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Introduction: Emerging evidence has proven that human endogenous

retroviruses (HERVs) play a critical role in the pathogenesis of Acute Myeloid

Leukemia (AML), whereas the specific HERVs influencing the prognosis of AML

patients have yet to be fully understood.

Methods: In this study, a systematic exploration was achieved to identify

potential prognostic HERVs for AML, sourced from TCGA and GTEx database.

Differential analysis and functional enrichment studies were conducted using

GO, KEGG, GSEA, and GSVA. The ESTIMATE algorithm was applied to explore the

immune infiltration of HERVs in AML. A prognostic risk-score model was

evaluated with predicted yearly accuracy using ROC analysis.

Results: Two HERVs Suppressyn and Syncytin-2, were identified as promising

prognostic biomarkers, with high discrimination ability based on ROC analysis

between AML and healthy cohorts from TCGA. Their expression was notably

higher in AML patients compared to those in healthy individuals but correlates

with favorable clinical outcomes in sub-groups such as white race, lower WBC

counts, favorable and intermediate risks, and NPM1 or IDH1 mutation.

Suppressyn and Syncytin-2 participated in immune-related pathways and

exhibited correlations with multiple immune infiltration cells, such as T cells,

mast cells, and tumor-associated macrophages. Finally, we developed a

prognostic risk-scoring model combining Suppressyn and Syncytin-2, where a

high risk-score is associated with better prognosis.

Discussion: Collectively, our findings revealed that Suppressyn and Syncytin-2

may act as valuable diagnostic and prognostic biomarkers for individuals with

AML, while highlighting links between HERV activation, immunogenicity, and

future therapeutic targets.
KEYWORDS
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1 Introduction

Acute myeloid leukemia (AML) is one of the most common

types of hematologic malignancy where myeloid blasts fail to

undergo normal differentiation due to clonal expansion(Pollyea

et al., 2023). Despite recent therapeutic advances indicated by

increasing cure rates, the heterogeneity of AML patients often

results in poor outcomes in adults (Short et al., 2020). Advanced

knowledge in measurement techniques and pathophysiology, as

well as the approval of at least 10 recent therapies have collectively

contributed to an updated diagnostic, therapeutic, and prognostic

framework of AML(Shimony et al., 2023). Nevertheless, AML

remains a disease with highly variable prognosis, underscoring

the imperative for novel genetic and molecular predictors.

In recent times, a panel of leukemia cell lines with RNA

sequencing-based gene expression data revealed differential

expression of human endogenous retroviruses (HERVs) (Engel

et al., 2021). Known for million years of assimilating into the

human genome, these prehistoric retroviral sequences have now

become stable, constituting approximately 8% of our DNA, as

compared to the 1-2% attributed to protein-encoding genes(Lander

et al., 2001). Structurally, HERVs typically carry three primary coding

elements: group-specific antigen (gag), polymerase (pol), and

envelope (env), bordered by long terminal repeat sequence (LTRs),

all essential for survival and preservation of HERVs(Lindemann et al.,

2013). The env, though containing high levels of defects and

alternative splicing variants, is being examined for its potential

pathogenic properties that could contribute to the intricate etiology

of cancer development(Grandi and Tramontano, 2018). The

biological gradient of certain HERV products should be crucially

evaluated because they might have negligible impact on the host until

they are upregulated within a diseased context. One typical example is

ERV3-1, the extensively researched HERV-env gene that exhibits

upregulation in both blood and bone marrow cells, leading to

maintenance of AML phenotype(Nakagawa et al., 2021).

A few recent publications have discovered significant findings

that provide convincing evidence of the potential protective roles of

HERV-env products. For example, in TRACERx, a large

prospective observational cohort study on non-small cell lung

cancer, the env-glycoproteins of HERV-K(HML-2) (HGNC:

13915), were demonstrated a dominant anti-tumor antibody

target, significantly contributing to amplified B cell responses by

immune checkpoint inhibitor, thus enhancing anti-tumor

immunity(Ng et al., 2023). Suppressyn, derived from env

sequences of HERVH48, could function as a protector from

infection by competitively binding to receptors of exogenous

viruses in human preimplantation embryos and developing

placenta(Frank et al., 2022). More recently, CancerHERVdb

provides a consolidated resource for HERV activation, facilitating

the identification of cancer drivers, prognostic and risk markers,

signals that span across multiple cancer types, and immune

therpateutic targets(Stricker et al., 2023a). While these compelling

findings imply the potential benefits of a more extensive analysis of

HERV signatures in both laboratory and clinical settings, it should

be acknowledged that no definitive link has been established

between any specific HERV sequence or its expressed products,
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and the development of cancers. This is due to several confounding

factors: inadequate description of individual HERV loci, limited

functional knowledge of HERV in healthy and cancerous contexts,

and lacking of accurate molecular mechanisms of pathogenesis

(Voisset et al., 2008; Liu et al., 2020).

By means of mining public online database, our study focused

on investigating specific HERVs that correlated with the

progression and immune activity of AML. Besides, we integrate

our findings with clinical data and emphasize their potentials for

innovative therapeutic targets, aiming to enhance clinical decision-

making accuracy and facilitate the assessment of risks and

prognosis related to AML. We remain optimistic that our

findings on HERVs will contribute to the development of

promising strategies that navigate the challenges posed by AML

and ultimately enhance patient care and survival rates.
2 Materials and methods

2.1 Acquisition of AML data

We retrieved mRNA expression profiles and clinical data of

AML from TCGA. An overall count of 170 AML patient were

included, out of which 139 patients had both clinical data and

sequencing data available. We also collected normal bone marrow

samples (n=70) from the Genotype-Tissue Expression databases.

For analysis, mRNA expression was in HTSeq-FPKM format (level

3) and normalized to TPM reads.
2.2 Identification of Differentially Expressed
HERVs (DE-HERVs)

The online NetworkAnalyst (https://www.networkanalyst.ca/)

(Zhou et al., 2019) was employed to assess various mRNA levels of

HERVs in AML, comparing data from the TCGA database with

normal samples sourced from the GTEx database. The HERVs were

identified following the criteria of P value< 0.05 and absolute log2-

fold change > 1.
2.3 Prognostic values of Suppressyn and
Syncytin-2

Survival analyses were performed by Kaplan-Meier estimates

and followed by Cox regression model. Patients were divided into

groups using the median expression level of Suppressyn and

Syncytin-2 as the threshold.
2.4 Functional enrichment analyses of
Suppressyn and Syncytin-2

Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis were carried out to

perform functional enrichment analyses by utilizing R
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clusterProfiler (version 4.4.4). The significance criteria were set at P

value< 0.05 and absolute log2-fold change > 1. The AML cohort

obtained from TCGA was divided into two groups based on the

median expression scores of Suppressyn and Syncytin-2. The data

was visualized using R ggplot2 (version 3.3.6). Moreover, gene set

enrichment analysis (GSEA) was conducted using R gplot2 (version

3.3.6) and clusterProfiler (version 4.2.1). Function or pathway terms

were considered significantly enriched in a statistical context, if they

had an adjusted p-value< 0.05 and a false discovery rate (FDR)

< 0.25.
2.5 Protein-protein interaction (PPI)
network analysis of Suppressyn and
Syncytin-2

The Spearman’s correlation analysis was employed to find out

whether the diverse expression of Syncytin-2 and Suppressyn

correlates with the ten most significant differentially expressed

genes (DEGs). The DEGs were used to construct a PPI network

using the Search Tool for the Retrieval of Interacting Genes

(STRING) online database. The confidence score was considered

high when greater than 0.7. Default values were used for all other

parameters. Then, the resulting was edited via Cytoscape (version

3.9.1), a software for visualizing networks(Lotia et al., 2013). Ten

most significant hub genes were identified using Cytoscape plugin

CytHubba(Chin et al., 2014).
2.6 Estimation of immune infiltration

Immune Infiltration in AML was computed and analyzed

through the ESTIMATE package in R, using ImmuneScore,

StromalScore, and ESTIMATEScore(Yoshihara et al., 2013). We

assessed the level of immune infiltration by examining 24 immune

cells. Single-sample Gene Set Enrichment Analysis (ssGSEA) was

able to compute the proportional enrichment of these cells in AML,

implemented under the R package GSVA(Bindea et al., 2013). A

Spearman’s correlation analysis was used to determine the

relationship between Suppressyn, Syncytin-2, and these immune

cells. The disparity in immune infiltrates between diverse

expression patterns of Suppressyn and Syncytin-2 was evaluated

using Wilcoxon rank-sum tests. The connection between immune

checkpoints and expression of Suppressyn and Syncytin-2 were

further examined by R package ggplot2 (version 3.3.6), aiming to

explore their correlation with tumor immunity.
2.7 Construction and validation of a
prognostic risk-scoring model

A multivariable Cox regression was used to determine the

coefficients for DE-HERVs that showed statistical significance in

univariable Cox regression. A risk-score formula was constructed as

follows:
Frontiers in Cellular and Infection Microbiology 03
riskscore =oN
i=1(Expi � Coei)

where N = 5, the Expi denotes the expression value of every five

HERV-related genes, and the Coei represents the corresponding

coefficient obtained from the multivariable Cox regression. The R

package ggplot2 was employed by visualization. Based on the risk

scores obtained, AML patients were divided into high- and low-risk

groups using the median risk score as a threshold. The overall

survival (OS) analysis was conducted between these two groups. We

evaluated performance of the model in terms of accuracy of

prediction by the receiver operating characteristic (ROC) curves.
2.8 Statistical analyses

The significance of diverse expression of Suppressyn and

Syncytin-2 was assessed by the Wilcoxon rank-sum test. The

association of clinical parameters and Syncytin-2 expression was

explored by the Wilcoxon rank-sum test and logistic regression.

These analyses were two-sided, conducted by R software version

3.6.3., and statistical significance was defined as P values< 0.05.
3 Results

3.1 Identification of differentially expressed
HERVs (DE-HERVs) in AML cohorts

In the TCGA dataset we collected 173 AML patients, while in

the GTEx dataset, we obtained 70 normal samples. Using web-based

tool NetworkAnalyst, we identified a total of four DE-HERVs

(ERVW-1, Syncytin-2, ERV3-1, ERVMER34-1) based on the cut-

off criteria of absolute log2-fold change > 1 and an adjusted p-

value< 0.05 (Figure 1A). In AML patients, heatmaps and violin plots

demonstrated that 4 HERV-related genes were significantly

upregulated compared to normal tissue (Figures 1B, C). Among

them, ERVW-1, Suppressyn and Syncytin-2 displayed excellent

predictive performance in distinguishing AML from normal

samples, with AUC values of 0.977 (95% confidence interval [CI]

=0.958-0.996), 0.990 (95% CI =0.977-1.000) and 0.965 (95% CI

=0.940-0.990), respectively, by receiver operating characteristic

(ROC) curve analysis (Figure 1D).

Next, we applied the Kaplan-Meier approach to observe

whether diverse expression of DE-HERVs could affect patient

survival in the progression of AML. Patients were classified into

high and low expression clusters, stratified according to median

values. Our results displayed that increased Suppressyn indicated a

significantly improved prognosis for OS (HR = 0.65, 95% CI = 0.42-

0.99, P = 0.045). Similarly, higher levels of Syncytin-2 expression

were linked to an enhanced prognosis for OS (HR = 0.58, 95% CI =

0.38-0.90, P = 0.014) (Figure 1E). However, ERVW-1 and ERV3-1

present no significant correlation in terms of patient survival, as

depicted in the corresponding Kaplan-Meier curves.

According to these results, the expression levels of Suppressyn

and Syncytin-2 could function as essential indicators for AML

diagnosis and prognosis.
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3.2 The link between Suppressyn and
Syncytin-2 expression with
clinical characteristics

TCGA cohors were used to investigate how different clinical

features of AML samples (Table 1) influenced the transcription of

the two DE-HERVs. For Suppressyn, we observed statistically

significant differences in the following categories: age groups (<=

60 vs > 60, P = 0.01), race groups (Asian and Black or African
Frontiers in Cellular and Infection Microbiology 04
American vs White, P = 0.03), and NPM1 mutation (negative vs

positive, P = 0.02) (Figure 2A). When dividing Syncytin-2

between high and low expression groups, significant statistical

differences were found between subgroups in terms of

cytogenetics (inv(16) & t(8;21) & t(15;17) vs normal, P = 0.03),

cytogenetics risk (favorable vs intermediate/normal, P = 0.02),

and NPM1 mutation (negative vs positive, P = 0.04) (Figure 2B).

These findings supported that the transcription levels of

Suppressyn and Syncytin-2 are associated with specific clinical
B

C

D

E

A

FIGURE 1

Identification of DE-HERVs (A) Five DE-HERVs between AML vs normal from TCGA and GTEx. Orange ones meet the criteria of absolute log2-fold
change > 1 and adjusted p-value< 0.05. (B) Heatmap of ERVW-1, ERV3-1, Suppressyn and Syncytin-2, with red and blue indicating high and low
expression, respectively. (C) Expression of ERVW-1, Suppressyn, Syncytin-2 and ERV3-1 in AML vs normal from TCGA and GTEx. (D) ROC curves
were generated based on the expression of DE-HERVs to distinguish between AML vs normal. (E) The OS Kaplan-Meier curves for TCGA patients
with diverse expression of four DE-HERVs. DE-HERVs, differentially expressed HERVs; TCGA, The Cancer Genome Atlas; GTEx, Genotype Tissue
Expression Project; ROC, receiver operating characteristic; OS, overall survival; HR, hazard ratio; CI, confidence interval.
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TABLE 1 Clinical features of patients with AML sourced from TCGA.

Characteristics
Suppressyn, n (%) Syncytin-2, n (%)

Low High P value Low High P value

n 75 75 75 75

Gender 0.622218264 0.25028633

Female 32 (21.3%) 35 (23.3%) 37 (24.7%) 30 (20%)

Male 43 (28.7%) 40 (26.7%) 38 (25.3%) 45 (30%)

Race 0.087065416 0.97895236

Asian & Black or African American 4 (2.7%) 10 (6.7%) 7 (4.7%) 7 (4.7%)

White 71 (47.7%) 64 (43%) 68 (45.6%) 67 (45%)

Age 0.001671227 0.031508

<= 60 34 (22.7%) 53 (35.3%) 37 (24.7%) 50 (33.3%)

> 60 41 (27.3%) 22 (14.7%) 38 (25.3%) 25 (16.7%)

WBC count (×10^9/L) 0.08499266 0.4598313

<= 20 33 (22.1%) 43 (28.9%) 36 (24.2%) 40 (26.8%)

> 20 42 (28.2%) 31 (20.8%) 39 (26.2%) 34 (22.8%)

BM blasts (%) 0.241988929 0.61606051

<= 20 33 (22%) 26 (17.3%) 28 (18.7%) 31 (20.7%)

> 20 42 (28%) 49 (32.7%) 47 (31.3%) 44 (29.3%)

PB blasts (%) 0.25232333 0.25232333

<= 70 32 (21.3%) 39 (26%) 32 (21.3%) 39 (26%)

> 70 43 (28.7%) 36 (24%) 43 (28.7%) 36 (24%)

Cytogenetic risk 0.601456489 0.07425345

Favorable 14 (9.5%) 16 (10.8%) 10 (6.8%) 20 (13.5%)

Intermediate/normal 44 (29.7%) 38 (25.7%) 47 (31.8%) 35 (23.6%)

Poor 16 (10.8%) 20 (13.5%) 17 (11.5%) 19 (12.8%)

FAB classifications 0.013352135 0.00385272

M0 & M1 & M2 36 (24.3%) 52 (35.1%) 43 (29.1%) 45 (30.4%)

M3 6 (4.1%) 8 (5.4%) 2 (1.4%) 12 (8.1%)

M4 20 (13.5%) 9 (6.1%) 17 (11.5%) 12 (8.1%)

M5 11 (7.4%) 4 (2.7%) 12 (8.1%) 3 (2%)

M6 2 (1.4%) 0 (0%) 0 (0%) 2 (1.4%)

Cytogenetics 0.438203237 0.14077621

Normal 38 (28.4%) 31 (23.1%) 38 (28.4%) 31 (23.1%)

inv(16) & t(15;17) & t(8;21) 12 (9%) 13 (9.7%) 8 (6%) 17 (12.7%)

+8 & del(5) & del(7) & t(9;11) & Complex 17 (12.7%) 23 (17.2%) 20 (14.9%) 20 (14.9%)

FLT3 mutation 0.772014679 0.5168341

Negative 52 (35.6%) 49 (33.6%) 53 (36.3%) 48 (32.9%)

Positive 22 (15.1%) 23 (15.8%) 21 (14.4%) 24 (16.4%)

IDH1 R132 mutation 0.771512451 0.77151245

Negative 67 (45.3%) 68 (45.9%) 67 (45.3%) 68 (45.9%)

(Continued)
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TABLE 1 Continued

Characteristics
Suppressyn, n (%) Syncytin-2, n (%)

Low High P value Low High P value

Positive 7 (4.7%) 6 (4.1%) 7 (4.7%) 6 (4.1%)

IDH1 R140 mutation 0.078717486 0.07871749

Negative 66 (44.6%) 70 (47.3%) 66 (44.6%) 70 (47.3%)

Positive 9 (6.1%) 3 (2%) 9 (6.1%) 3 (2%)

IDH1 R172 mutation 0.46463152 0.48846312

Negative 75 (50.7%) 71 (48%) 73 (49.3%) 73 (49.3%)

Positive 0 (0%) 2 (1.4%) 2 (1.4%) 0 (0%)

RAS mutation 1 0.73089229

Negative 71 (47.7%) 70 (47%) 70 (47%) 71 (47.7%)

Positive 4 (2.7%) 4 (2.7%) 5 (3.4%) 3 (2%)

NPM1 mutation 0.18110141 0.03345724

Negative 55 (36.9%) 61 (40.9%) 53 (35.6%) 63 (42.3%)

Positive 20 (13.4%) 13 (8.7%) 22 (14.8%) 11 (7.4%)

OS event 0.124214914 0.02637985

Alive 22 (14.7%) 31 (20.7%) 20 (13.3%) 33 (22%)

Dead 53 (35.3%) 44 (29.3%) 　 55 (36.7%) 42 (28%) 　
F
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n, number of patients; WBC, white blood cell; BM, bone marrow; PB, peripheral blood; FAB, French-American-British.
Bold values are indicated typical factors in each AML samples.
B

A

FIGURE 2

Associations between Suppressyn, Syncytin-2 expressions and clinicopathological characteristics, sourced from TCGA-AML cohorts. (A) Suppressyn
expression in relation to ages, race, and NPM1 mutation in AML. (B) Syncytin-2 expression in relation to cytogenetics risk stratifications and NPM1
mutation in AML.
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features of AML, offering valuable insights into the potential

involvement of these HERVs.
3.3 Prognostic value of Suppressyn and
Syncytin-2 in AML

Furthermore, we evaluated their prognostic value in different

subgroups of AML based on OS. Our findings showed that high

Suppressyn expression consistently linked to favorable outcomes in

subgroups, including race (white, HR = 0.55, 95% CI = 0.36-0.86,

P = 0.009), BM blasts (<= 20%, HR = 0.43, 95% CI = 0.22-0.86,

P = 0.018), cytogenetic risks (intermediate/normal, HR = 0.54, 95%

CI = 0.31-0.94, P = 0.028), RAS mutation (negative, HR = 0.60, 95%

CI = 0.39-0.93, P = 0.023), NPM1 mutation (negative, HR = 0.61,

95% CI = 0.37-1.00, P = 0.049) and IDH1 mutation (R172 negative,

HR = 0.59, 95% CI = 0.38-0.90, P = 0.015) (Figure 3).

Likewise, high Syncytin-2 expression linked to better survival

outcomes in AML subgroups, including race (white, HR = 0.59, 95%

CI = 0.38-0.92, P = 0.021), BM blasts (<= 20%, HR = 0.38, 95% CI =

0.19-0.77, P = 0.007), WBC counts (<= 20, HR = 0.43, 95% CI =

0.23-0.78, P = 0.006), cytogenetic risks (favorable & intermediate/

normal, HR = 0.53, 95% CI = 0.32-0.89, P = 0.016), RAS mutation

(negative, HR = 0.55, 95% CI = 0.35-0.86, P = 0.008), IDH1

mutation (R132 negative, HR = 0.64, 95% CI = 0.41-0.99, P =

0.046), IDH1 mutation (R172 negative, HR = 0.60, 95% CI = 0.39-

0.92, P = 0.019), and IDH1 mutation (R140 negative, HR = 0.63,

95% CI = 0.40-0.99, P = 0.044) (Figure 4).
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3.4 Analysis of DEGs and PPI network in
AML based on Suppressyn and Syncytin-2

Gene expression profiles of AML cohorts exhibiting diverse

expressions of two DE-HERVs enabled us to pinpoint a distinct set

of DEGs. The criteria were set at |Log2-FC| > 1 and p-value< 0.05.

Volcano plots displayed DEGs between high and low Suppressyn

groups (Figure 5A). The ten most significant DEGs (AC074389.2,

CT45A1, AC109492.1, CT45A10, PPDPFL, LINC02059, TPRG1-

AS1, RN7SKP169, MY018B and AC007091.1) are presented in

Figure 5B and Supplementary Table 1. Using the online STRING,

we generated a network of protein crosstalk to explore predicted

correlations between DEGs (Supplementary Figure 1A). Utilizing

the same tool, our analysis also revealed from the PPI network an

intricate group of hub genes, with the ten most significant identified

as follows: IL10, CD4, ITGAM, CD86, CD163, MRC1, IL6, CD68,

CCR5 and CCR1 (Figure 5C).

In a similar manner, we utilized volcano plots to compare DEGs in

individuals with varying expression of Syncytin-2 (Figure 5D). We also

delved deeper into the relationship between Syncytin-2 and the ten

most significant DEGs, which consisted of PDPN, SLC10A2, RASL12,

SLITRK6, AC116609.1, AL445209.1, NKX3-2, POU4F1, HMX3, and

AL139351.2 (Figure 5E and Supplementary Table 2). Moreover, we

utilized STRING to develope a PPI network, with the objective of

exploring possible interactions among DEGs (Supplementary

Figure 1B). The ten most significant hub genes were identified as

ADAMTS2, ADAMTS5, SEMA5B, ADAMTS15, ADAMTSL3,

THSD7A, THSD4, ADAMTS20, LAMB3, and LAMB2 (Figure 5F).
FIGURE 3

Based on Kaplan-Meier analysis, the prognostic values (OS survival curves) of Suppressyn in AML were evaluated in various clinical subgroups of
races (white), BM blasts (<= 20%), cytogenetic risks (intermediate/normal), RAS mutation (negative), NPM1 mutation (negative) and IDH1 mutation
(R172 negative).
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3.5 Functional enrichment analysis

Our analysis revealed that DEGs associated with Suppressyn

showed significant enrichment in GO terms. These included the

regulation of immune effector processes, collagen-containing

extracellular matrix, and immunoglobulin binding. Moreover, the

KEGG analysis highlighted significantly DEGs-enriched pathways,

such as neutrophil extracellular trap formation (Figure 6A and

Supplementary Table 3). Furthermore, we conducted Gene Set

Enrichment Analysis (GSEA) using GSEA/MSigDB, which

demonstrated enriched immune-associated biological processes

associated with Suppressyn. These processes included

immunoregulatory interactions between a lymphoid and non-

lymphoid cell, antigen activation of B cell receptors, and CD22

mediated BCR regulation (Figure 6B and Supplementary Table 4).

When target switches to Syncytin-2 related DEGs, GO terms

displayed a significant enrichment in response to cellular adhesion,

such asmolecules of plasma tomembrane adhesion, collagen-containing

extracellular matrix, and cell adhesion mediator activity (Figure 6C and

Supplementary Table 5). Similar aspects could be found in the KEGG

pathway analysis. Interestingly, GSEA analysis also discovered the

potential roles of Syncytin-2 in patterns of immunoregulation

(Figure 6D and Supplementary Table 6). Taken together, this

functional exploration revealed both involvement of Suppressyn and

Syncytin-2 in enhancing the immune phenotype in AML.
3.6 Correlation between Suppressyn and
Syncytin-2 expression and
immune infiltration

The ESTIMATE algorithm was applied to compute stromal,

immune, ESTIMATE scores to determine the link between
Frontiers in Cellular and Infection Microbiology 08
Suppressyn and Syncytin-2 and immune infiltrates in AML. Both

Suppressyn and Syncytin-2 displayed a notable inverse correlation

with immune scores and ESTIMATE scores, indicating a substantial

influence on immune cell infiltration (Figures 7A, B).

In addition, we employed single-sample GSEA to demonstrate a

positive link between Suppressyn with T-helper cells (r = 0.384) and

Tcm (r = 0.257), while a negative link was oberved with

macrophages (r = -0.333) and iDC (r = -0.331) (Figure 7C). With

respect to Syncytin-2, we found it positively linked with multiple

immune infiltrates, including T-helper cells (r = 0.385), Tcm (r =

0.335), and mast cells (r = 0.311), but a negative linke with

macrophages (r = -0.304) (Figure 7D). All these findings were

within strong significance, with P< 0.001.

Following this, we explored the relationship between

Suppressyn and Syncytin-2 expression and immune checkpoints,

grouped by immunoinhibitors and immunostimulators. Notably,

both Suppressyn and Syncytin-2 showed similar expression

patterns. They were positively correlated with immunoinhibitors,

such as CD160, ADORA2A, CD274, CD96, TGFBR1 and CD244

(Figures 8A, B), while displaying a negative correlation with

immunostimulators, including TNFSF13B, TNFSF13, CXCR4 and

CD86 (Figures 8C, D), with more detai ls showed in

Supplementary Table 7.
3.7 Construction of a prognostic (risk-
score) model based on Suppressyn and
Syncytin-2

The ability to accurately classify patients as either high- or low-

risk for AML progression is of utmost importance for patient

management. After conducting an initial preselection step using

univariate Cox regression analysis, Suppressyn and Syncytin-2 are
FIGURE 4

Based on Kaplan-Meier analysis, the prognostic values (OS survival curves) of Syncytin-2 in AML were evaluated in various clinical subgroups of races
(white), BM blasts (<= 20%), WBC count(<= 20%), cytogenetic risks (Favorable & intermediate/normal), RAS mutation (negative), IDH1 mutation (R132
negative), IDH1 mutation (R172 negative) and IDH1 mutation (R140 negative).
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significantly linked to patient survival (P< 0.05) (Figure 9A). To

take into account the expression patterns and regression

coefficients, we computed a risk score using the formula: Risk

score = Suppressyn expression × (-0.19727) + Syncytin-2

expression × (-0.20209). According to their risk scores, AML

patients sourced from the TCGA cohort were stratified as low-

and high-risk groups (Figure 9B). Individuals in the low-risk
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category experienced lower mortality rates and longer survival

periods compared to those in the high-risk category. According to

the Kaplan-Meier curves, the high-risk category demonstrated a

lower probability of survival in comparison to the low-risk category

(HR = 1.83, 95% CI = 1.19 – 2.81, P = 0.006) (Figure 9C). The

prognostic accuracy for OS stood at 0.611 after 1 year, 0.587 after 3

years, and 0.768 after 5 years based on time-dependent ROC
B

C

D

E

F

A

FIGURE 5

DEGs associated with Suppressyn and Syncytin-2 expression. Volcano plots of DEGs based on (A) Suppressyn and (D) Syncytin-2. The blue dots
represent downregulated DEGs, while the red dots represent upregulated DEGs. Heatmap of top ten DEGs associated with (B) Suppressyn and
(E) Syncytin-2. Top ten hub genes in (C) Suppressyn-related and (F) Syncytin-2-related DEGs. Higher and lower sequences are represented
accordingly by red and yellow colors.
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analysis (Figure 9D). These results highlight the potential of the

Suppressyn and Syncytin-2 -based risk-scoring model as a valuable

tool for predicting AML patient outcomes.
4 Discussion

Previous studies have indicated that HERV is detectable in both

normal and pathological conditions, with varying degrees of

expression thresholds(Matteucci et al., 2018; Larouche et al., 2020;

Kassiotis, 2023; Stricker et al., 2023b). High-throughput RNA

sequencing of datasets including AML has revealed a

comprehensive screening platform to identify potential HERV

families and elements(Tokuyama et al., 2018; Deniz et al., 2020;

Engel et al., 2021; Ng et al., 2023; Stricker et al., 2023a). However,

few studies have provided direct evidence of specific HERVs that

serve as clearer biomarkers or therapeutic targets, and this issue

requires further investigation and resolution.
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In our study, we made a novel observation regarding the high

expression of Suppressyn (ERVH48-1, HGCN: 17216) and

Syncytin-2 (ERVFRD-1, HGCN: 33823) in AML, which showed

significant survival differences. This finding is particularly exciting

because Suppressyn and Syncytin-2, previously known for their

essential role in the merging of villous trophoblast with the

syncytiotrophoblast (also proved by Figure 6), now appear to play

a crucial role in AML as well (Denner, 2016). While cell-cell fusion

processes similar to viral infection and cancer metastasis are

relatively rare in hematological malignancies, this study highlights

their potential importance in AML. It is worth noting that we

excluded syncytin-1 (ERVW-1, HGCN: 13525) from our

subsequent analysis due to its lack of clinical significance. An

additional reason for excluding syncytin-1 from our analysis is

that epidemiological associations should go beyond simply

supporting biological hypotheses. Instead, they should align with

the existing knowledge regarding practical outcomes and

pathogenesis of AML.
B

C

D

A

FIGURE 6

Functional Analysis of DEGs based on Suppressyn and Syncytin-2. (A) GO and KEGG analysis of Suppressyn-related DEGs. (B) Gene sets relating to
Suppressyn-related DEGs were analyzed by GSEA using all canonical pathways. (C) GO and KEGG analysis of Syncytin-2-related DEGs. (D) Gene sets
relating to Syncytin-2-related DEGs were analyzed by GSEA using all canonical pathways. BP, biological process; CC, cellular component; MF,
molecular function; NES, normalized enrichment score.
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Next, we discovered that Suppressyn and Syncytin-2 exhibited

significant diagnostic value in AML patients, as indicated by high

ROC levels (Figure 1). These two HERVs also served as promising

prognostic biomarkers in AML, supported by strong correlation

with favorable outcomes such as lower cytogenetic risks and

absence of mutations in NPM1. Mutation of NPM1 generally

coincides with FLT3-ITD, DNMT3A or IDH1/2, leading to

inferior recovery and OS in AML(Papaemmanuil et al., 2016;

Dunlap et al., 2019). Real-world observation studies have

suggested that AML patients with lower copies of NPM1/mut

tend to have a favorable prognosis(Döhner et al., 2017), which

aligns with the favorable clinical outcomes based on our findings in

higher Suppressyn groups (Figure 3). Additionally, the prognostic

influence of IDH mutations can differ depending on the specific

location of the mutation at diagnosis, such as IDH1 R132, IDH2

R140/R172(Pollyea et al., 2023). Thus, presence of non-mutation

IDH alongside Suppressyn could be a potentially underlying

biological factor that affects patients, particularly individuals with

IDH-mutated AML after hematopoietic stem cell transplantation

(HSCT)(Bill et al., 2023). Further investigation into how candidate

HERVs correlate with cytogenetic analysis and molecular markers,

including NPM1 and IDH, can help refine current prognostics

groups, particularly in AML patients with a normal karyotype.

We also investigated the potential influence of Suppressyn and

Syncytin-2 on tumor microenvironment. The immune aspects of

the bone marrow microenvironment play a crucial role in the

biology of AML, influencing therapy response and patient

survival. In this context, we made an exciting discovery that

higher expression of Suppressyn and Syncytin-2 may function as,

or at least closely related to, favorable immunoregulators.
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First, ESTIMATE algorithm revealed a significantly negative

correlation between Suppressyn/Syncytin-2 and immune scores

(Figure 7). Higher levels of either Suppressyn or Syncytin-2 were

associated with low immune risk scores, which are known to be

linked to prolonged EFS (events-free survival) and OS (Wang et al.,

2021). In addition, we analyzed immune infiltrating cells, another

key factor contributing to the heterogeneous outcomes of AML

patients(Johnson et al., 2022). The results indicated that these two

HERVs might exhibit a distinctive immune signature. For instance,

activation of T cell subsets, especially T helper cells, was commonly

observed in both Suppressyn and Syncytin-2, suggesting that

although they no longer possess infectious activities, the immune

system still recognizes the HERV-env proteins as virus components.

Moreover, we observed a higher abundance of mast cell infiltration

in cases with elevated levels of Syncytin-2 (Figure 7D). Similar

evidence supporting better clinical outcomes associated with these

HERVs has been found not only in AML by computational analysis

(Zeng et al., 2021), but also in research-based study in lung

adenocarcinoma(Fan et al., 2023). It is worth noting that our

findings also confirmed the poor prognostic impact of

macrophage infiltration(Xu et al., 2020), which negatively

correlated with Suppressyn and/or Syncytin-2 in AML patients.

In summary, these findings are largely in line with published data,

indicating a protective potential of Suppressyn and Syncytin-2

in AML.

Therefore, our study identified the active potential of both

Suppressyn and Syncytin-2 in pathways and targets associated

with immunotherapy. This highlights at least two strategies for

leveraging their anti-leukemic effects. As an initial approach,

HERVs are exploited for their inherent properties as targets in
B

C

D

A

FIGURE 7

AML immune infiltration levels are correlated with expression of Suppressyn and Syncytin-2. (A, B) Illustration for stromal, immune, and ESTIMATE
score. (C, D) Forrest plots showing the correlation between Suppressyn/Syncytin-2 and the immune cell levels. The dot size corresponds to the
absolute values of Spearman’s correlation coefficients.
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myeloid malignancies with low mutational burdens(Saini et al.,

2020). Mutations occurring in HERV-derived sequences may

generate neoantigens perceived as foreign epitopes, thereby

amplifying immune responses against AML cells. The strong link

between tumor mutation burden and treatment responses has

spurred investigations into the hot topic of immune checkpoint

blockade(Yarchoan et al., 2017; Legrand et al., 2018). Targeting

specific HERV-derived antigens through passive and active immune

stimulation could be another viable approach to elicit an adaptive

immune response against cells expressing HERVs(Kraus et al.,

2014; Russ and Iordanskiy, 2023). In this regard, identifying

HERV tumor-specific antigens for the development of broad-

spectrum anticancer strategies holds significant therapeutic
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potential. Expanding upon this research and executing it in

clinical studies on immunotherapy will significantly enhance our

understanding regarding the importance of HERVs as targets for

adaptive immune therapy.

According to the findings of this study, both Suppressyn and

Syncytin-2 hold significant importance in AML patients. The

exact mechanism by which these two factors operate, whether

through divergent pathways or in a synergistic manner, and

whether their function is influenced by multiple factors

associated with evolutionary conservation or oncogenic

mutations, remains uncertain. We believe the potential for

targeted therapy discussed earlier in this article makes future

research challenging yet thrilling.
B
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A

FIGURE 8

The correlation of Suppressyn and Syncytin-2 with immunomodulators in AML. (A) Suppressyn and immunoinhititors; (B) Syncytin-2 and
immunoinhititors; (C) Suppressyn and immunostimulators; (D) Syncytin-2 and immunostimulators.
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5 Conclusions

In conclusion, our study revealed crucial roles of both

Suppressyn and Syncytin-2 in AML. Our research revealed

diverse expression in these HERVs between AML samples and

controls, and their expression was correlated with specific clinical

characteristics of the disease. Additionally, varied expressions of

Suppressyn and Syncytin-2 could be linked to multiple immune

infiltrates and immune checkpoints, highlighting their potential

involvement in immune regulation and immune response in

AML. These discoveries enhance our comprehension of the

molecular landscape and immunological implications of HERVs

in AML, suggesting their possibility of serving as prognostic and

diagnostic markers, as well as potentially becoming future

therapeutic targets.
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