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With advances in medicine, increasing medical interventions have increased the

risk of invasive fungal disease development. (1-3)-b-D glucan (BDG) is a common

fungal biomarker in serological tests. However, the scarcity of Limulus resources

for BDG detection poses a challenge. This study addresses the need for an

alternative to Limulus amebocyte lysate by using BDG mutant antibody for

chemiluminescence detection. The wild-type BDG antibody was obtained by

immunizing rabbits. An optimal V52HI/N34L Y mutant antibody, which has

increased 3.7-fold of the testing efficiency compared to the wild-type

antibody, was first achieved by mutating “hot-spot” residues that contribute to

strong non-covalent bonds, as determined by alanine scanning and molecular

dynamics simulation. The mutant was then applied to develop the magnetic

particle chemiluminescence method. 574 clinical samples were tested using the

developed method, with a cutoff value of 95 pg/mL set by Limulus amebocyte

lysate. The receiver operating characteristic curve demonstrated an area under

the curve of 0.905 (95% CI: 0.880–0.929). Chemiluminescence detected an

antigen concentration of 89.98 pg/mL, exhibiting a sensitivity of 83.33% and

specificity of 89.76%. In conclusion, the results showed a good agreement with

Limulus amebocyte lysate and demonstrated the feasibility of using BDG mutant

antibodies for invasive fungal disease diagnosis. The new method based on

chemiluminescence for detecting BDG could shorten the sample-to-result time

to approximately 30 min, rescue Limulus from being endangered and is resource

efficient in terms of equipment and the non-use of a skilled technician.
KEYWORDS

invasive fungal infections, (1-3)-b-D glucan, antibody rational design, rapid detection,
limulus, chemiluminescence
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1 Introduction

The increasing use of invasive tests, antibiotics, immunosuppressants,

glucocorticoids, and chemotherapeutic agents has led to a rise in fungal

infections, which poses a serious threat to public health. Each year, fungal

diseases cause over 1.6 million death and severely affect more than 1

billion people worldwide (Almeida et al., 2019; Fisher et al., 2022). Fungi

are diverse and adaptable organisms. They usually exist on human

mucosal surfaces, but they can invade tissues and cause invasive fungal

disease (IFD) in immunocompromised individuals (Salazar et al., 2022).

IFD has typical clinical symptoms and is difficult to diagnose, leading to

delayed treatment and severe consequences (Terrero-Salcedo and Powers-

Fletcher, 2020). However, traditional diagnostic methods such as culture

and histopathology have limitations in sensitivity and speed,making rapid

and accurate microbiological diagnosis crucial (Ricna et al., 2019; Lass-

Flörl et al., 2021). Serological diagnosis has become a popular auxiliary

clinical diagnostic method for IFD with the advantages of high sensitivity,

strong specificity, and convenience (Hage et al., 2019; Azap, 2020).

(1–3)-b-D glucan (BDG) is one of the fungal biomarkers widely

used in serological detection (Mercier et al., 2019; Finkelman, 2021).

Fungal Glucan Detection (G test) was then developed for testing the

concentration of BDG in serum, which could help to diagnose IFD

infection (Yoshida, 2021). The G test for the measurement of BDG

uses the coagulation cascade mediated by factor G in the Limulus

amebocyte lysate test (Yoshida, 2021). Unfortunately, the raw

materials of Limulus amebocyte lysate come from natural

Limulus resources, which are widely killed for their medicinal and

edible value. In addition, the artificial cultivation of limulus is

difficult, and large-scale cultivation has never been achieved

(Kwan et al., 2018). With the increasing scarcity of Limulus

resources, it is necessary to find a way to replace Limulus

amebocyte lysate.

Chemiluminescence immunoassay, which is based on a fast

“mix-and-measure” protocol, provides a promising automatic

alternative for testing analytical procedures (Calero et al., 2022).

Although it highly relies on instrument, chemiluminescence

immunoassay still has significant advantages over other non-

isotopic ELISA such as the high sensitivity and a wide linear

range. In addition, compared with the Limulus amebocyte lysate

method, the chemiluminescence method is free of endotoxin

contamination. Most importantly, it has a sustainable raw

material source, which offers a long-term development for the

testing method. Therefore, this study aimed to develop a

magnetic particle-based chemiluminescence immunoassay for the

measurement of fungal BDG. The process was as follows (1): The

wild-type antibody (WT-BDG-Ab) was obtained by immunizing

rabbits and the full sequence plasmid expression vector was

constructed (2). Alanine scanning of the antibody CDR region

revealed seven residues (Trp33H, Val52H, Asp54H, Phe58H, Tyr99H,

Pro105H, and Tyr106H) in the heavy chain and five residues (Tyr31L

Asn33L, Asn34L, Gly52L, and Arg55L) in the light chain as critical

residues for antigen–antibody binding (3). The optimal mutant

antibody V52HI/N34LY was obtained by combined mutation
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screening (4). The V52HI/N34LY mutant was applied to the

chemiluminescence platform, and the results of 574 clinical

samples showed a good correlation with the Limulus amebocyte

lysate. This study provides a reasonable basis for the modification of

WT-BDG-Ab to improve its potency and an effective detection

method for the early diagnosis of IFD, which broadens the technical

field of Limulus amebocyte lysate.
2 Materials and methods

2.1 Immunization and specificity analysis

Owing to the poor water solubility of standard BDG,

carboxymethylated BDG was chosen as the immunogen, which

was purchased from Megazyme (carboxymethylated substitution

degree of 20%) and purified. It was mixed with Freund’s adjuvant

complete in equal volumes. After full emulsification, New Zealand

large-eared rabbits were injected subcutaneously at multiple points,

and the immunization dose was controlled at 0.1–0.2 mg/time per

rabbit. Ear blood was taken 3 days before immunization and the

serum was isolated for negative control. After the initial

immunization, the rabbits were immunized every 2 weeks in the

same way. A total of eight immunizations were performed and the

spleen was taken after the last immunization.

Enzyme-linked immunosorbent assay (ELISA) was used to

analyze the specificity of the BDG antibody (BDG-Ab). Enzyme

plates were coated with 50 ng/well of BDG, candida mannan,

trehalose galactomannan, or cryptococcal polysaccharide, and the

directly blocked plates were used as the negative control. The wells

were blocked and incubated at 37°C for 1 h, with 100 mL of the

serum which 16-fold diluted by 0.01 M PBS. They were washed and

placed in 100 mL of goat anti-rabbit-HRP antibody for 30min at 37°C,

then washed and developed with 100 mL of tetraethylbenzidine

(TMB) substrate for 15 min.
2.2 Sequence comparison and model
construction of BDG-Ab

BDG-Ab sequencing was commissioned from GenScript

(Supplementary Table 1, GenBank OR729008-OR729009). The

IgBLAST system was used to compare the antibody libraries

(Sayers et al., 2021). The heavy chain (BDG-Ab-H) and light

chain (BDG-Ab-L) were submitted to the Kabat database,

respec t ive ly , and the framework reg ions (FRs) and

complementarity-determining regions (CDRs) in the variable

region of BDG-Ab were identified.

The three-dimensional structure of BDG-Ab was constructed

based on homology modeling and the machine learning method by

trRosetta and Uni-Fold software, respectively (Du et al., 2021; Su

et al., 2021). Since antibodies consist of two heavy and two light

chains, homology modeling can only build single chains and then
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match the constructed single chains together. The machine learning

method directly predicts the atomic coordinates of the antibody

using a combination of its amino acid sequence, multiple sequence

alignment, and solved homologous structures (Li et al., 2022).
2.3 Molecular docking and molecular
dynamics simulations

The BDG model built by AmberTools was assigned the Amber

ff99SB force field (Tian et al., 2020) and docked to the CDR region

of BDG-Ab by Autodock vina (Eberhardt et al., 2021). GROMACS

2019.5 software was used for molecular dynamics (MD) simulations

(Abraham et al., 2015). The simulation process was as follows (1):

The water molecules and ions were modeled and inserted into the

box to make the system charge equilibrium (2). The 2,000 energy

minimization steps and 40-ns production simulations were applied

to achieve the minimum energy point (3). The simulations were

carried out in an isothermal–isobaric ensemble with periodic

boundary conditions. The simulation parameters were a 25-fs

step length, a 1-atm pressure, and a 298 K temperature, with the

coupling constants of 12.0 and 1.0 ps, respectively. The simulation

results were drawn and analyzed using Gromacs utility and VMD

software (Humphrey et al., 1996). The binding energy of antibody

and BDG was calculated by gmx_mmpbsa.py python script

(Valdés-Tresanco et al., 2021).
2.4 Detection of the relative binding
capacity of BDG-Ab mutant

The sequences of BDG-Ab-H and BDG-Ab-L were ligated to

the AbVec2.0 plasmid by Genewiz Biotech Co., Ltd (Suzhou, China)

(Supplementray Figures 1 and 2). The non-alanine sequence in the

CDR region of the BDG-Ab-H and BDG-Ab-L plasmids was

sequentially point mutated to the alanine sequence. The

mutated plasmids were provided by Genewiz Biotech Co., Ltd

(Suzhou, China).

The mutated BDG-Ab-H/L plasmids paired with unmutated

BDG-Ab-L/H plasmids were transfected into 293T cells. Cell

supernatants were harvested after 48 h for two separate ELISA

assays, in which enzyme plates were coated with BDG or mouse

anti-rabbit lgG Fab antibody. The plates were added to the BDG-Ab

separately, incubated at 37°C for 1 h, washed and placed in mouse

anti-rabbit lgG Fc-HRP antibody for 30 min at 37°C, and then

washed and developed with TMB substrate for 15 min at 37°C. The

relative binding capacity (RBC) of BDG-Ab was calculated as:

RBC =
A
B

AWT
BWT

 !
− 1

( )
� 100%

where A and B are the result of ELISA assay with BDG and

mouse anti-rabbit lgG Fab antibody-coated enzyme plates,

respectively, and WT is the wild-type BDG-Ab.
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2.5 Potency testing of BDG-Ab mutants

BDG-Ab mutants were purified by the AmMagTM ProteinA

Magnetic Beads (GenScript) kit after the plasmids were transfected

into 293T cells. Antibody potency was verified by the indirect

ELISA method. The ELISA plates were coated with 20 ng/well of

BDG, and BDG-Ab mutants were diluted at concentrations of

1,000, 500, 250, 125, 62.5, 31.25, 15.625, 7.8125, and 3.90625 ng/

mL, respectively. The plates were added to the dilutions separately,

incubated at 37°C for 1 h, washed and placed in goat anti-rabbit-

HRP antibody for 30 min at 37°C, and then washed and developed

with TMB substrate for 15 min at 37°C. We defined the BDG-Ab

potency as the reciprocal of the BDG-Ab concentration at OD = 0.
2.6 Fungi and bacteria recognizing ability
comparison of wild-type and mutant
BDG-Ab

Microplates were coated with filtered ultrasonic crushing

solutions of different fungi and bacteria. Then, 100 ng/mL BDG-

Ab mutants and wild-type BDG-Ab were added into the coated

microplates to validate the recognition capability of different fungi

and bacteria. In addition, the microplates coated with fungi- and

bacteria-free ultrasonic crushing solution were used as negative

control. Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus,

Penicillium digitatum, Candida albicans, Pneumocystis jiroveci,

Histoplasma capsulatum, Cyanobacteria marneffei, Cryptococcus

neoformans, Saccharomyces cerevisiae, Trichophyton interdigitalis,

and Cladosporium cladosporioides were used in this research.
2.7 Comparison of the analytical capability
of the Limulus amebocyte lysate method
and the chemiluminescence method

According to EP 17 A2, the limit of blank (LoB), limit of

detection (LoD) of the Limulus amebocyte lysate method, and the

chemiluminescence method were compared. Precision comparison

was conducted based on EP05 A3. The linearity evaluation was

conducted referring to EP06 A. Long-term stability was tested

according to EP25 A.

The chemiluminescence testing system was constructed using

the following procedure. The BDG-Ab mutant diluent (1 mg/mL)

was configured with 0.02 M PB (pH = 7.2) buffer, Sulfo-NHS-LC-

Biotin (10 mg/mL) was added to 14.85 mL/mL, mixed for 2 h in the

dark, and then dialyzed in 0.02 M PB (pH = 7.2) and labeled with

biotin. Meanwhile, the BDG-Ab mutant diluent (1 mg/mL) was

configured with 0.05 M CBS buffer, NSP-SA-NHS (2 mg/mL) was

added to 45.5 mL/mL, mixed for 2 h in the dark, and then dialyzed in

0.02 M PB (pH 7.2) and labeled with acridine ester. A SMART

6500 automatic chemiluminescence detector was used for

chemiluminescence detection. The clinical sample size was set to

100 mL and the amount of streptavidin-magnetic particles (0.4 mg/
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1322264
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2024.1322264
mL) was set to 40 mL. According to the requirement of antibody

gradient concentration, the amount of two kinds of antibody master

mixes that were added was adjusted. The fungal (1–3)-b-D-glucan
assay kit [Dynamiker (Tianjin) Biotechnology Co. Ltd] was used for

the Limulus amebocyte lysate method. The detailed operation

method referred to protocol of the BDG testing kit. The LoB,

LoD, linear range, and stability of the Limulus amebocyte lysate

method and chemiluminescence method were compared. The

sample volume for both BDG detention methods is 20 mL.
2.8 Clinical sample testing

A total of 574 serum samples were collected from Shandong Chest

Hospital. A total of 52 samples were from fungal infection patients, 140

samples were from probable fungal infection patients, and 382 samples

were from the fungal infection-free or healthy cohort. The samples

were tested using the chemiluminescence method and the Limulus

amebocyte lysate method simultaneously. The BDG testing method

was performed in duplicate for each sample. The fungal (1–3)-b-D-
glucan assay kit (chromogenic method) [Dynamiker (Tianjin)

Biotechnology Co. Ltd] was used for the Limulus amebocyte lysate

method. The chemiluminescence testing system is described in Section

2.7. ROC was calculated using SPSS, which was used for consistency

evaluation for both the Limulus amebocyte lysate method and the

chemiluminescence method. The sensitivity of both BDG testing

method was compared (sensitivity is calculated as the ratio of

positive sample amount tested by the Limulus amebocyte lysate

method or the chemiluminescence method to a sample amount of

fungal infection patients).
3 Results and discussion

3.1 Immunization with single-
targeted antibody

Standardized carboxymethylated pachyman (CP-BDG) was

used as the immunogen to obtain WT-BDG-Ab by immunizing

rabbits. Pachyman, a type of BDG from Poria cocos, was

carboxymethylated to overcome the limitation of water solubility

(Liu et al., 2021). Since the purity of the antigen will directly affect

the quality of antibody, standardized antigen was prepared by semi-

preparative high performance l iquid chromatography

(Supplementray Figure 3). The specificity analysis of WT-BDG-

Ab (Figure 1) suggested that it did not produce immune responses

to candida mannoprotein, aspergillus galactomannan, and

cryptococcal polysaccharide, which was comparable to

the background.
3.2 Analysis of the properties of key
amino acids

Endogenous proteins are autonomously produced by the

organism to meet physiological functions, which is difficult to
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meet the needs of clinical treatment. Therefore, studying the

antigen–antibody binding mechanism is conducive to the

development of BDG-Ab in clinical diagnosis. Antibody

specificity is determined by the antigen binding sites in the CDR

region. We obtained a large number of single-point mutant

antibodies in the CDR region by alanine scanning to discuss the

key sites, which are the main contributors of non-covalent bonds.

They induce interactions at other sites. Therefore, mutation of key

sites causes loss of non-covalent bonds through broad structural

change of the interface (Fernández Quintero et al., 2020). In this

study, the AI tetra-chain modeling was selected (Supplementray

Figures 4, 5). The variable regions of one heavy chain (chain B) and

one light chain (chain C) were selected for the calculated alanine

scan. The general trend of the experimental alanine scans was

consistent with the calculated results.

The relative binding and mutation energy results reveal that

Trp33H, Val52H, Asp54H, Phe58H, Tyr99H, Pro105H, and Tyr106H

residues in chain B and Tyr31L, Asn33L, Asn34L, Gly52L, and

Arg55L residues (the superscripts H and L indicate the heavy

chain and the light chain of BDG-Ab, respectively) in chain C are

the key sites in the antigen–antibody binding (Figures 2A, B).

Antigen recognition is primarily governed by several types of

non-covalent bond interactions: electrostatic interactions, van der

Waals forces, hydrogen bonds, and hydrophobic interactions, while

the latter is dominant (Yoshida et al., 2019). The Y106HA mutant

had a high mutation energy of 1.22 kcal/mol and an RBC value of

−29.5%, indicating that the Tyr106 residue is a “hot spot” residue in

the interaction. Similarly, the mutant binding affinity of V52HA,

F58HA, and P105HAmutants was significantly reduced (RBC values

were −98.4%, −69.3%, and −29.9%, respectively). The “hot spot”

residues Val52H, Phe58H, Pro105H, and Tyr106H mostly play the

hydrophobic function in the analysis of the docking data. In light

chain, Y31LA and N34LA mutants had a significant decrease in
FIGURE 1

The specificity analysis of WT-BDG-Ab to different antigens using
enzyme-linked immunosorbent assay (ELISA). In the blank control,
the equal volume of endotoxin-free water was used instead
of antigen.
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binding affinity (RBC values were −101.8% and −92.7%,

respectively) and had a mutation energy of 0.61 and 0.34 kcal/

mol, respectively. The four “hot spot” residues Tyr31L, Asn33L,

Asn34L, and Arg55L bind the antigen mainly through hydrogen

bonds, and the mutation energy also reveals that the hydrogen

bonding force is weaker than the hydrophobic interaction. As

shown in Supplementray Figure 6, Asn34L has a hydrogen bond

connection length of 3.4 Å, which is close to the hydrogen bond

limit connection length. Moreover, the Trp33H, Asp54H, and

Tyr94L residues did not interact directly with the antigen, but

their mutants also had a significant decrease in binding affinity.

The positions of these residues were mainly distributed near “hot

spot” residues (Figure 3), indicating that these mutants generate

new interactions at the periphery of the interface to affect the

antibody affinity. Although experimental and computational results

for the Y99HA mutant show the same trend, the effects imposed by

the mutation vary widely. Experiments found that the Tyr99H
Frontiers in Cellular and Infection Microbiology 05
residue interacts directly with the antigen and that mutation

results in loss of antibody function, but the model of the antibody

protein at this position deviated from the actual structure and

produced inconsistent results.
3.3 Rational design of BDG-Ab

The antigen–antibody binding was dependent on the role

played by the side chains of residues in the interaction (Akiba

et al., 2019). Amino acid residues of the same type have similar

functions. Therefore, we calculated saturation mutations for the

“hot spot” residues with the same type of amino acids to identify

better combinations. At most, two residues were predicted to

mutate simultaneously. More mutation sites would affect the

antibody’s tertiary structure more significantly, which would bias

the simulation results. Meanwhile, the mutation energy of the
FIGURE 3

The analysis diagram of the key residues of antigen–antibody binding. Indigo represents the residues that interact with antigens through hydrophobic
interaction, green represents the residues that bind to antigens through hydrogen bonds, and yellow represents residues that play an indirect role in the
binding process between antigens and antibodies.
A B

FIGURE 2

Partial results of the identification of BDG-Ab complementarity-determining region (CDR) residues involved in antigen binding via alanine scanning
mutagenesis. The relative antigen binding of the BDG-Abs alanine substitution mutations on (A) heavy chain and (B) light chain was evaluated by indirect
ELISA method and molecular dynamics simulation. Error bars represent standard deviations from the means for three independent experiments.
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double point mutant antibody was calculated by pairwise

combination. The mutation energies of 944 combinations were

calculated by mutating the 11 “hot spot” residues to the same type

residues (Supplementray Figure 7). Most mutations lead to

increased energy, exacerbating the instability of antigen–antibody

binding. Therefore, we selected the eight mutation combinations

with the lowest energy for antibody expression, purification, and

potency testing from 16 results that had mutation energy below

−0.5 kcal/mol.

Most of the mutants outperformed the WT-BDG-Ab at

different antibody concentrations (Figure 4A). However, the

detection ability varied widely at higher antibody concentrations.

We used the antibody concentration that corresponded to an

absorbance of 0.5 as the measure of antibody potency in this

work (Figure 4B). The combined mutation of F58HW/N34LY and

V52HL/N34LY was comparable in potency to the WT-BDG-Ab,

while the V52HI, N34LY, V52HI/Y31LW, and V52HI/N34LY

mutants were superior to the WT-BDG-Ab. However, antibodies

with the Tyr99H mutation had low binding capacity to the antigen,

consistent with the experimental alanine scan results. The

calculation failed to predict this mutation accurately. Secondly,

the Y31LW/N34LY double mutation also reduced the antigen–

antibody affinity substantially. The Tyr31L and Asn34L residues

are spatially close, and the mutation may have altered the

conformation of the light chain domain. The experimental results

showed that the V52HI/N34LY mutant had the highest potency,

which was 3.7-fold higher than that of WT-BDG-Ab.
3.4 Recognition ability of wild-type and
mutant BDG-Ab to different fungi
and bacteria

Wild-type BDG-Ab and mutant BDG-Ab display different

recognition ability to different fungi and bacteria. As shown in
Frontiers in Cellular and Infection Microbiology 06
Tables 1 and 2, apart from C. neoformans, all the testing fungi could

be recognized by wild-type BDG-Ab; meanwhile, 52HI, N34LY,

F58HW/N34LY, V52HI/Y31LW, and V52HI/N34LY mutant BDG-

Ab could recognize all the fungi being tested. Other mutants have

weaker recognizing abilities to the tested fungi. All the BDG-Abs

could not recognize Gram-negative bacteria, whereas wild-type,

52HI, N34LY, F58HW/N34LY, and V52HI/Y31LW mutant BDG-Ab

could recognize Leuconostoc mesenteroides (a kind of Gram-

negative bacterium). This may be due to the fact that L.

mesenteroides could also produce BDG. The bacterial BDG could

not be recognized by V52HI/N34LY mutant BDG-Ab, indicating its

increase in specificity of BDG-Ab. N34LY single-point mutation

could increase Ab potency as well. However, when combined with

the Y31LW or Y99HF mutant, the antigen–antibody binding ability

of Abs could be decreased significantly. The thickness of capsule of

C. neoformans may lead to the incomplete release of BDG; thus, C.

neoformans could be poorly recognized by BDG-Abs. Gram-

negative bacterium could not be significantly recognized either by

wild-type BDG-Ab or by mutant BDG-Abs, which makes a

significant contribution to improve the testing specificity of BDG.

The result has settled the main shortcoming of the G test, which

broadens the horizon of BDG detection. Recognition of L.

mesenteroides by wild type and some of the mutant BDG-Ab may

be due to BDG production by L. mesenteroides. Nevertheless,

V52HI/N34LY mutant BDG-Ab could not recognize L.

mesenteroides; the reason for this has to be further discussed.
3.5 Analytical capability comparison

The BDG testing ability of the chemiluminescence method was

further evaluated, and the Limulus amebocyte lysate method was

used as the control. The result is shown in Table 3. The LoB and

LoD of the Limulus amebocyte lysate method are 15 pg/mL and

5 pg/mL, respectively, while the LoB and LoD of the
A B

FIGURE 4

The potency comparison of BDG-Abs. (A) Potency graph for WT-BDG-Ab and its mutants. The antibodies were multiple proportion diluted (1,000–
3.90625 ng/mL), then added to the plates coated with BDG. Then, the indirect ELISA was operated (detailed procedure is presented in Section 2.5).
The potency of BDG-Abs was compared according to OD value (n = 3). (B) Comparison of the potency of WT-BDG-Ab and its mutants. The BDG-
Ab potency was defined as the reciprocal of the BDG-Ab concentration at OD = 0.5. Error bars represent the standard deviations of three
independent experiments. Different letters above the bars indicate statistically significant differences between the samples (one-way ANOVA
followed by a post hoc Tukey test, p< 0.05).
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TABLE 2 Recognition ability of wild type and mutant BDG-Ab to different bacteria.

Bacteria Wild type and mutant BDG-Abs

Wild
type 52HI N34LY

F58HW/
N34LY

Y31LW/
N34LY

V52HL/
N34LY

V52HI/
Y31LW

V52HI/
N34LY

Y99HF/
N34LY

Bacillus subtilis(G+) × × × × × × × × ×

Leuconostoc
mesenteroides(G+)

√ √ √ √ × √ √ × ×

Staphylococcus aureus
(G+)

× × × × × × × × ×

Listeria monocytogenes
(G+)

× × × × × × × × ×

Escherichia coli(G−) × × × × × × × × ×

Legionella pneumophilia
(G−)

× × × × × × × × ×

Klebsiella pneumoniae
(G−)

× × × × × × × × ×

Salmonella typhimurium
(G−)

× × × × × × × × ×

Pseudomonas
aeruginosa(G−)

× × × × × × × × ×

Haemophilus influenzae
(G−)

× × × × × × × × ×

Haemophilus
parainfluenzae(G−)

× × × × × × × × ×
F
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√ represents strong recognition, × represents weak or no recognition, G+ represents Gram-positive bacterium, and G− represents Gram-negative bacterium.
TABLE 1 Recognition ability of wild type and mutant BDG-Ab to different fungi.

Fungus Wild type and mutant BDG-Abs

Wild
type 52HI N34LY

F58HW/
N34LY

Y31LW/
N34LY

V52HL/
N34LY

V52HI/
Y31LW

V52HI/
N34LY

Y99HF/
N34LY

Aspergillus fumigatus √ √ √ √ √ √ √ √ ×

Aspergillus niger √ √ √ √ √ √ √ √ ×

Aspergillus terreus √ √ √ √ √ √ √ √ ×

Penicillium digitatum √ √ √ √ √ √ √ √ ×

Candida albicans √ √ √ √ √ √ √ √ √

Pneumocystis jiroveci √ √ √ √ × √ √ √ ×

Histoplasma
capsulatum

√ √ √ × × √ √ √ ×

Cyanobacteria
marneffei

√ √ √ √ × √ √ √ ×

Cryptococcus
neoformans

× √ √ × × × √ √ ×

Saccharomyces
cerevisiae

√ √ √ √ × √ √ √ ×

Trichophyton
interdigitalis

√ √ √ √ × × √ √ ×

Cladosporium
cladosporioides

√ √ √ √ × √ √ √ ×
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chemiluminescence method were decreased to 5 pg/mL and 10 pg/

mL for LoB and LoD, respectively. This may be due to the fact that

the chemiluminescence method is an endotoxin contamination-free

BDG testing method. Moreover, the chemiluminescence method

could widen the linear range from 37.5–600 pg/mL to 200–1,000 pg/

mL. Both two BDG testing methods share similar precision

and stability.
3.6 Clinical application of the V52HI/
N34LY mutant

The V52HI/N34LY mutant was applied to a chemiluminescent

platform. Chemiluminescence assay does not require immobilizing

the primary antibody on the ELISA plate, unlike the ELISA double-

antibody sandwich assay. This enables more complete interaction

between the free antibodies and the antigen, resulting in better

detection. Both the biotin-labeled and acridine ester-labeled

antibodies target the same antigen. Firstly, the optimal

concentration of the biotin-labeled antibody was determined. The

concentration of the acridine ester-labeled antibody was fixed at 0.5

mg/mL, then different concentrations of the biotin-labeled antibody

were used to detect the gradient concentration of antigen, and the

standard curve was plotted. Figure 5A has shown that the increase

of the biotin-labeled antibody occupied a large number of the
Frontiers in Cellular and Infection Microbiology 08
epitopes on BDG, and the light value of 1 mg/mL biotin antibody

decreased by about half at the same BDG concentration. The

maximum light value gradually entered the plateau period as the

biotin-labeled antibody addition decreased, and basically ceased to

change at 0.4 mg/mL.

In order to accurately detect the actual concentration of antigen

and increase the threshold of detectable light value, the signal-to-

noise ratio (SNR) of the standard curve of the biotin-labeled

antibody with different concentrations was calculated. We defined

the SNR as the ratio of the light value of 1,000 pg/mL antigen to the

background light value. Among the five concentrations, the biotin-

labeled antibody at 0.2 mg/mL had the highest SNR (Figure 5A),

which was used for the subsequent study. The light value increased

with the concentration of the acridine ester-labeled antibody

(Figure 5B), and we selected the concentration of 0.6 mg/mL with

the highest SNR for the subsequent study. The correlation

coefficients between the logarithm of BDG concentrations and the

light values were greater than 0.99, indicating a strong correlation.

A total of 574 clinical samples were tested using the developed

method and the Limulus amebocyte lysate method, respectively.

The Limulus amebocyte lysate method can accurately identify

patients with BDG concentrations above 95 pg/mL as positive

and below 70 pg/mL as negative, but not those with BDG

concentrations between 70 and 95 pg/mL. The ROC curves of the

chemiluminescence method (Figures 6A, B) were plotted using the
TABLE 3 Analytical capability comparison data of the Limulus amebocyte lysate method and the chemiluminescence method.

Analytical capability Reference Limulus amebocyte lysate method Chemiluminescence method

LoB EP17 A2 15 pg/mL 5 pg/mL

LoD EP17 A2 30 pg/mL 10 pg/mL

Precision EP05 A3 CV of repeatability is ≤8%, CV of reproducibility is ≤12% CV of repeatability is ≤5%, CV of reproducibility is ≤10%

Linear range EP06 A 37.5–600 pg/mL 20–1,000 pg/mL

Stability EP25 A Storage at 2–8°C for 12 months Storage at 2–8°C for 12 months
A B

FIGURE 5

Optimization diagram of antibody concentration in chemiluminescence method. (A) Biotin-labeled antibody concentration. The concentration of
acridine ester-labeled antibody was fixed at 0.5 mg/mL. (B) Acridine ester-labeled antibody concentration. The concentration of biotin-labeled
antibody was fixed at 0.2 mg/mL. The signal-to-noise ratio (SNR) of the standard curve of biotin-labeled antibody with different concentration was
defined as the ratio of the light value of 1,000 pg/mL antigen to the background light value. The correlation coefficients between the logarithm of
BDG concentrations and light values were calculated.
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Limulus amebocyte lysate method as the cutoff values for

negativity and positivity. With a cutoff value of 70 pg/mL, the

chemiluminescence method had an area under the curve

(AUC) of 0.903 (95% CI: 0.876–0.930) and a maximum Youden

index of 0.7409. The antigen concentration detected by the

chemiluminescence method was 89.98 pg/mL, which was within

the 70–95 pg/mL range. The sensitivity and specificity of the

chemiluminescence method were 86.72% and 87.37%,

respectively, using this antigen concentration as the cutoff value.

With a cutoff va lue of 95 pg/mL, the AUC of the

chemiluminescence method was 0.905 (95% CI: 0.880–0.929),

which was higher than the cutoff value of 70 pg/mL, with a

maximum Youden index of 0.7309, and the antigen concentration

was 89.98 pg/mL. The sensitivity and specificity were 83.33% and

89.76%, respectively, with the antigen concentration cutoff value of

89.98 pg/mL. In addition, compared with the Limulus amebocyte

lysate method, the chemiluminescence method has lower

sensitivity (Table 4).

The existing technologies for the quantitation of BDG is limited.

The Limulus amebocyte lysate method relies on cells derived from

the blood of horseshoe crabs, which may lead to the population

decline of horseshoe crabs. Compared to the Limulus amebocyte

lysate method, chemiluminescence is free of endotoxin

contamination. Last but not least, such method has a sustainable
Frontiers in Cellular and Infection Microbiology 09
raw material source, which offers the testing method a long-

term development.

In this study, a V52HI/N34LY mutant BDG-Ab was discovered

for the construction of a chemiluminescence-based BDG testing

system. According to the clinical sample testing result, the

chemiluminescence-based method possesses a similar clinical

compliance rate with the Limulus amebocyte lysate method and

better sensitivity and specificity. The operation protocol is

practically simple since the chemiluminescence-based method is a

direct “mix-to-test”method without a washing procedure. Based on

such reasons, the chemiluminescence-based method is a better

choice for BDG testing.
4 Conclusion

In the study, a high-performance mutant antibody was

generated by immunizing rabbits with purified CP-BDG and

experimental as well as computational alanine scanning on the

CDR region of BDG-Ab. The V52HI/N34LY mutant exhibited a 3.7-

fold higher potency than WT-BDG-Ab, which was labeled with

biotin and acridine ester for the chemiluminescence assay. Then, a

novel detection method for BDG based on a magnetic particle

chemiluminescence platform using V52HI/N34LY mutant was
A B

FIGURE 6

ROC curve of the chemiluminescence method. (A) ROC curve when the cutoff value of the Limulus amebocyte lysate detection method is 70 pg/mL
as the standard. (B) ROC curve when the cutoff value of the Limulus amebocyte lysate detection method is 95 pg/mL as the standard.
TABLE 4 Sensitivity comparison between the chemiluminescence method and the Limulus amebocyte lysate method.

Sample type
Sample
amount

Result

Testing method

Limulus amebocyte
lysate method

Chemiluminescence
method

Amount Amount

Serum from fungal infection patients 52
Positive 46 46

Sensitivity 88.5% 88.5%

Serum from probable fungal
infection patients

140
Positive 116 120

Sensitivity 82.9% 85.7%
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developed. Compared to the Limulus amebocyte lysate method, the

chemiluminescence method showed a lower LoB and LoD, a wider

linear range, and better sensitivity, which poses accurate

quantitation for clinical sample testing. The assay demonstrated

high sensitivity and specificity (83.33% and 89.76%, respectively)

for detecting BDG in serum, with an antigen concentration cutoff

value of 89.98 pg/mL. The results indicated that the developed

method could serve as an alternative to the Limulus amebocyte

lysate assay and enable a rapid and accurate diagnosis of IFD.
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