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Background: Early prediction of prognosis may help early treatment measures to

reduce mortality in critically ill coronavirus disease (COVID-19) patients. The study

aimed to develop a mortality prediction model for critically ill COVID-19 patients.

Methods: This retrospective study analyzed the clinical data of critically ill

COVID-19 patients in an intensive care unit between April and June 2022.

Propensity matching scores were used to reduce the effect of confounding

factors. A predictive model was built using logistic regression analysis and

visualized using a nomogram. Calibration and receiver operating characteristic

(ROC) curves were used to estimate the accuracy and predictive value of the

model. Decision curve analysis (DCA) was used to examine the value of the

model for clinical interventions.

Results: In total, 137 critically ill COVID-19 patients were enrolled; 84 survived,

and 53 died. Univariate and multivariate logistic regression analyses revealed that

aspartate aminotransferase (AST), creatinine, and myoglobin levels were

independent prognostic factors. We constructed logistic regression prediction

models using the seven least absolute shrinkage and selection operator

regression-selected variables (hematocrit, red blood cell distribution width-

standard deviation, procalcitonin, AST, creatinine, potassium, and myoglobin;

Model 1) and three independent factor variables (Model 2). The calibration curves

suggested that the actual predictions of the two models were similar to the ideal

predictions. The ROC curve indicated that both models had good predictive

power, and Model 1 had better predictive power than Model 2. The DCA results

suggested that the model intervention was beneficial to patients and patients

benefited more from Model 1 than from Model 2.
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Conclusion: The predictive model constructed using characteristic variables

screened using LASSO regression can accurately predict the prognosis of critically

ill COVID-19 patients. This model can assist clinicians in implementing early

interventions. External validation by prospective large-sample studies is required.
KEYWORDS

COVID-19 infection, critically ill, prediction model, propensity matching scores,
logistic regression
1 Introduction

Since the 2020 coronavirus disease (COVID-19) pandemic,

another circulation of the virus had occurred in Shanghai, China.

The COVID-19 pandemic will inevitably have a major effect on the

global economy and healthcare (Lim et al., 2021). Patients with severe

COVID-19 consume most healthcare resources and have a high

mortality rate. As shown in a previous study, the mortality rate of

critically ill COVID-19 patients is approximately 38.7%, which is

similar to the results of a meta-analysis on the mortality of critically ill

COVID-19 patients (40–50%) (Armstrong et al., 2020). Another

previous study (Huang et al., 2020) showed that critically ill COVID-

19 patients had a higher risk of clinical characteristics (e.g., age,

dyspnea, and lymphocyte count <1.5×109/L) and multiple system

organ complications (acute cardiac injury, acute respiratory distress

syndrome, acute kidney injury, and shock). Mortality rate in critically

ill COVID-19 patients was significantly higher than in non-critically

ill COVID-19 patients, even when they received more major

interventions. Therefore, early detection and efforts to explore

effective therapies for critically ill COVID-19 patients are critical.

Early prediction of mortality risk may help optimize treatment,

reallocate healthcare resources, and reduce mortality in critically ill

COVID-19 patients (Lerner et al., 2008; Song et al., 2020).

Recently, several risk models for predicting death in COVID-19

patients have been published. These studies incorporated variables

from different perspectives to build predictive models, such as the

creation of a new scoring system or the development of models

through regression analysis; all models had good predictive

performance (Bello-Chavolla et al., 2020; Hu et al., 2020; Ji et al.,

2020; Knight et al., 2020; Berenguer et al., 2021). However, most

studies have examined the entire COVID-19-infected population,

regardless of disease progression. These prediction models failed to

consider the clinical use of specific models. A previous study found

that the myoglobin level at intensive care unit (ICU) admission was

an independent risk factor for death in critically ill COVID-19

patients and was linearly associated with mortality risk. Therefore,

this study aimed develop a mortality prediction model for critically

ill COVID-19 patients. We used least absolute shrinkage and

selection operator (LASSO) regression and logistic regression
02
analyses to build the mortality prediction models to assist

clinicians in identifying and implement early interventions for

critically ill COVID-19 patients at risk of death due to

critical infections.
2 Study design and methods

2.1 Patients

This study retrospectively analyzed the clinical data of critically

ill COVID-19 patients who were hospitalized in the ICU of a

university hospital between April and June 2022. Patients were

recruited based on the following inclusion criteria: (1) patients

meeting the diagnostic criteria of the Diagnostic Protocol for Novel

Coronavirus Pneumonia (Trial 10th Edition) issued by the National

Health and Wellness Commission and admission to the ICU; (2)

those who met any of the following diagnostic criteria for critically

ill COVID-19 patients: (a) respiratory failure requiring mechanical

ventilation, (b) shock, and (c) organ failure requiring intensive care

monitoring; and (3) age ≥18 years. The exclusion criteria were as

follows: (1) patients whose family members voluntarily signed a

consent form to withhold active resuscitation or other serious

underlying diseases that led to death, (2) pregnant women, and

(3) lack of laboratory markers within 48 h of ICU admission.
2.2 Data collection

Clinical and laboratory information of the participants was

collected during clinical training from the electronic medical record

system. It included the following details: (1) general data (sex and

age); (2) clinical admission data (underlying disease, referral,

vaccination, days of hospitalization, and prognosis); and (3)

laboratory markers within 48 h of ICU admission (routine blood

count, liver and kidney function parameters, myocardial markers,

coagulation function parameters, inflammatory indices, and

inflammatory factors). These laboratory markers were divided into

two categories based on whether they were within the normal range.
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2.3 Statistical analyses

Propensity matching scores were used to reduce the effect of

observed confounding factors. Normally distributed continuous

variables were expressed as mean ± standard deviation, whereas

non-normally distributed continuous variables were presented as

median ± interquartile range. Categorical variables are expressed as

percentage (%). Normally distributed continuous variables were

analyzed using the Student t-test, whereas non-normally distributed

variables were analyzed using the Mann–Whitney U test.

Categorical variables were assessed using the chi-square test.

Statistical analyses were performed using R, version 4.2.2 (the R

Project for Statistical Computing). A P-value <0.05 was considered

statistically significant.

Characteristic variables were screened using the LASSO logistic

regression analysis, and univariate and multivariate logistic

regression analyses were used to assess the association between

screened variables and patient prognosis. A predictive model was

built using logistic regression analysis and visualized using a

nomogram. Calibration and receiver operating characteristic

(ROC) curves were used to estimate the accuracy and predictive

value of the model. Decision curve analysis (DCA) was used to

examine the value of the model for clinical intervention.
3 Results

3.1 Patient characteristics

Clinical data were collected from 137 critically ill COVID-

19patients, of whom 84 survived (survival group) and 53 died

(death group). Baseline information and biochemical test results for

all patients are shown in Supplementary Table 1 (Supplementary

Table 1). The baseline data of the patients showed differences in

hypertension, diabetes mellitus, and stroke between the two groups
Frontiers in Cellular and Infection Microbiology 03
(P<0.05). To eliminate the effect of underlying diseases, we matched

deceased and surviving patients at a 1:1 ratio using propensity score

matching, resulting in 43 surviving and 43 deceased patients in this

study. Statistically significant differences were observed in the red

blood cell distribution width-standard deviation (RDW SD),

procalcitonin, aspartate aminotransferase (AST), creatinine,

potassium, troponin I, and myoglobin values. The results for the

matched patients are shown in Supplementary Table 2

(Supplementary Table 2).
3.2 Selection of characteristic variables

To identify the characteristic variables in the death group, we

analyzed the variables using LASSO logistic regression analysis, and

seven variables (hematocrit (Hct), RDW SD, procalcitonin, AST,

creatinine, potassium, and myoglobin) were finally screened

(Figures 1A, B). Univariate and multivariate logistic regression

analyses were used to evaluate the effect of the seven variables on

mortality to further identify the clinical outcomes associated with

mortality. The analyses showed that three variables (creatinine,

AST, and myoglobin) in the abnormal range were independent risk

factors for mortality (Table 1, Figure 2).

3.3 Establishment of the prediction models

We constructed logistic regression models using the seven

variables after LASSO logistic regression analysis (Model 1) and

three independent risk factors for death after LASSO logistic

regression and univariate and multivariate logistic regression

analyses (Model 2). The two models were visualized using a

nomogram (Figures 3A, B). The model was validated using

calibration curves, and the actual predictions of the two models

were similar to the ideal predictions, demonstrating a good

agreement between the predictions and observations (Figure 3C).
BA

FIGURE 1

(A) LASSO cross-validation curve. (B) Plot of the coefficients of the LASSO regression model variables. LASSO, least absolute shrinkage and
selection operator.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1309529
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fcimb.2024.1309529
TABLE 1 Results of univariate and multivariate logistic regression analyses with variants selected by LASSO regression analysis for patients.

Variants Univariate logistic regression Multivariate logistic regression

OR (95% CI) P-value OR (95% CI) Adjusted P-value

Hct 3.50 (0.88–14.00) 0.074 – –

RDW_SD 3.00 (1.20–7.70) 0.024* 3.31 (1.02–11.91) 0.053

Procalcitonin 2.80 (1.20–6.80) 0.019* 1.58 (0.50–4.96) 0.429

AST 6.70 (2.60–17.00) <0.001* 3.26 (1.04–10.51) 0.043*

Creatinine 5.00 (1.60–15.00) 0.005* 4.29 (1.14–18.45) 0.038*

Potassium 4.10 (1.30–13.00) 0.014* 3.68 (0.95–17.13) 0.072

Myoglobin 7.10 (1.90–27.00) 0.004* 8.39 (1.80–56.14) 0.013*
F
rontiers in Cellular and Infectio
n Microbiology 04
*p<0.05.
LASSO, least absolute shrinkage and selection operator; OR, odds ratio; CI, confidence interval; Hct, hematocrit; RDW_SD, red blood cell distribution width-standard deviation; AST,
aspartate aminotransferase.
B

A

FIGURE 2

Logistic regression analysis. (A) The outcome of univariate logistic regression analysis. (B) The outcome of multivariate logistic regression analysis.
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3.4 Model performance and
internal validation

The predictive ability of the models was evaluated using ROC

curve analysis, and the area under the curve (AUC) indicated that

both models had good predictions (Model 1: AUC=0.874 and

Model 2: AUC=0.804). Moreover, the predictive accuracy of

Model 1 was higher than that of Model 2 (Figure 3D). We

selected 60% of the data to validate the model predictions. The

results showed that both models had a good predictive ability

[Model 1: AUC=0.893 (0.805–0.982) and Model 2: AUC=0.814
Frontiers in Cellular and Infection Microbiology 05
(0.698–0.929)], although Model 1 was better than Model 2 in the

accuracy of predicting outcomes in critically illCOVID-19 patients

(Figures 3E, F).
3.5 Clinical benefits

We used DCA to estimate whether patients could benefit from

the models in clinical practice. The intervention was beneficial for

patients according to Model 1 when the threshold probability was

0.1–1, and the intervention according to Model 2 was beneficial to
B

C

D

E F G

A

FIGURE 3

Establishment of the prediction models. (A) Model 1 based on 7 variants. (B) Model 2 based on 3 variants. (C) Calibration curves. (D) AUCs of the two
models (AUC of Model1: 0.874; AUC of Model2: 0.804). (E, F) AUCs of internal validation using 60% data (AUC of Model1: 0.893; AUC of Model2:
0.814). (G) DCA curve showing the benefit from the models in the clinical setting. AUC, area under the curve; DCA, decision curve analysis.
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patients if the threshold probability was 0.1–0.6. When the threshold

probability was >0.22, the clinical intervention effect based on Model

1 was better than that based on Model 2 (Figure 3G).
4 Discussion

This study aimed to develop a mortality prediction model for

critically ill COVID-19 patients, and we found that the predictive

model constructed using characteristic variables screened using LASSO

regression can accurately predict the prognosis of critically ill COVID-

19 patients. In recent years, various models have been developed to

predict the mortality risk in COVID-19 patients. The models

developed by Bo et al (Chen B. et al., 2021). and Cheng et al. (2022)

were prediction models for mortality risk in severely/critically ill

patients and were validated to show that the models had good

predictive ability in all cases. However, owing to missing data, no

other prognostic laboratory indicators such as AST and lactate

dehydrogenase (LDH) were collected in these two studies. In

contrast, the mortality prediction models developed by Zeng et al.

(2021), Chen et al (Chen H. et al., 2021), and Li et al. (2021) did not

differentiate the disease severity. Our study was conducted in critically

ill COVID-19 patients to establish a model that can predict mortality

risk in such patients, who consume the most healthcare resources and

require optimization of treatment decisions and allocation of limited

healthcare resources. Owing to the small sample size included in this

study andmany independent variables and covariates between different

variables, LASSO regression analysis was used to screen potential

independent variables. Predictive models were developed directly

based on the selected variables (Model 1) and through univariate

and multivariate logistic regression analyses (Model 2). Model 1

consisted of seven variables (Hct, RDW SD, procalcitonin, AST,

creatinine, potassium, and myoglobin), whereas Model 2 consisted of

three variables (AST, creatinine, and myoglobin). Through internal

validation, we further validated the two models, showing that both had

good model effects and good predictive performance. According to the

AUC, the prediction of Model 1 was better than that of Model 2.

Several studies have reported independent risk factors for the

prognosis of COVID-19 patients. Fathalla et al. (2022) reported that

COVID-19 patients with comorbid hypertension and/or diabetes

mellitus had more severe disease and poorer prognosis and the levels

of ultrasensitive C-reactive protein (CRP), D-dimer, neutrophil to

lymphocyte ratio, and LDH at admission were independent risk

factors for patient prognosis. A retrospective analysis by Donoso-

Navarro et al. (2021) found that COVID-19 patients had more severe

disease and prognosis. Studies have also shown that age, LDH,

interleukin-6, and lymphocyte count are independent predictors of

patient mortality risk. A case-control study by Pan et al. (2020) in

China included 124 critically ill COVID-19 patients. The findings

showed that peripheral oxygen saturation, lymphocyte count, CRP,

procalcitonin, and LDH values at admission were independent

mortality risk factors critically ill COVID-19 and could be used as

independent predictors of clinical prognosis. In contrast to previous

studies, the present study showed that abnormal levels of myoglobin,

creatinine, and AST within 48h of ICU admission were independent
Frontiers in Cellular and Infection Microbiology 06
risk factors for mortality in critically ill COVID-19 patients.

Angiotensin-converting enzyme 2 (ACE2) is expressed in endothelial

and smooth muscle cells of almost all organs, and ACE2-induced

invasion in COVID-19 may lead to infection and impairment of

multiple organ functions with subsequent activation of immune

responses and cytokine inflammatory storms, further exacerbating

organ dysfunction (Xu et al., 2020). Meanwhile, non-steroidal anti-

inflammatory drugs, antivirals, antibiotics, and herbal medicines used

to relieve clinical symptoms such as fever can also cause liver and

kidney damage. Therefore, the AST and creatinine levels in these

patients were abnormal. Furthermore, various conditions such as

severe infection, systemic inflammation, and organ failure, can cause

increase myoglobin levels, which correlate with disease severity and

prognosis (Kurt-Mangold et al., 2012). COVID-19 leads to hypoxia

and systemic inflammatory storms (Hendgen-Cotta et al., 2014; Han

et al., 2020; He et al., 2020; South et al., 2020), causing nonspecific

damage to multiple organs and further increasing myoglobin levels.

Critically ill patients have a lower oxygenation index, more severe

hypoxia, and higher myoglobin levels than their counterparts.

In this study, a predictive model for assessing ICU survival in

critically ill COVID-19 patients was constructed using clinical

information and test results at ICU admission and was internally

validated as a good predictor of outcomes after ICU admission in this

patient population. In addition, screening variables using LASSO

regression analysis has the advantage of simplifying statistical

models, reducing multivariate covariance, and improving model

accuracy. These models can help physicians in the ICU identify

patients at high risk of premature death, and timely intervention will

lead to appropriate treatment strategies, thereby potentially improving

patient prognosis. An accurate prognostic assessment is essential for

the rational allocation of limited medical resources. Nevertheless, this

study has some limitations. First, it was a single-center, retrospective

study with a small sample size. Thus, external validation by prospective,

large-sample studies is required. Second, laboratory-accessible

indicators change with disease progression, and retrospective studies

could not incorporate dynamic changes in indicators into themodel for

analysis. Lastly, the virus type included in this study was the Omicron

BA.2 variant; thus, whether our results are applicable to infection with

other variant strains requires further study.
5 Conclusions

Predictive model constructed using characteristic variables

screened using LASSO regression analysis can accurately predict the

prognosis of patients with severe COVID-19. This model can assist

clinicians in implementing early interventions. Future prospective

large-sample studies are required to validate our findings.
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