-regulate the expression of anti-apoptotic factor

NF-кB and p53 key negative regulator MDM2 (Liu et al., 2014), and

reduce the proliferation and activation of hepatic stellate cells

(HSCs) for promoting the formation of blood vessels, reduce

inflammatory damage, fibrosis formation, anti-apoptosis and

regulation of immune response (Adamek and Kasprzak,

2018) (Figure 1).

Some studies had informed a conclusion that the FAS, ACCa
and SCD1 of wild-type rats were significantly increasing by

pumping Ghrelin into the ventricle, whereas they were

significantly weakening under the intervention conditions of low-

dose Ghrelin, GH deficiency and vagus nerve suppression. It

indicated that the regulation of the Ghrelin-GH-IGF-I growth

axis at the liver level may be Ghrelin dose-dependent, but also

GH and vagus nervous system dependent (Theander-Carrillo et al.,

2006). However, these conclusions have been challenged. Ghrelin

levels could still increase by 40% after fasting in GH-deficient rats,

and Ghrelin administration could significantly increase liver FAS,

pACCa, ACCa, SCD1, G6PDH and 6PGDH levels to promote fat

synthesis and up-regulate the expression and activity of AMP-

activated protein kinase (AMPK) a1 and AMPK a2 to maintain the

blood glucose homeostasis and inhibit plasma insulin levels

(Sangiao-Alvarellos et al., 2009; Lee et al., 2022). Ghrelin

administration in wild-type mouse hepatocyte culture in vitro also

found that it can increase lipid accumulation (Li et al., 2014). In

addition, clinical studies of GH deficiency also found that there is no

correlation between the concentration of Ghrelin and the

concentration of GH (Malik et al., 2004), suggesting that the

Ghrelin-GH-IGF-I growth axis that regulates liver glucose and

lipid metabolism may not depend on GH mediation. Similar

studies further proposed that Ghrelin regulates liver glucose and

lipid metabolism independently of the expression and activity of

GH, cortisol and free fatty acids (FFA) (Vestergaard et al., 2017).

Interestingly, Ghrelin administration did not cause significant

changes in the expression and activity of CPT 1 and M CoA in

the absence of GH, suggesting that the effect of regulating fat

oxidation and decomposition may be GH-dependent (Sangiao-

Alvarellos et al., 2009). It is worth noting that oral administration
Frontiers in Cellular and Infection Microbiology 03
of Ghrelin receptor agonist MK-0677 could directly increase the

secretion of IGF-I by 65%, indicating a close regulatory relationship

between Ghrelin and IGF-1 (Campbell et al., 2018). Recent studies

had pointed out that in the mice whose GOAT gene knockout

blocked Ghrelin acylation, the plasma IGF-I decreased by 90%

under starvation, and GH administration increased the

phosphorylation level of STAT5, but failed to increase the serum

IGF-I level or the plasma glucose level, and the plasma glucose level

increased twofold after injection of IGF-1. It was suggested that

there may be a direct regulatory pathway for the Ghrelin/IGF-I axis

that is not entirely dependent on the GH/STAT5 signaling pathway

(Boucher et al., 2016; Fang et al., 2022). Current studies have found

that GHSR1a is expressed in rat vagus nerve sensory neurons and

efferent neurons, and administration of Ghrelin to rats could

significantly increase the activity of c-Fos protein, an activity

marker of vagus nerve efferent neurons, and the activity of

mTOR, suggesting that there may be a vagal direct regulatory

pathway between Ghrelin and the liver (Kupari et al., 2019; Davis

et al., 2020; Nagoya et al., 2020; Perelló et al., 2022). But the problem

is that the neuroanatomical evidence is not enough to draw a firm

conclusion to support the existence of GHSR1a in the terminal of

vagal efferent (Cornejo et al., 2021). In addition, the indispensability

of the vagus nervous system in the Ghrelin-GH-IGF-I growth axis is

controversial, and administration of Ghrelin to rats with suppressed

subdiaphragmatic vagal afferent could still stimulate acute feeding

behavior (Arnold et al., 2006). However, studies using Ghrelin to

stimulate feeding behavior as an evaluation standard were also

controversial. Some studies have found that Ghrelin deficiency

doesn’t affect feeding behavior, but only reduces susceptibility to

diet-induced obesity (Li et al., 2012; McFarlane et al., 2014). How to

maintain the dynamic balance between Ghrelin/IGF-I and GH

cannot be well explained at present, and the research on the

direct regulation pathway of Ghrelin/IGF-I may become one of

the most interesting unsolved problems in the field of Ghrelin.
2.2 Ghrelin regulating liver activity through
p53, AMPK, mTOR and NPY/AgRP
signaling pathways

Tumor suppressor genes p53, AMPK, mTOR and NPY/AgRP

are currently found to be metabolic sensors involved in the

biological effects of Ghrelin (Hardie et al., 2012; Berkers et al.,

2013; Quiñones et al., 2018; Liu et al., 2019). Unlike the Ghrelin-

GH-IGF-I growth axis that regulates the activities of the liver,

Ghrelin could independently regulate these signaling pathways in

the central system to exert the opposite effect of the Ghrelin-GH-

IGF-I growth axis. These interacting and crosstalking pathways

work together to maintain the balance of liver metabolic activity. At

the hypothalamic level, Ghrelin can regulate Sirtuin1 to deacetylate

p53 (Puzio-Kuter, 2011; Velásquez et al., 2011), stimulate AMPK

phosphorylation and inhibit mTOR/PPARg signaling pathway

(Budanov and Karin, 2008; Cariou et al., 2012; Li et al., 2014),

thereby up-regulating the expression of lipoxygenase CPT1,

hormone-sensitive lipase (HSL) and adipose triglyceride lipase

(ATGL), inhibiting the expression of liposynthetic enzymes
frontiersin.org
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pACCa, ACCa, FAS, M CoA and transcription factor SREBP1, and

increasing the expression of uncoupling protein 2 (UCP2) by

changing the mitochondrial redox state, up-regulating the

expression of phospho-cAMP response element binding protein

(pCREB), forkhead box protein O1 (FoxO1), brain-specific

homeobox protein homologue (Bsx), activate NPY/AgRP neurons

(Kola et al., 2008; Dietrich et al., 2010; Quiñones et al., 2018), and

jointly play a role in stimulating feeding and promoting effects of

cellular catabolism, apoptosis and autophagy (López et al., 2008). At

the liver level, the Ghrelin-GH-IGF-I growth axis up-regulates the

expression of NF-kB and MDM2 through the AKT pathway,

inhibits p53 activity against apoptosis, regulates the immune

response (Liu et al., 2014), and down-regulates the expression of

adiponectin receptor 2, inhibits AMPK phosphorylation (Kadowaki

et al., 2006; Qin and Tian, 2010) and regulates the PI3K/AKT/

mTOR signaling pathway to increase phosphorylation of

downstream target S6 and transcription of glucose transporter 3

(GLUT3), promote glucose decomposition and uptake in liver

tissue, and reduce mitochondrial oxidative phosphorylation,

which can play a role in promoting cell anabolism, anti-apoptosis

and autophagy (Cariou et al., 2012) (Figure 2).
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Interestingly, among these mechanisms, administration of

Ghrelin to mice that blocked the Sirtuin1/p53 signaling pathway

(Velásquez et al., 2011) or knocked out hypothalamic CB 1 (Kola

et al., 2013; Lim et al., 2013) failed to stimulate AMPK

phosphorylation, but normal stimulation of GH secretion

suggested that Ghrelin’s regulation of AMPK is dependent on the

Sirtuin1/p53 signaling pathway and CB 1, and might be

independent of the Ghrelin-GH-IGF-I growth axis. It had been

confirmed that Ghrelin itself doesn’t have the effect of stimulating

feeding, and its effect is mainly to activate the NPY/AgRP neurons

in the arcuate nucleus of the hypothalamus. In mice with the

absence of NPY/AgRP neurons (Verhulst et al., 2008) or the lack

of upstream transcription factor Bsx (Sakkou et al., 2007), Ghrelin

administration failed to stimulate feeding, and this regulatory

relationship was also dependent on the Sirtuin1/p53 signaling

pathway, and Ghrelin couldn’t activate NPY/AgRP neurons in

p53 knockout mice, but did not affect the changes in glucose

tolerance and insulin sensitivity, suggesting that this pathway was

independent of the Ghrelin-GH-IGF-I growth axis to exert

regulatory effects (Quiñones et al., 2018). It is worth noting that

the use of rapamycin to inhibit mTOR, the key factor by which
FIGURE 1

The mechanism of Ghrelin-GH-IGF-I growth axis regulating liver activity. Stomach-derived Ghrelin is transported to the hypothalamus through the
blood circulation and afferent vagus nerve, where it’s catalyzed by GOAT to form octanoylated Ghrelin and then binds to GHSRs dependently to
promote GH secretion. GH can regulate the downstream JAK2/STAT5 and MAPK signaling pathways to promote growth, maintain glycolipid
homeostasis, and stimulate the secretion of IGF-I in the liver. IGF-I transports and activates IGF-IR through IGFBPs, regulates MEK/ERK 1/2 and PI3K/
AKT/mTOR signaling pathways through IRS and Ras mediation, increases the expression of liposynthase, cyclin E and autophagy gene p62, inhibit
the expression of lipolytic enzymes, anti-mitotic genes p21, p27, PTEN and autophagy-related genes Atg5 and Atg7, and reduce the ratio of
autophagy marker LC3B-II/I, promote cell proliferation and protein synthesis, and resist apoptosis and autophagy, and can regulate the AKT signaling
pathway to inhibit the expression of pro-apoptotic gene BAD and transcription factor FKHR, and up-regulate the expression of anti-apoptotic factor
NF-кB and p53 key negative regulator MDM2, inhibit p53 expression and maintain dynamic balance of MMP2 and TIMP1, to play the role of
promoting angiogenesis, reducing inflammatory injury, anti-apoptosis and regulating immune response. It’s worth noting that there is a potential
direct regulatory pathway between Ghrelin and IGF-I, and a potential negative feedback regulatory pathway between GH and IGF-I. GOAT, o
acyltransferase; GHSRs, growth hormone secretagogue receptors; IGFBPs, insulin-like growth factor binding proteins; IGF-IR, IGF-I receptor; MEK,
mitogen-activated extracellular signal-regulated kinase; ERK 1/2, extracellular signal-regulated kinase 1/2; PI3K, phosphatidylinositol 3-kinase; AKT,
serine/threonine kinase; mTOR, mammalian target of rapamycin; IRS, insulin receptor substrate; MMP2, matrix metalloproteinase 2; TIMP1, matrix
metalloproteinase inhibitor 1.
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Ghrelin regulates liver activity, in the treatment of liver diseases

might seriously hinder the proliferation of liver cells, and mTOR-

independent intervention in Ghrelin signaling pathways may have

better research value in the treatment of liver diseases.
2.3 Ghrelin regulating liver activity through
autophagy, NF-kB signaling pathway and T
cell immunity

Autophagy is a double-edged sword that can promote the

catabolism of defective organelles and excess components to

maintain cellular and energy homeostasis, but excessive

autophagy can lead to type II programmed cell death (Shintani

and Klionsky, 2004). At present, it has been found that various liver
Frontiers in Cellular and Infection Microbiology 05
diseases are accompanied by hepatic autophagy disorders, and

Ghrelin can dynamically regulate abnormal autophagy of

hepatocytes to exert a hepatoprotective effect (Mao et al., 2015b;

Ezquerro et al., 2019). At the level of the hypothalamus, Ghrelin can

activate the Y1 and Y5 receptors of NPY neurons to promote

autophagy (Aveleira et al., 2015; Ferreira-Marques et al., 2016). At

the liver level, the Ghrelin-GH-IGF-I growth axis can regulate the

downstream liver kinase B1 (LK B1)/AMPK and the P13K/AKT/

mTOR signaling pathways, down-regulate the expression of Atg5,

Atg7 and the expression of LC3B-II/I ratio, and up-regulate the

expression of p62, to inhibit autophagy (Ezquerro et al., 2016;

Zhang et al., 2018). It is controversial that autophagy is inhibited

after GOAT, on which Ghrelin acetylation must depend, is blocked,

but some studies have pointed out that it could activate the AMPK/

mTOR signaling pathway to promote autophagy (Zhang Y. et al.,
FIGURE 2

The mechanism of Ghrelin regulating liver activity through p53, AMPK, mTOR and NPY/AgRP signaling pathways. Stomach-derived Ghrelin is
catalyzed by GOAT at the level of the hypothalamus to form octanoylated Ghrelin and then binds to GHSRs dependently, activates the AMPK
signaling pathway through the Sirtuin1/p53 signaling pathway, inhibits the mTOR/PPARg signaling pathway, reduces the secretion of liposynthetic
enzymes ACC, FAS and M CoA, increases the secretion of lipolytic enzymes CPT1, HSL, ATGL and the activity of mitochondria, and up-regulates the
expression of pCREB, FoxO1 and Bsx through UCP2, activates NPY/AgRP neurons, to play a role of stimulating food intake, promoting catabolism,
apoptosis and autophagy. At the liver level, Ghrelin regulates the PI3K/AKT/mTOR and AMPK signaling pathways through the GH/IGF-I growth axis,
increases the expression of liposynthetic enzymes, cyclin E and autophagy gene p62, and inhibits the expression of lipolytic enzymes and
autophagy-related genes Atg5, Atg7, and the ratio of the autophagy marker LC3B-II/I, play a role in promoting cell proliferation and protein
synthesis, anti-apoptosis and autophagy, and can regulate the AKT signaling pathway to inhibit the expression of pro-apoptotic gene BAD and
transcription factor FKHR, as well as the expression of the anti-apoptotic factor NF-кB and the p53 key negative regulator MDM2, inhibit the
expression of p53 and maintain the dynamic balance of MMP2 and TIMP1, play a role in promoting angiogenesis, reducing inflammatory damage,
anti-apoptosis and modulating the immune response. AMPK, adenylate-dependent protein kinase; PPARg, peroxisome proliferator-activated
receptor g; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase; M CoA, malonyl-CoA; CPT1, carnitine palmitoyl transferase 1; HSL, hormone-
sensitive triglyceride lipase; ATGL, adipose triglyceride lipase; UCP2, uncoupling protein 2; pCREB, phosphorylated cyclic AMP response element
binding protein; FoxO1, forkhead box protein O1; Bsx, brain-specific homologue protein homologue; MMP2, matrix metalloproteinase 2; TIMP1,
matrix metalloproteinase inhibitor 1.
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2015; Zhang et al., 2018), and clinical studies have found that

increasing the expression of Ghrelin in old patients with chronic

liver disease or liver injury could moderately induce autophagy and

promote the repair of chronic liver disease and liver regeneration

(Liu et al., 2018; Escobar et al., 2019; Bi et al., 2020; Xu et al., 2020).

This might be due to the duality of Ghrelin in regulating autophagy

at the hypothalamic level and the liver level. Ghrelin may have dual

effects on dynamic homeostasis autophagy reduction and excessive

autophagy. The study of Ghrelin’s role in regulating autophagy

could provide some new insights for the development of drugs for

the treatment of chronic liver diseases.

In addition, there are conflicting conclusions about the

mechanism by which Ghrelin activates NF-kB at the liver level.

In tumor diseases, the high expression of Ghrelin is generally

believed to activate the NF-kB signaling pathway, inhibit the

expression of p53, and cause tumor cell proliferation and

migration (Chen et al., 2011; Tian et al., 2013). However, in the

studies of liver steatosis, inflammatory injury and liver fibrosis, the

high expression of Ghrelin was believed to inhibit the NF-kB/p65
signaling pathway by blocking the degradation of IkBa, thereby
reducing the expression of tumor necrosis factor-a (TNF-a),
interleukin (IL)-6, IL-8 and IL-1b, against lipotoxicity and

inflammation (Hou et al., 2009; Ramachandran et al., 2012; Mao

et al., 2015a), and Ghrelin could activate mTOR (Li et al., 2017) and

regulate the expression of NOD2, an upstream intracellular receptor

of NF-kB (Peng et al., 2012), to inhibit the expression of NF-kB.
This might suggest that there were other regulatory pathways

between Ghrelin and NF-kB, or that they were crosstalked by

other regulatory pathways due to competition with p53 for

common binding substances (Carrà et al., 2020).

There is often an interaction and crosstalk relationship between

metabolism and immunity, and Ghrelin has also been proven to

have the function of simultaneously regulating the body’s

neuroendocrine and immune responses. T cells were found to

contain the expression of Ghrelin and its receptors (Dixit et al.,

2004). Studies had pointed out that Ghrelin could inhibit STAT3

phosphorylation and IL-17 secretion by regulating the mTOR

signaling pathway, and regulate the differentiation of Th17 cells

(Xu et al., 2015). In addition, Ghrelin had also been found to be

involved in the process of suppressing Th1 type T cell immunity

and promoting Th2 type and Tregs type T cell immunity against

inflammation (Symonds et al., 2009; Yasen et al., 2021a). Therefore,

Ghrelin was also considered an immune factor regulating immune

homeostasis. In addition, Ghrelin could also increase the expression

of B-cell lymphoma-2 (bcl-2) and endothelial nitric oxide synthase

(eNOS), reduce the expression of TNF-a and liver tissue collagen

level, anti-apoptosis and mediate NO release to play a

hepatoprotective role (Kabil et al., 2014).
2.4 Effects of age and the circadian clock
on the regulation of liver activity by Ghrelin

Studies had shown that aging is closely related to the Ghrelin-

GH-IGF-I growth axis, and the circulating levels of Ghrelin and
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IGF-I decrease with age (Amitani et al., 2017). In aging liver cells,

Ghrelin or IGF-I deficiency could activate p53, CDK4/6 inhibitory

protein p16INK4a and CCAAT-enhancer binding protein a
(C/EBPa), inhibit cell proliferation and promote cell Apoptosis

and excessive autophagy (Zhao et al., 2022). Therefore, some

scholars put forward the hypothesis that Ghrelin is anti-aging,

but it’s controversial. Some studies had suggested that Ghrelin

deficiency did not affect the lifespan of wild-type mice (Guillory

et al., 2017), and pointed out that Ghrelin shows a tendency to

increase with aging by inhibiting the formation of the C/EBPa-p300

complex, and promoting liver lipid accumulation and degeneration

(Guillory et al., 2018). Ghrelin is also a regulator of circadian

rhythm, which can participate in the regulation of circadian

rhythm through the central system and target organs such as the

liver and kidney (Reinke and Asher, 2016; Song and Rogulja, 2017;

Saran et al., 2020). Studies had pointed out that high expression of

Ghrelin could activate the hepatic mTOR/S6 signaling pathway in

both in vivo and in vitro experiments, regulate the expression and

rhythmicity of hepatic circadian locomotor output cycles kaput ear

dichroism (Clock) and coding cycle Protein 2 (Per 2), restore

circadian rhythm disturbance, improve hepatic steatosis, and

reduce chronic inflammation (Wang et al., 2018a). In addition,

the high expression of Ghrelin could activate the downstream

AMPK signaling pathway (Lamia et al., 2009), mTOR signaling

pathway (Kim et al., 2011), AKT signaling pathway (Luciano et al.,

2018) and Sirtuin1/p53 signaling pathway (Zhou et al., 2014), by

changing cryptochromes (Cry), the phosphorylation state of brain

and muscle ARNT-like protein 1 (Bmal 1) and Clock improves the

disorder of circadian rhythm, promotes protein synthesis and

rhythmic detoxification.
3 Ghrelin and liver fibrosis diseases

Current studies have proposed that liver fibrosis is a “wound

healing response”. After liver cell injury, it could inhibit the AMPK/

mTOR signaling pathways and activate TGF-b1/Smad3 (Song et al.,

2019), Sirtuin1/p53 (Song et al., 2019; Li et al., 2020) and NF-kB
(Luedde and Schwabe, 2011) signaling pathways to promote

autophagy and induce HSC proliferation and activation, destroy

the dynamic balance of matrix metalloproteinase 2 (MMP2) and

tissue inhibitor of matrix metalloproteinases 1 (TIMP1), causing

excessive accumulation of type I and type III collagen-based

extracellular matrix to regulate the progression of liver fibrosis.

The key factors of the above signaling pathways have the potential

to become key targets for improving liver injury and inflammation,

as well as the progression of liver fibrosis. Ghrelin has been found to

have a positive hepatoprotective effect in fatty liver disease and

inflammatory liver disease, and may become a new drug target

involved in the evaluation of liver reserve function and liver disease

treatment in the future (Mao et al., 2015a; Ezquerro et al., 2020).

Inhibition of the Ghrelin-GH-IGF-I growth axis could lead to the

rapid progression of non-alcoholic fatty liver disease to liver

cirrhosis (Doycheva et al., 2022). Many animal experiments had

shown that high expression of Ghrelin can activate PI3k/Akt/
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mTOR (Moreno et al., 2010) and AMPK signaling pathways

(Petrescu et al., 2020), inhibit TGF-b1/Smad3 (Mao et al., 2015b)

and NF-kB/p65 (Mao et al., 2015a) signaling pathways, and

effectively reduce secretion of TGF-b1, C-C motif ligand 2

(CCL2) and a-smooth muscle actin (a-SMA), restore the

homeostasis of MMP2 and TIMP1, and reduce LC3B-II/I ratio,

increase the expression of p62, to exert the effects of reducing

oxidative stress and inflammatory injury of liver cells, resisting liver

cell apoptosis and excessive autophagy, inhibiting HSC activation,

and improving the progress of liver fibrosis (Petrescu et al., 2020).

In the study of the progression of liver fibrosis induced by Ghrelin-

deficient mice, liver fibrosis significantly worsened compared with

wild-type mice, and the number of hepatic fibrotic cells was reduced

by 25% after treatment with Ghrelin (Moreno et al., 2010). It should

be noted that blocking the TGF-b1/Smad3 signaling pathway could

inhibit the activation of Sirtuin1/p53, reduce HSC proliferation and

activation, and improve the development of liver fibrosis. Ghrelin

could inhibit the TGF-b1/Smad3 signaling pathway, but in the

absence of Sirtuin1/p53 could not play a normal role (Velásquez

et al., 2011; Porteiro et al., 2013). Their regulatory mechanism

remains to be studied. Studies had also pointed out that high

expression of Ghrelin could increase the expression of bcl-2 and

eNOS in rats with liver fibrosis, and significantly reduce the levels of

serum liver enzymes, TNF-a and liver tissue collagen, suggesting

that Ghrelin could resist liver cell apoptosis and mediate NO release

to fight liver fibrosis (Kabil et al., 2014). In addition, IGF-I was

found to directly inactivate HSCs, improve portal pressure, bacterial

translocation, endotoxemia, and collagen levels, reverse hepatic

insulin resistance to protect liver cells from damage, stimulate the

secretion of cell growth factors, and lead to liver regeneration (Sanz

et al., 2005; Sobrevals et al., 2010; Chishima et al., 2017), but the

serum IGF-I level was significantly reduced in cirrhotic patients

(Blaas et al., 2010; Abdel-Wahab et al., 2015). Therefore, the IGF-I

signaling pathway has the potential to diagnose and treat liver

fibrosis, and is considered by many scholars to be a surrogate

marker for evaluating liver reserve function.

Ghrelin in patients with non-alcoholic steatohepatitis (Yalniz

et al., 2006), alcoholic hepatitis (Moreno et al., 2010), chronic

hepatitis C (Kawaguchi et al., 2013; Hamdy et al., 2018) or

chronic hepatitis B (Zhang X. et al., 2015) was significantly lower

than that in healthy patients, after progressing to cirrhosis, it

continued to decrease significantly, and it was significantly lower

in patients with decompensated liver cirrhosis than in patients with

compensated liver cirrhosis (Breidert et al., 2004; Kalaitzakis et al.,

2007; Diz-Lois et al., 2009). The same conclusion was also found for

cirrhosis caused by autoimmune liver disease in children (Dornelles

et al., 2013). Some clinical studies had further proposed that Ghrelin

could be considered a non-invasive diagnostic marker for patients

with chronic liver disease to progress to cirrhosis, pointing out that

serum Ghrelin levels below 850 pg/mL could be considered to

progress to cirrhosis from chronic liver diseases, and those below

440 pg/mL, progression to decompensated cirrhosis might be

considered (Elaghori et al., 2019). A clinical study of chronic

hepatitis C pointed out that liver expression of the Ghrelin gene
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was related to the expression of the fibrosis gene. Ghrelin gene

polymorphisms (-994CT and -604GA) effectively improved the

progression of liver fibrosis, and used bile duct ligation to induce

liver fibrosis in rats. During the formation process, 1534 genes

hepatic expression was stimulated and 997 genes hepatic expression

was inhibited. Ghrelin administration could improve hepatic

expression of 231 genes, including type II collagen a1, fibrinogen
activator-urokinase receptor, MMP2 and chemokine receptor 5

(Moreno et al., 2010). However, the conclusion that Ghrelin

improved the development of liver fibrosis had given rise to

different opinions in some clinical studies (Table 1). A clinical

study found that the serum Ghrelin level of patients with fibrosis

stage ≥ 2 was twice that of patients with fibrosis stage < 2 (Estep

et al., 2011). Many clinical studies had also pointed out that serum

Ghrelin level was positively correlated with the severity of patients

with alcoholic cirrhosis, viral cirrhosis, primary biliary cirrhosis,

and cirrhosis caused by hepatocellular carcinoma, and the level of

Ghrelin in Child C stage cirrhosis was significantly higher than

Child A/B stage patients (Tacke et al., 2003; Ataseven et al., 2006;

Takahashi et al., 2006; El-Shehaby et al., 2010), the highest level was

almost three times that of healthy patients, and the patients with

ascites, upper gastrointestinal bleeding and hepatic encephalopathy

were significantly higher than those without the above syndrome

(Naguib et al., 2021). The reason might be that severe malnutrition

and hypermetabolism accompany the progression of liver cirrhosis,
frontiersin.o
TABLE 1 Ghrelin expression in clinical studies related to liver fibrosis
and liver cirrhosis.

Expression of
Ghrelin (Low)

Expression of
Ghrelin (High)

Object
of study

Ref. Object
of study

Ref.

liver cirrhosis
(Elaghori
et al., 2019).

primary
biliary cirrhosis

(Naguib
et al., 2021).

liver cirrhosis
(Dornelles
et al., 2013).

liver cirrhosis due to
viral hepatitis C

(Elbadri
et al., 2011).

liver fibrosis due to
viral hepatitis C

(Moreno
et al., 2010).

liver fibrosis due
to NAFLD

(Estep
et al., 2011).

liver failure
requiring
transplantation

(Diz-Lois
et al., 2009).

liver cirrhosis due to
viral hepatitis

(El-Shehaby
et al., 2010).

liver cirrhosis
(Kalaitzakis
et al., 2007).

liver cirrhosis due to
viral hepatitis B

(Ataseven
et al., 2006).

primary
biliary cirrhosis

(Breidert
et al., 2004).

liver cirrhosis
(Takahashi
et al., 2006).

liver cirrhosis due to
chronic liver disease

(Tacke
et al., 2003).
In the clinical studies of (Elaghori et al., 2019), (Dornelles et al., 2013), (Moreno et al., 2010),
(Diz-Lois et al., 2009), (Kalaitzakis et al., 2007) and (Breidert et al., 2004), the serum Ghrelin
level of patients was inversely related to the severity of liver fibrosis and liver cirrhosis. In the
clinical studies of (Naguib et al., 2021), (Elbadri et al., 2011), (Estep et al., 2011), (El-Shehaby
et al., 2010), (Ataseven et al., 2006), (Takahashi et al., 2006) and (Tacke et al., 2003), the serum
Ghrelin level of patients was positive correlated with the severity of liver fibrosis and
liver cirrhosis.
rg
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and as an early indicator of malnutrition, the increase of Ghrelin

reflects an adaptive compensatory mechanism, which is to activate

the hypothalamus NPY/AgRP neurons and Ghrelin-GH-IGF-I

growth axis by increasing the expression of Ghrelin, and thus

stimulate feeding and maintain energy homeostasis (Elbadri et al.,

2011; Quiñones et al., 2020). Another possible explanation is that

liver cirrhosis is often accompanied by liver failure, cachexia,

endotoxemia, and hemodynamic abnormalities. These changes

might affect the levels of cytokines and vasoactive substances in

the blood, including Ghrelin (Frascarelli et al., 2003). A third

explanation was a hypothesis that micronutrient deficiencies or

toxic products from protein breakdown in the progression of

cirrhosis might impair appetite-regulating hypothalamic NPY/

AgRP neurons, leading to altered Ghrelin sensitivity (El-Shehaby

et al., 2010). The regulatory mechanism and biological effects

between Ghrelin and liver fibrosis need to be further studied.
4 Ghrelin and liver Echinococcosis

Liver Echinococcosis is a parasitic infectious liver disease that

causes liver fibrosis and necrosis and continues to grow slowly in

the host body. It can cause inflammation and destroy the normal

structure of liver tissue, endangering human health (Wen et al.,

2019; Woolsey and Miller, 2021). Previous studies have suggested

that innate immune pathways such as inflammatory vesicles and

Toll-like receptor activation, and hepatocyte apoptosis are the host’s

primary line of defense against the progression of liver

Echinococcosis infection (Vuitton, 2003; Inclan-Rico and Siracusa,

2018; Bakhtiar et al., 2020). Recently, more and more studies have

found that growth metabolic pathways are activated during the

process of liver Echinococcosis infection and interact with the

immune-inflammation and fibrosis pathways to jointly regulate

the outcome of the disease (Seoane et al., 2016; Cheng et al., 2017;

Liu et al., 2017; Yin et al., 2018; Wang et al., 2019; Lin et al., 2021;

Yang et al., 2022). However, to date, few studies have addressed

the various outcomes following interventions in growth

metabolic pathways during the progression of liver Echinococcosis.

In-depth studies of the impact of metabolic pathways on liver

Echinococcosis may help further reveal the disease mechanisms of

echinococcal infection.

Previous studies have pointed out that the imbalance of Th1/

Th2 type cellular immunity is an important factor causing immune

tolerance and immune evasion of the parasites in the liver

Echinococcosis. In the early stage of echinococcal infection, the

Th1-type cellular immune response is dominant, and in the

advanced stage, the Th2-type cellular immune response is

dominant (Gottstein et al., 1994; Emery et al., 1996; Emery et al.,

1997; Bayraktar et al., 2005; Mezioug and Touil-Boukoffa, 2009;

Mezioug and Touil-Boukoffa, 2012; Yasen et al., 2021b). And some

studies have shown that during the process of liver Echinococcosis

infection, Th1 type cellular immunity maintains a high response,

which can exert a protective effect and reduce the damage to organs

caused by parasitic infection, while Th2 type cellular immunity

maintains a high response, which is beneficial to parasites

development of immune tolerance and immune escape, which
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intensifies their parasitism and survival of the host (Ortona et al.,

2003; Baz et al., 2006; Siracusano et al., 2012; Zhang et al., 2020;

Jiménez et al., 2021; Zhang et al., 2021). The results of clinical

studies also support this conclusion, pointing out that compared

with healthy patients, patients with early infection and inactive

Echinococcosis have higher expression of Th1-type cytokines in the

serum and liver tissue, including IL-1b, 2, 15, 17, IFN-g and TNF-a
(Ma et al., 2014; Tian et al., 2020; Tilioua et al., 2020). Th2-type

cytokines, including IL-4, 5, 6, 10 and 13, are highly expressed in the

serum and liver tissue of patients with recurrent infection and active

Echinococcosis (Mourglia-Ettlin et al., 2011; Ma et al., 2014;

Tamarozzi et al., 2016; Yasen et al., 2021a). In addition, clinical

studies have also pointed out that effective anti-infective treatment

of Echinococcosis is positively correlated with maintaining a high

response of Th1 type cellular immunity, while ineffective anti-

infective treatment is more closely related to maintaining a high

response of Th2 type cellular immunity (Siracusano et al., 2012;

Gottstein et al., 2017). In addition, studies have shown that the NF-

kB inflammatory signaling pathway (Tilioua et al., 2020; Lin et al.,

2021) and the TGF-b1/Smad3 fibrosis signaling pathway (Wu et al.,

2004; Banas et al., 2007; Liu et al., 2016; Tian et al., 2020) play a key

role in regulating the immune-inflammation and fibrosis state of

the host infected by Echinococcosis. Inhibition of these pathways

could attenuate the host’s protective immune response and promote

the disease progression of liver Echinococcosis infection. Clinical

studies have shown that after echinococcus infects the host, it could

activate the NF-kB and TGF-b1/Smad3 signaling pathways and

increase the levels of proinflammatory factors IL-1b, IFN-g, TNF-a,
and IL-17 in the host’s serum and liver tissue, activate HSCs to

mediate the secretion of profibrotic cytokines fibronectin, a-SMA

and collagen I and III in liver tissue, and recruit inflammatory cells

and tissue cells, including T cells, macrophages and fibroblasts/

myofibroblasts in and around liver lesions, exert protective effects

against parasitic infection (Grenard et al., 2001; Liu et al., 2003;

Vuitton, 2003; Liu et al., 2006; Vuitton et al., 2006; Tilioua et al.,

2020). In addition, TGF-b, as the main regulator of immune

response, could induce and maintain T cell immunity and

activate Th1-type immune response during the process of liver

Echinococcosis infection to resist immune tolerance against

parasites (Zhang et al., 2008; Feng et al., 2012; Wang et al., 2013;

Ma et al., 2014; Liu et al., 2016; Tian et al., 2020). However, in

patients with late chronic infection and relapse of Echinococcosis,

the immune-inflammatory microenvironment shows weak

expression (Wu et al., 2004; Banas et al., 2007; Tian et al., 2020;

Tilioua et al., 2020), and the NF- kB and TGF-b1/Smad3 signaling

pathways have interactions and crosstalk. The down-regulation of

NF-kB also mediates the inhibition of the TGF-b1/Smad3 signaling

pathway (Elsharkawy and Mann, 2007; Freudlsperger et al., 2013),

which combined with the suppression of Th1-type cellular

immunity, jointly promotes the progression of liver Echinococcosis.

Studies have found that Ghrelin has anti-inflammatory effects

that inhibit Th1 and Th17 immune responses and promote Th2 and

Tregs T cell immunity (Dixit et al., 2004; Symonds et al., 2009;

Stevanovic et al., 2012; Paoluzi et al., 2013; Xu et al., 2015). Current

studies show that in the early and progressive stages of echinococcal

infection, the JAK/STAT (Liu et al., 2017; Yang et al., 2022), MEK/
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ERK1/2 (Cheng et al., 2017; Lin et al., 2021) and PI3K/Akt/mTOR

(Covarrubias et al., 2015; Seoane et al., 2016; Yin et al., 2018; Wang

et al., 2019; Yang et al., 2022) signaling pathways are upregulated

and may be involved in regulating the parasitism and survival of

Echinococcosis. High expression of Ghrelin could significantly

upregulate the MEK/ERK1/2 (Moreno et al., 2010; Kotta et al.,

2022) and PI3K/Akt/mTOR (Zhu et al., 2018; Petrescu et al., 2020;

Zhang and Xie, 2020) signaling pathways, and inhibit NF-kB (Zhou

and Xue, 2009; Barazzoni et al., 2014; Mao et al., 2015b; Mao et al.,

2015a) and TGF-b1/Smad3 (Mao et al., 2015b; Ezquerro et al.,

2023) signaling pathways through interaction, significantly

reducing the proinflammatory factors secreted by Th1-type

cellular immunity, inhibiting the proliferation and activation of

HSCs to restore the dynamic balance of MMP2 and TIMP1 and

decrease the secretion of fibrotic cytokines a-SMA, collagen I and

III, playing a role in reducing chronic inflammation and fibrosis

formation in the liver. And activating the PI3K/Akt/mTOR

signaling pathway could downregulate p53 to resist apoptosis,

and studies have shown that p53 deficiency is more susceptible to

parasitic infection (Kaushansky et al., 2013; Covarrubias et al., 2015;

Gong et al., 2021). Although there is no direct evidence, the above-

mentioned research conclusions suggest that Ghrelin has the

potential to regulate the host’s immune inflammation, fibrosis

formation and liver damage to mediate the progression of liver

Echinococcosis. In addition, high expression of Ghrelin could

activate IGF-1 through the “gastrointestinal-brain-liver axis”, and

IGF-1 could directly inactivate HSCs to inhibit fibrosis formation

(Sanz et al., 2005; Sobrevals et al., 2010; Chishima et al., 2017), and

multiple parasite-related research results both pointed out that IGF-

1 could promote parasitic parasitism and survival and accelerate

disease progression in vitro and in vivo experiments (Vendrame

et al., 2007; McDonald et al., 2014; Osorio et al., 2014; Ressurreição

et al., 2016; de O Mendes-Aguiar et al., 2021). The authors’ research

center also found that blocking IGF-1R could interfere with the
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glycolipid metabolism of echinococcus protoscoleces, causing

vesicle collapse, and exerting an insecticidal effect against

parasites (Li J et al., 2014). In addition, recent studies have found

that Cyclin A, Cyclin D1, Cyclin E1 and PCNA are highly expressed

in parallel in the early and progressive stages of liver Echinococcosis

infection. The changes in Cyclin A, Cyclin D1 and PCNA are

particularly significant and decrease in the later stages of infection

(Zhang et al., 2012; Zhang et al., 2013). This enhancement of

hepatocyte proliferation is believed to be beneficial to the repair

of chronic liver injury. Ghrelin has been proven to significantly

increase the secretion of the above cytokines and promote the

proliferation and repair of liver cells (Lee et al., 2014; Wang et al.,

2018b). However, it remains unclear whether changes in hepatocyte

proliferation and repair status contribute to the progression of liver

Echinococcosis (Figure 3).

There are currently no direct reports suggesting a correlation

between Ghrelin and liver Echinococcosis. However, the cytokines

and growth metabolic pathways regulated by Ghrelin have been

proven to ameliorate host immune-inflammation, fibrosis

formation and liver damage, and mediate the progression of

liver Echinococcosis infection. Research on the intervention of

Ghrelin to observe the progression of liver Echinococcosis will help

reveal the pathogenic mechanism and new treatment mechanism

of liver Echinococcosis from the growth metabolic pathway.

Inhibiting Ghrelin may help improve the outcome of the

disease, but this requires physical evidence from in vitro and in

vivo experiments.
5 Conclusion

There is a close and complex regulatory relationship between

Ghrelin and the liver. At present, Ghrelin’s indirect regulation of the

liver through the “gastrointestinal-brain-liver axis” has been widely
FIGURE 3

Regulatory mechanism and relationship among Ghrelin, liver fibrosis and Echinococcosis. The current research found that Ghrelin could stimulate
the secretion of hepatic IGF-1 and regulate downstream MEK/ERK1/2 and PI3K/Akt/mTOR signaling pathways, and produced interactive inhibition of
Th1 type cellular immunity, NF-kB inflammatory signalling pathway, TGF-b1/Smad3 fibrotic signalling pathway and p53 apoptotic factor, as well as
synergistic inhibition of proliferation and activation of HSCs, downregulating the secretion of fibrotic cytokines a-SMA, MMP2, TIMP1, Collagen I and
III, pro-inflammatory cytokines IL-2, IFN-g, IL-1b, TNF- a, IL-17 and TGF- b, and upregulating the secretion of the anti-inflammatory cytokines IL-4,
IL-6, IL-10 and cell proliferation factors PCNA, Cyclin A, Cyclin D1, to improve the immune inflammation, fibrotic state, cell proliferation and repair in
liver. The biological effects of Ghrelin could serve as a hepatic protective factor in improving disease outcomes of liver fibrosis. However, in liver
Echinococcosis, the biological effect of Ghrelin may promote disease progression through the aforementioned regulatory mechanisms, but there is
a lack of direct evidence. MEK, mitogen-activated extracellular signal-regulated kinase; ERK1/2, extracellular regulated proteinhnase l/2; PI3K,
phosphatidylinositide 3-kinases; mTOR, mammalian target of rapamycin; TGF-b, Transforming growth factor-b; HSCs, hepatic stellate cells; a-SMA,
a-smooth muscle actin; MMP2, matrix metallopeptidase 2; TIMP1, tissue inhibitor of matrix metalloproteinases 1; IL, interleukine; IFN-b, interferon-b;
TNF-a, tumor necrosis factor-a; PCNA, proliferating cell nuclear antigen.
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recognized. However, more and more studies have found that there

are direct regulatory pathways between them, such as the vagal

conduction pathway, but evidence is still lacking. In addition,

Ghrelin can regulate immune homeostasis and fibrosis state, but

how the interaction and crosstalk between them are generated

remains to be studied in depth. In general, Ghrelin could inhibit

the activation of immune-inflammation and fibrosis signaling

pathways in liver fibrosis diseases to promote the proliferation

and repair of liver cells, exert a protective effect, and improve

disease progression. However, during the process of liver

Echinococcosis infection, this protective effect may promote the

parasitism and survival of parasites on the host and accelerate

the progression of the disease. Inhibiting Ghrelin may help improve

the outcome of liver Echinococcosis. However, this view currently

lacks targeted experimental evidence in vitro and in vivo.
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et al. (2016). Particles from the Echinococcus granulosus laminated layer inhibit IL-4
and growth factor-driven Akt phosphorylation and proliferative responses in
macrophages. Sci. Rep. 6, 39204. doi: 10.1038/srep39204
Frontiers in Cellular and Infection Microbiology 13
Shan, X., and Yeo, G. S. (2011). Central leptin and ghrelin signalling: comparing and
contrasting their mechanisms of action in the brain. Rev. Endocr. Metab. Disord. 12,
197–209. doi: 10.1007/s11154-011-9171-7

Shimizu, K., Nishimuta, S., Fukumura, Y., MiChinaga, S., Egusa, Y., Hase, T., et al.
(2022). Liver-specific overexpression of lipoprotein lipase improves glucose
metabolism in high-fat diet-fed mice. PloS One 17, e0274297. doi: 10.1371/
journal.pone.0274297

Shintani, T., and Klionsky, D. J. (2004). Autophagy in health and disease: a double-
edged sword. Science 306, 990–995. doi: 10.1126/science.1099993

Siracusano, A., Delunardo, F., Teggi, A., and Ortona, E. (2012). Cystic
echinococcosis: aspects of immune response, immunopathogenesis and immune
evasion from the human host. Endocr. Metab. Immune Disord. Drug Targets 12, 16–
23. doi: 10.2174/187153012799279117

Sobrevals, L., Rodriguez, C., Romero-Trevejo, J. L., Gondi, G., Monreal, I., Pañeda,
A., et al. (2010). Insulin-like growth factor I gene transfer to cirrhotic liver induces
fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology 51,
912–921. doi: 10.1002/hep.23412

Song, L., Chen, T. Y., Zhao, X. J., Xu, Q., Jiao, R. Q., Li, J. M., et al. (2019).
Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-
induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-b1/Smads
signalling. Br. J. Pharmacol. 176, 1619–1634. doi: 10.1111/bph.14573

Song, B. J., and Rogulja, D. (2017). SnapShot: circadian clock. Cell 171, 1468–1.e1.
doi: 10.1016/j.cell.2017.11.021

Stevanovic, D., Starcevic, V., Vilimanovich, U., Nesic, D., Vucicevic, L., Misirkic, M.,
et al. (2012). Immunomodulatory actions of central ghrelin in diet-induced energy
imbalance. Brain Behav. Immun. 26, 150–158. doi: 10.1016/j.bbi.2011.08.009

Symonds, E. L., Riedel, C. U., O'Mahony, D., Lapthorne, S., O'Mahony, L., and
Shanahan, F. (2009). Involvement of T helper type 17 and regulatory T cell activity in
Citrobacter rodentium invasion and inflammatory damage. Clin. Exp. Immunol. 157,
148–154. doi: 10.1111/j.1365-2249.2009.03934.x

Tacke, F., Brabant, G., Kruck, E., Horn, R., Schöffski, P., Hecker, H., et al. (2003).
Ghrelin in chronic liver disease. J. Hepatol. 38, 447–454. doi: 10.1016/S0168-8278(02)
00438-5

Takahashi, H., Kato, A., Onodera, K., and Suzuki, K. (2006). Fasting plasma ghrelin
levels reflect malnutrition state in patients with liver cirrhosis. Hepatol. Res. 34, 117–
123. doi: 10.1016/j.hepres.2005.03.019

Tamarozzi, F., Mariconti, M., Neumayr, A., and Brunetti, E. (2016). The intermediate
host immune response in cystic echinococcosis. Parasite Immunol. 38, 170–181. doi:
10.1111/pim.12301

Theander-Carrillo, C., Wiedmer, P., Cettour-Rose, P., Nogueiras, R., Perez-Tilve, D.,
Pfluger, P., et al. (2006). Ghrelin action in the brain controls adipocyte metabolism. J.
Clin. Invest. 116, 1983–1993. doi: 10.1172/JCI25811

Tian, F., Liu, Y., Gao, J., Yang, N., Shang, X., Lv, J., et al. (2020). Study on the
association between TGF-b1 and liver fibrosis in patients with hepatic cystic
echinococcosis. Exp. Ther. Med. 19, 1275–1280. doi: 10.3892/etm.2019.8355

Tian, C., Zhang, L., Hu, D., and Ji, J. (2013). Ghrelin induces gastric cancer cell
proliferation, migration, and invasion through GHS-R/NF-kB signaling pathway. Mol.
Cell Biochem. 382, 163–172. doi: 10.1007/s11010-013-1731-6

Tilioua, S., Mezioug, D., Amir-Tidadini, Z. C., Medjdoub, Y. M., and Touil-Boukoffa,
C. (2020). Potential role of NF-kB pathway in the immuno-inflammatory responses
during human cystic echinococcosis. Acta Trop. 203, 105306. doi: 10.1016/
j.actatropica.2019.105306

van der Velden, L. M., Maas, P., van Amersfoort, M., Timmermans-Sprang, E. P. M.,
Mensinga, A., van der Vaart, E., et al. (2022). Small molecules to regulate the GH/IGF1
axis by inhibiting the growth hormone receptor synthesis. Front. Endocrinol.
(Lausanne) 13, 926210. doi: 10.3389/fendo.2022.926210
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