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Fecal bacteria-free filtrate
transplantation is proved as
an effective way for the
recovery of radiation-induced
individuals in mice
Hang Zhang1, Miaomiao Dong1, Jixia Zheng1, Yapeng Yang1,
Jinhui He1, Tianhao Liu2* and Hong Wei1*

1State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology,
College of Animal Medicine, Huazhong Agricultural University, Wuhan, China, 2Department of
Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
Background: Ionizing radiation can cause intestinal microecological dysbiosis,

resulting in changes in the composition and function of gut microbiota. Altered

gut microbiota is closely related to the development and progression of

radiation-induced intestinal damage. Although microbiota-oriented therapeutic

options such as fecal microbiota transplantation (FMT) have shown some efficacy

in treating radiation toxicity, safety concerns endure. Therefore, fecal bacteria-

free filtrate transplantation (FFT), which has the potential to become a possible

alternative therapy, is well worth investigating. Herein, we performed FFT in a

mouse model of radiation exposure and monitored its effects on radiation

damage phenotypes, gut microbiota, and metabolomic profiles to assess the

effectiveness of FFT as an alternative therapy to FMT safety concerns.

Results: FFT treatment conferred radioprotection against radiation-induced

toxicity, representing as better intestinal integrity, robust proinflammatory and

anti-inflammatory cytokines homeostasis, and accompanied by significant shifts

in gut microbiome. The bacterial compartment of recipients following FFT was

characterized by an enrichment of radioprotective microorganisms (members of

family Lachnospiraceae). Furthermore, metabolome data revealed increased

levels of microbially generated short-chain fatty acids (SCFAs) in the feces of

FFT mice.

Conclusions: FFT improves radiation-induced intestinal microecological

dysbiosis by reshaping intestinal mucosal barrier function, gut microbiota

configurations, and host metabolic profiles, highlighting FFT regimen as a

promising safe alternative therapy for FMT is effective in the treatment of

radiation intestinal injury.
KEYWORDS

fecal bacteria-free filtrate transplantation, intestinal mucosal barrier, gut microbiota,
radiation damage, metabolism
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Introduction

Radiation-induced intestinal injury is a leading complication of

radiotherapy for abdominal and pelvic malignancies. A number of

recently published literature have claimed that gut microbiota could

be disrupted when exposure to ionizing radiation (Cui et al., 2017;

Gerassy-Vainberg et al., 2018; Reis Ferreira et al., 2019; Zhang et al.,

2022). Radiation enteropathy profoundly affects the quality of life in

patients undergoing radiotherapy, however, treatment regimens

available remain suboptimal.

The gastrointestinal tract (GI) of mammals is home to a large

number of microorganisms, collectively known as gut microbiota,

comprising bacteria, fungi, archaea and viruses. It is estimated that

the intricate, co-evolved and commensal gut microbiota inhabiting

the GI up to 100 trillion microorganisms (Lepage et al., 2013; Guo

et al., 2020). As expected, such abundant and diverse microbial

communities dictate the heterogeneity of the genes it harbors and

their functions, raising the possibility that the crosstalk between

microbes and hosts can play a pivotal role in the whole host’s life

span (Buford, 2017; Olm et al., 2022). With advances in sequencing

technology and improvement of people’s understanding of gut

microbiota, increasing number of studies have suggested that the

imbalance and/or dysbiosis of gut microecology is closely related to

the development and progression of diseases in humans and

animals, including type 2 diabetes mellitus (Vals-Delgado et al.,

2022), obesity (Alcazar et al., 2022), depressive disorder (Zheng

et al. , 2016), tumor immunotherapy and radiotherapy

(Gopalakrishnan et al., 2018; Cui et al., 2019), and even cognitive

decline (Lee et al., 2020).

Probiotics, prebiotics and symbiotic are to date commonly used

interventions to modulate gut microbiome in both humans and

animals. Recently, fecal microbiota transplantation (FMT), whereby

fecal microbiota derived from a healthy donor is transplanted into

the recipient’s gut to restore and reconstitute the microbial

community compromised by harmful stimuli such as antibiotics

usage and ionizing radiation exposure, has been proved to be highly

effective in some clinical settings, especially in patients suffering

from recurrent Clostridium difficile infection (rCDI). Over the past

two decades, accumulating evidences have shown that the clinical

remission rate of FMT in patients with rCDI up to 90% or higher

after single or multi-dose treatments (Bakken et al., 2011; Borody

and Khoruts, 2011; Kao et al., 2017).

Although FMT represents a relatively safe bacterial-oriented

therapy, safety concern endures because no donor screening
Abbreviations: FMT, fecal microbiota transplantation; FFT, fecal bacteria-free

filtrate transplantation; SCFAs, short-chain fatty acids; GI, gastrointestinal tract;

rCDI, recurrent Clostridium difficile infection; TAI, total abdominal irradiation;

SPF, specific-pathogen-free; qPCR quantitative real-time polymerase chain

reaction; ELISA, enzyme-linked immunosorbent assay; HE, hematoxylin and

eosin; RIS, radiation injury score; DAPI, 4’, 6-diamidino-2-phenylindole; ZO-1,

zonula occludens-1; Muc-2, mucin-2; Glut1, Glucose transporter 1; IL,

interleukin; Nrf2, nuclear factor, erythroid derived 2, like 2; MDA,

malondialdehyde; TNF-a, tumor necrosis factor-a; TGF-b, transforming

growth factor-b; PDGF-c, platelet-derived growth factor c.
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standard, however rigorous, can completely rule out the risk of

delivering potentially pathogenic microbes from fresh or

cryopreserved stool preparations (Wang et al., 2019; Zhang et al.,

2020). Of these microbes, many of are inherent to the engraftment

of living gut microbiota. Accordingly, further investigations

focusing on more safe and efficacious interventions for the

therapy of radiation enteropathy and other gut dysbiosis related

disorders are warranted. Studies have highlighted that a vast array

of viruses residing in the human intestinal tract, which collectively

referred as the enteric virome, are considered as an important

regulator in shaping gut microbiota via predator-prey dynamics

(Shkoporov and Hill, 2019). Of note, the vast majority of enteric

virome are bacteriophages, which are specific to infect their

bacterial hosts (Mirzaei and Maurice, 2017), indicating of the

potential to impact on host pathophysiology. However, the main

focus of current research has been on the FMT, whether and how

fecal bacteria-free filtrate transplantation (FFT), rather than intact

bacterial cells, has any effect on radiation-induced intestinal injury

remains poorly understood.

Herein, we postulate that FFT could communicate with

bacteriome and modulate the structure and diversity of microbial

community, thereby manipulating the gut microbiome and

influencing host phenotype after radiotherapy. For the purpose,

mice were subjected to total abdominal irradiation (TAI) with a X-

ray irradiator to mimic radiation toxicity of radiotherapy in cancer

patients. Fecal pellets from both age- and sex-matched donor mice

were collected for the preparation of fecal bacteria-free suspension

and then introduced into the recipient mice by oral gavage. We

assessed the gut microbiota configurations and metabolome profiles

of recipient mice and the underlying mechanisms of FFT, to

evaluate the efficacy of FFT in radiation-induced intestinal injury.
Materials and methods

Animals

Twenty-four 8- to 10-week-old male C57BL/6 mice weighing

approximately 20-22 g were purchased from Hunan SJA laboratory

animals Co. Ltd (China), housed in a specific-pathogen-free (SPF)

animal facility at the laboratory animal center of Huazhong

Agricultural University and fed a standard chow diet ad libitum.

All mice used in the present study were acclimatized at least for 5

days before any experimental treatment and maintained under a 12-

h light/dark cycle. Before irradiation, the mice were randomly

divided into three groups as follows: (1) sham control group, that

is, mice were anesthetized by intraperitoneal injection of Avertin

(250 mg/kg) without irradiation, (2) vehicle group, where the mice

were irradiated under anesthesia using Avertin i.p. and treated with

sterile saline, and (3) FFT-treated group, the irradiated mice were

gavaged with the FFT preparation at the predetermined time points.

The detailed administration schedule is shown in Figure 1A. Entire

experimental procedures involving mice were performed and

approved by the experimental animal welfare ethics committee of

Huazhong Agricultural University (license number HZAUMO-

2022-0150).
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Irradiated mouse model

A RS-2000-PRO Biological System X-ray irradiator (Rad Source

Technologies, Inc., Florida, America) was used in our study. The

mice were subjected to a single dose of 10 Gy total abdominal

irradiation at a dose rate of 1.053 Gy/min under anesthesia using a

special device equipped with the irradiator, so that the whole

abdomen was irradiated while the rest of the mouse body was

shield by a lead shielding. Following irradiation, the mice were

returned to the animal facility, monitored daily, and evaluated for

clinical scoring consisting of seven parameters such as weight loss,

temperature change, physical appearance, posture, mobility, food

consumption, and hydration, as previously described (Guo

et al., 2020).
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Preparation of fecal bacteria-free
suspension and administration

Fresh stool was collected from 12 gender- and age-matched

donor mice from three vendors (four mice from each vendor), and

then pooled together to maximize the diversity of viral profile. The

fecal bacteria-free suspension was prepared according to a recent

study reported by Ott et al. (Ott et al., 2017), with minor

modifications. More details are presented in Additional file 1.

Mice in FFT-treated group were administered with a 200

microliters aliquot of prepared suspension via oral route on the

day before irradiation and daily after irradiation for 7 days. While

sham and vehicle groups of mice received an equal volume of sterile

vehicle solution as above.
B

C

D

E

A

FIGURE 1

FFT from the health counterparts decreases weight loss and clinical score. (A) Illustration of recipient mice with or without radiation challenge
received FFT or vehicle treatment at the indicated time points (B) Changes in body weight over the course of the experiment. (C) Changes in clinical
score over the course of the experiment. (D) The percentage of initial body weight at the end of the experiment. (E) Clinical score at the end of the
experiment. FFT, fecal bacteria-free filtrate transplantation; *P < 0.05, ****P < 0.0001; ns, no significance. Data are reported as mean ± SEM. Each
symbol represents a mouse.
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Measurement of abdominal organs

Fourteen days after irradiation, all 24 recipient mice were

euthanized by cervical dislocation, and then the small intestine,

spleens, and kidneys were excised and weighted correspondingly.

The entire colon segments were also harvested and measured on

day 14 following irradiation.
Quantitative real-time polymerase
chain reaction

Cytokine expression was determined by quantitative real-time

polymerase chain reaction (qPCR). All experimental mice were

sacrificed 14 days post radiation and the colonic segment was

harvested. Total RNA was then extracted using FastPure Cell/

Tissue Total RNA Isolation kit (Vazyme, Nanjing, China)

according to the manufacturer’s instructions. Thereafter, reverse

transcription was conducted with HiScript III RT SuperMix for

qPCR (+ gDNA wiper) (Vazyme, Nanjing, China) following the

manufacturer’s protocols. The qPCR was performed using ChamQ

Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) in a

20 microliters reaction system according to the manufacturer’s

guidelines. The primer sets used in this study are listed in

Additional file 1. Gapdh was used as the internal reference gene.
Enzyme-linked immunosorbent assay

For preparation of serum samples, peripheral blood was

obtained from mouse orbital sinus, centrifuged at 1500 rpm for

15 min at 4°C, snap frozen in liquid nitrogen and stored at -80°C

until analysis. The concentrations of target proteins in serum were

determined by mouse enzyme-linked immunosorbent assay

(ELISA) kits (mlbio, Shanghai, China) in accordance with the

standard protocols. Absorbance of each well was measured at 450

nm with a microplate reader.
Histopathological analysis

Colonic segments were harvested and fixed in 4% paraformaldehyde

for at least 24 h at room temperature for histopathological evaluation. For

this purpose, the fixed colonic segments were dehydrated, paraffin

embedded, chopped into 4-mm sections and stained with hematoxylin

and eosin (HE). The slides were evaluated by a GI pathologist blinded to

study designs using a semiquantitative radiation injury score (RIS)

system consisting of seven histopathology items, as described

previously (Langberg et al., 1996; Demirer et al., 2006).

Immunofluorescence staining

After irradiation at day 14 of 10 Gy TAI, mice were sacrificed

under anesthesia. The ileum specimens were harvested, washed in

ice-cold phosphate buffer saline (PBS), fixed in 4% paraformaldehyde

overnight and chopped into 4-mm sections. Endogenous peroxidase

activity was quenched with fluorescence quenching agent for 5 min
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and rinsed with running water for 10min. Sections were blocked with

bovine serum albumin for 30 min, then incubated with primary

antibodies against gH2AX (Abcam, ab81299) overnight at 4°C and

washed with PBS. After incubating with secondary antibodies in the

dark for 50 min, the slides were subsequently counterstained with 4’,

6-diamidino-2-phenylindole (DAPI). All slides were observed under

fluorescence microscope (Eclipse 80i, Nikon) and images

were collected.
Metagenomic sequencing

Fecal pellets were collected from each mouse before sacrificed,

snap frozen in liquid nitrogen and stored at -80°C for

experimentation. Fecal microbial DNA was extracted using the

E.Z.N.A.® stool DNA Kit (Omega Bio-tek, Norcross, GA, USA)

according to the manufacturer’s protocols. Then, the DNA obtained

was quantified (NanoDrop 2000) followed by library constructed

(TruSeq™ DNA Sample Prep Kit, Illumina). The qualified libraries

were amplified with a cBot TruSeq PE Cluster Kit (Illumina) and

sequenced on an Illumina HiSeq 2000 platform (Truseq SBS Kit v3-

HS) with pair-end 150 bp (PE150) mode, with an average

sequencing depth of 86, 253,400 reads (13G raw data) per sample.

All the raw sequencing data has been deposited into the NCBI

public repository with the BioProject ID PRJNA1047338. The raw

sequence preprocessing, quality control and optimization and

taxonomic annotation are presented in Additional file 1.
Targeted metabolomics profiling

Mice feces were used for metabolomics analysis. For this

purpose, an ultra-performance liquid chromatography coupled to

tandem mass spectrometry (UPLC-MS/MS) system (ACQUITY

UPLC-Xevo TQ-S, Waters Corp., Milford, MA, USA) was used to

quantify metabolites present in feces. Briefly, three to five fecal

pellets from each mouse were thawed on ice-bath to diminish

degradation, homogenated with zirconium oxide beads and

methanol containing internal standard added to extract the

metabolites, followed by centrifugation at 18,000 g for 20 min.

Subsequent procedures were conducted on the Eppendorf

epMotion Workstation (Eppendorf Inc., Humburg, Germany).

ACQUITY UPLC BEH C18 1.7 µm VanGuard pre-column (2.1×

5 mm) and ACQUITY UPLC BEH C18 1.7 µm analytical column

(2.1 × 100 mm) were employed to determine compounds to be

tested. The column temperature was set at 40°C and the flow rate of

mobile phase was 0.4 mL/min. The raw data files generated by

UPLC-MS/MS were processed using the TMBQ software (v1.0,

Metabo-Profile, Shanghai, China), which can perform a collection

of data processing, interpretation, and visualization.
Statistical analysis

All data are reported asmean ± standard error of the mean (mean

± SEM). Statistical differences between two groups were analyzed

using either Student T test or theMann-Whitney U test based on data
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normality distribution and variance similarity, which were assessed

by the Kolmogorov-Smirnov normality test with Dallal-Wilkinson-

Lillie for P value. Statistical analysis was completed using GraphPad

Prism software (version 8.0.1, San Diego, CA, USA). Result with P <

0.05 was defined as statistically significant.
Results

FFT from the health counterparts
decreases weight loss and clinical score

It has been reported that the gut microbiota might be

substantially altered by radiation challenge. To determine whether

fecal bacteria-free filtrate plays a role in maintaining intestinal

homeostasis, we performed FFT in a mouse model to unravel the

potential of the sterile fecal filtrate fraction. The radiation exposure

significantly reduced body weight in both vehicle- (P < 0.0001) and

FFT-treated mice within the first 5 days relative to sham-irradiated

mice (Figure 1B). Intriguingly, FFT treatment clearly erased (P <

0.0001) the body weight loss compared with vehicle group of mice

(Figure 1D), and we also found that there was no statistically

significant between the FFT and sham treatment groups at

termination of the experiment (Figure 1D). Besides that, the

clinical score was significantly higher (P < 0.05) in vehicle

treatment group than in sham control group, whereas orally

administered FFT markedly reversed the tendency (Figures 1C, E).
FFT ameliorates radiation caused
GI toxicities

At termination, the abdominal organs and tissues, including the

entire small intestine, colon section, spleens and kidneys, were
Frontiers in Cellular and Infection Microbiology 05
harvested and measured to identify whether FFT treatment had a

radioprotective effect against radiation caused GI injury. As shown in

Figure 2A, the relative weight of small intestine was overtly decreased

(P < 0.05) in vehicle treated mice than in sham controls, whereas FFT

treatment remarkedly augmented (P < 0.01) the relative weight of

small intestinal. In parallel, the size and relative weight of the spleens

were also significantly reduced (P < 0.01) in mice subjected to 10 Gy

of TAI challenge compared with sham irradiated mice; nevertheless,

FFT treatment slightly abrogated (P < 0.05) the changes (Figure 2B).

The kidney index, which refers to the percentage of wet kidney weight

relative to body weight, was decreased slightly in irradiated mice with

or without FFT gavage compared with sham control mice, although

there was no statistical difference between the two groups (Figure 2C).

As expected, TAI exposure resulted in shortened colorectal length,

but FFT regimen significantly prolonged (P < 0.01) colorectal length

(Figures 2D, E). Taken together, these observations suggest that FFT

treatment ameliorates radiation caused GI toxicities.
FFT restores radiation caused GI structural
and functional damage

To further interrogate how FFT treatment protects mice against

radiation-induced GI structure and function damage, we first

stained the colonic tissues of mice with HE staining to conducted

overall histopathological evaluation. Histopathological analysis

showed that RIS score of the FFT group was significantly lower

(P < 0.001) than that of the vehicle group (Figures 3A, B), indicating

that FFT might exert a protective effect on intestinal injury caused

by radiation. Immunofluorescence staining of g-H2AX, a marker of

DNA damage, further validated that FFT treatment significantly

reduced (P < 0.001) radiation induced DNA damage in intestinal

cells compared with vehicle group (Figures 3C, D).
B

C D E

A

FIGURE 2

FFT ameliorates GI toxicities caused by radiation exposure. (A) Relative weight of the small intestine. (B) Relative weight of the spleen. (C) Kidney
index. (D) Colorectal length. (E) Representative photo of the colorectal. FFT, fecal bacteria-free filtrate transplantation; *P < 0.05, **P < 0.01; ns, no
significance. Data are reported as mean ± SEM.
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To better understand the mechanisms by which FFT treatment

protects the intestinal tract from radiation induced dysfunction,

colonic tissue was used for determination of mRNA expression

using qPCR. And results suggested that FFT treatment significantly

enhanced (P < 0.05) the intestinal integrity in mice subject to TAI

(Figures 3E, F; Figure S1). In parallel, the relative mRNA expression

levels of proinflammatory cytokines, including IL-1b (P < 0.01),
Frontiers in Cellular and Infection Microbiology 06
TNF-a (P < 0.05) and IL-8 (P < 0.01), were dramatically reduced in

FFT group compared with vehicle controls (Figures 3G, H, K).

Notably, FFT treatment also significantly decreased (P < 0.001) the

extent of fibrosis and heightened (P < 0.05) the anti-inflammatory

cytokine expression (Figures 3I, J). Together, these findings indicate

that FFT treatment contributes to the recovery of intestinal integrity

and function following radiation exposure.
B

C

D E F

G H I

J

A

K

FIGURE 3

FFT restores radiation caused intestinal structural and functional damage. (A,B) HE staining of colonic tissue and histological evaluation.
(C, D) Immunofluorescence staining of g-H2AX and fluorescence intensity. (E) Relative mRNA expression level of ZO-1. (F) Relative mRNA expression
level of Glut1. (G) Relative mRNA expression level of IL-1b. (H) Relative mRNA expression level of TNF-a. (I) Relative mRNA expression level of PDGF-
C. (J) Relative mRNA expression level of IL-10. (K) qPCR-based expression array of genes of interest. *P < 0.05, **P < 0.01, ***P < 0.001. Data are
reported as mean ± SEM.
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FFT ameliorates systemic inflammatory
response after radiation exposure

As previously stated, it is obvious that FFT may successfully

alleviate radiation induced local intestinal dysfunction by

maintaining intestinal integrity and cytokines expression

equilibrium, however it is uncertain if FFT has an influence on

systemic inflammatory response. Accordingly, we determined the

levels of proteins involved in proinflammatory and/or anti-

inflammatory response in serum samples using ELISA kits.

Consistent with the qPCR results described above, the protein

contents of proinflammatory cytokines in serum such as IL-1b (P

< 0.01), IL-6 (P < 0.001), IL-12 (P < 0.001) and TNF-a (P < 0.01),

were dramatically higher in mice only receiving radiation than

those in sham controls, but lower in FFT treatment group compared

with mice receiving radiation only (Figures 4A-D). Furthermore,

FFT treatment significantly elevated (P < 0.01) the protein contents

of anti-inflammatory cytokines in serum compared with vehicle
Frontiers in Cellular and Infection Microbiology 07
group (Figures 4E, F). Radiation challenge can result in the

activation of Nrf2 and an increase in MDA (Lu et al., 2019).

Additionally, we saw that the levels of Nrf2 (P < 0.01) and MDA

(P < 0.05), which have become markers of the formation and

removal of reactive oxygen species, were significantly greater in

the FFT treatment group compared to the vehicle group

(Figures 4G, H). Collectively, our results obtained demonstrate

that FFT plays a role in regulating radiation-challenged systemic

inflammatory response.
Alterations in fecal
microbiome composition

We analyzed the structure and composition of fecal microbiome

at termination, with emphasis on the effect of FFT treatment on fecal

bacterial composition. In general, interventional effects were seen in

both fecal bacterial and viral compositions. Specifically, the fecal
B C

D E F

G H

A

FIGURE 4

The contents of cytokines in serum. (A) Content of IL-1b in serum. (B) Content of IL-6 in serum. (C) Content of IL-12 in serum. (D) Content of TNF-a
in serum. (E) Content of IL-10 in serum. (F) Content of IL-13 in serum. (G) Content of Nrf2 in serum. (H) Content of MDA in serum. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001. Data are reported as mean ± SEM. Each symbol represents a mouse.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1343752
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2023.1343752
bacterial composition changed significantly (P < 0.05) in vehicle

group mice relative to sham controls, and the bacterial composition

of FFT group mice was likewise different from (P < 0.05) the vehicle

group mice (Figure 5A). Interestingly, the difference between the FFT

and the sham group in gut microbiome was not significant (p = 0.079,

Figure 5A). Changes in fecal virome component across groups were

similar to that of the bacteria. Results of analysis of similarities

(Anosim) of the Bray-Curtis dissimilarity metrics showed that the

fecal viral communities in the FFT group were significantly (P < 0.05)

different from those in the vehicle group, whereas no significant

differences were found in the viral communities of the sham

compared with the vehicle group and the sham with the FFT

group (Figure 5B). There was no significant difference in bacterial

Shannon index between the FFT group and the sham group, but

interestingly, the bacterial Shannon index of the FFT group was

significantly lower than that of the vehicle group; however, FFT

treatment did not affect the Shannon index of the viral communities

(Figures 5C, D).

To further untangle the effect of FFT treatment on bacterial

composition, fecal bacterial communities were analyzed at phylum

and species levels. We observed that the Bacteroidetes, Firmicutes

and Proteobacteria predominated in the gut (Figure 5E). In

addition, compared with the sham controls, the ratio of

Firmicutes to Bacteroidetes decreased in the vehicle group;

nevertheless, FFT treatment abrogated the reduction of Firmicutes

to Bacteroidetes ratio (Figure 5G), although this change did not

reach a statistically significant difference between the FFT and

vehicle groups. At the species level, the relative abundances of

Helicobacter bilis, Helicobacter sp. MIT 03-1616, Lachnospiraceae

bacterium 10-1, and Lachnospiraceae bacterium A4 in the FFT

group were higher relative to the vehicle group (Figures 5F, H).

The members of family Lachnospiraceae have showed a

radioprotective role following total body radiation [6]. Taken

together, it was showed that FFT treatment protects mice against

radiation caused local and systemic toxicities, which was related to

gut microbes.
Alterations in fecal metabolome profiles

To gain insight into the host-gut microbiota interactions, we

performed UPLC-MS/MS metabolomics analysis on feces from

mice with or without FFT intervention. Overall, compared with

the vehicle group, the metabolic profiles of mice in the FFT group

were more similar to that of the sham group. Notably, the relative

abundance of short-chain fatty acids (SCFAs), which have showed

well radioprotection benefits, was reduced following radiation

exposure, while FFT treatment clearly enhanced the relative

abundance of SCFAs (Figure 6A; Figure S2). Further, based on

the supervised and unsupervised classification discrimination

models, namely principal component analysis (PCA) and partial

least-squares discrimination analysis (PLS-DA), we found that the

metabolic profiles of FFT group were positioned between the sham

and vehicle group (Figures 6B, C), supporting the benefit of FFT

treatment for the side effects of radiotherapy.
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Through the intersection of univariate statistics and

multidimensional statistics, 20 significantly altered differential

metabolites that more likely to become potential biomarkers were

identified between the FFT group and the vehicle group. As shown in

Figure 6D, the differential metabolites investigated were mainly

composed of SCFAs, amino acids, carbohydrates and fatty acids. Of

these, a significantly increased level of butyric acids in the FFT group

was noted (Figure 6E). More specifically, FFT treatment overtly

elevated the levels of butyric acid, citric acid, maltose/lactose and

pimelic acid compared with the vehicle group, whereas the levels of

amino acids metabolites (e.g., ornithine, acetylglycine, threonine and

N- acetylserine), carnitines metabolites (e.g., oleylcarnitine and

stearylcarnitine), and fatty acids metabolites (e.g., 10, 13-

nonadecadienoic acid and 2-methy-4-pentenoic acid), were all

markedly decreased. The differential metabolites enriched in the FFT

groupmainly clustered in the butyrate metabolism pathway and lactose

degradation pathway, with an approximately 4-fold change in butyric

acid level and an 8-fold change in lactose level (Figure 6F). Taken

together, our findings suggest that FFT treatment contributes to the

production of gut microbiota-derived radioprotective metabolites.
Discussion

FFT has been successfully used in human beings and animal

models for several diseases, including rCDI, necrotizing enterocolitis,

type 2 diabetes and obesity (Ott et al., 2017; Rasmussen et al., 2020;

Brunse et al., 2022). In the present study, our observations showed

that FFT preparation originating from healthy donor mice apparently

ameliorated the detrimental effects of radiotherapy in recipient mice,

manifested as better body weight gain, lower clinical and

histopathological score, attenuated GI toxicity, as well as more

robust local and systemic cytokines homeostasis. Furthermore, we

also observed that FFT treatment significantly affected and reshaped

gut microbiome of the recipients to a large extent. Additionally, the

metabolic data indicated that FFT exerted a positive effect on the

metabolism of recipient mice, representing as the enrichment of

putative radioprotective agents such as SCFAs.

Weight loss has been proposed as a common side effect of

radiotherapy for tumors (Xiao et al., 2020). Indeed, we observed

here that FFT treatment apparently counteracted the decrease in

body weight in mice receiving radiation, whereas no similar effect was

found in vehicle treated mice. In parallel, the FFT treatment appeared

with a lower clinical sore, which is a reliable measure to assess the

severity of radiation induced sickness (Guo et al., 2020). The gut is

sensitive to radiation exposure and is susceptible to radiation injury

due to the rapid renewal of intestinal epithelial cells. Accordingly, the

level of g-H2AX, a marker intertwined with DNA damage (Lu et al.,

2019), was detected in small intestine tissue by immunofluorescence

assay. And we demonstrated that FFT treatment significantly

mitigated radiation induced DNA damage in intestinal cells

compared with vehicle group. Here we tested the role of FFT

treatment in ameliorating radiation caused GI toxicities. As

expected, FFT administration significantly offset the damage to

multiple organs and tissues in the abdomen caused by radiation
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exposure, as indicated by longer colon length, increased relative

weight of the small intestine and spleen. Similar results have also

seen in cognate FMT administration (Cui et al., 2017; Xiao

et al., 2020).

Radiation exposure can disrupt the homeostasis of the intestinal

microenvironment, leading to radiation and inflammatory

susceptibility transmission (Gerassy-Vainberg et al., 2018). In the

current study, genes expression involved in intestinal integrity and
Frontiers in Cellular and Infection Microbiology 09
function, and protein level regarding to inflammatory response

were detected to analyze the effects of FFT on local and systemic

inflammatory response. The results showed that several genes

involved in maintaining intestinal integrity and function were

differentially expressed between the FFT and vehicle groups, and

thereby confirm the beneficial effect of FFT on radiation damage.

The ZO-1 gene plays a pivotal role in the maintenance of the

intestinal physical barrier (Wu et al., 2022). The mRNA relative
B
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FIGURE 5

Altered gut microbiome in feces of recipient mice. (A) Bacterial principal coordinate analysis (PCoA). (B) Shannon index of bacterial community.
(C) Viral PCoA. (D) Shannon index of viral community. (E) Fecal bacterial communities at the phylum level. (F) Fecal bacterial communities at the
species level. (G) Ratio of Firmicutes to Bacteroidetes. (H) Relative abundance of Lachnospiraceae at species level. **P < 0.01. Data in tables
represent analysis of similarities (Anosim) based on the Bray-Curtis dissimilarity metric. Data are reported as mean ± SEM. Each symbol represents
a mouse.
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expression level of ZO-1 in FFT group was significantly higher than

that in vehicle group. Glut1 is an important glucose transporter, and

is involved in a list of physiological functions in vivo, including

maintenance of local and systemic energy homeostasis (He et al.,

2022). We observed that radiation challenge lowered the expression

of Glut1 gene, while FFT treatment significantly increased the

expression of Glut1 gene, which may indicate that FFT treatment

facilitates glucose transport in the gut, thereby leading to better

weight recovery. Il-1b and Tnf-a are two important mediators of

radiation damage, and administration of IL-1b receptor antagonists

has been shown to attenuate intestinal tissue damage (Gerassy-

Vainberg et al., 2018). PDGF-C acts as an important regulator of
Frontiers in Cellular and Infection Microbiology 10
radiation proctopathy disease by promoting inflammation and

fibrosis in colorectal tissue. Evidence has shown that the relative

mRNA expression of Pdgf-c is significantly increased in both

irradiated mouse model and patients undergoing radiotherapy,

and that radiation damage is diminished in Pdgf-c-deficient mice

(Lu et al., 2021). In the present study, compared with the sham

group, the relative expression levels of Il-1b, Tnf-a and Pdgf-c genes

were all significantly upregulated in the vehicle group, but

comparable between the sham group and the FFT group. Notably,

the relative mRNA expression of anti-inflammatory cytokine Il-10

was significantly increased in the FFT group in comparison with

both the sham group and the vehicle group. From the prospect of
B
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FIGURE 6

Fecal metabolome profiling of recipient mice. (A) A bar chart of the metabolite classification overview. (B) PCA plot of feces from sham, vehicle and FFT
groups. (C) PLS-DA plot of feces from sham, vehicle and FFT groups. (D) Heatmap of potential biomarkers between the FFT and vehicle groups, with the
screening criteria of P < 0.05, |log2FC| >= 0 in univariate analysis and VIP > 1 in multidimensional analysis. (E) Butyric acid levels in the feces of mice
treated with FFT or vehicle. (F) metabolite sets enrichment overview. Data are reported as mean ± SEM. Each symbol represents a mouse. *P < 0.05.
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protein, the trend of changes in proteins of interest in serum across

groups was almost consistent with those of the qPCR tests. Overall,

our results strongly indicate that FFT treatment positively

influences local and systemic inflammatory responses, and to

some extent counteracts some of the radiation induced toxicity.

Accumulating evidence demonstrates that radiation exposure

disrupts normal gut microbiota composition and structure, and that

“deteriorative” gut microbiota is involved in the initiation and

progression of radiation injury (Gerassy-Vainberg et al., 2018;

Wang et al., 2023). As expected, the FFT treatment significantly

affected both the bacterial and viral composition in the gut of

recipient mice, characterized by a clear separation of the vehicle

group compared to the FFT group, which is in accordance with the

findings of a previous study (Rasmussen et al., 2020). A small case

report suggested that the diversity of gut virome was associated with

clinical remission, whereby the FFT was successfully implemented

in patients with CDI (Brunse et al., 2022). In this study, FFT

moderately increased viral Shannon index compared with the

vehicle group. Contrarily, the bacterial Shannon index of the FFT

group was lower than that of the vehicle group, which may be

mediated by the predator-prey model (Shkoporov and Hill, 2019).

Whether this dichotomy has any unique role in clinical practice

remains to be further explored.

It has been shown that the Firmicutes/Bacteroidetes ratio can be

used to reflect the homeostasis of gut microbiota (Pan et al., 2022).

We found herein that the FFT reversed the decrease in the

Firmicutes/Bacteroidetes ratio in irradiated mice towards the gut

microbiota composition of the sham group. Furthermore, the

differentially enriched microbes in the FFT group were mainly

members of family Lachnospiraceae and Helicobacter bilis,

Helicobacter sp. MIT 03-1616 . The members of family

Lachnospiraceae have been shown to prevent radiation-induced

injury in mice (Guo et al., 2020), but whether these two enriched

microbial taxa have any radioprotective effect needs to be further

investigated. It has been widely accepted that there is a strong

correlation between the gut microbiota and the metabolism of its

host. In the present study, the fecal metabolome profile of the FFT

group was significantly different from the vehicle group and was

positioned between those of mice in the sham group and the vehicle

group. Moreover, SCFAs were remarkedly enriched when

comparing the FFT group with the vehicle group and the sham

group with the vehicle group, a confirmation of radioprotection by

SCFAs to a certain extent (Li et al., 2020). In addition, the butyrate

metabolism was one of the most enriched metabolism pathways of

differential metabolites in the FFT group, which was in line with

aforementioned findings.
Conclusion

In conclusion, the results of our study demonstrate radiation-

challenged induced alterations in gut microbiota configuration and

host metabolism. To the best of our knowledge, we are the first to

describe the potential of FFT manipulation to attenuate the adverse

effects imparted by radiation exposure. This study highlights that

FFT treatment may be a promising route for radiation damage.
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