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Integrins are heterodimers composed of non-covalently associated alpha and

beta subunits that mediate the dynamic linkage between extracellular adhesion

molecules and the intracellular actin cytoskeleton. Integrins are present in

various tissues and organs and are involved in different physiological and

pathological molecular responses in vivo. Wound healing is an important

process in the recovery from traumatic diseases and consists of three

overlapping phases: inflammation, proliferation, and remodeling. Integrin

regulation acts throughout the wound healing process to promote wound

healing. Prolonged inflammation may lead to failure of wound healing, such as

wound chronicity. One of the main causes of chronic wound formation is

bacterial colonization of the wound. In this review, we review the role of

integrins in the regulation of wound healing processes such as angiogenesis

and re-epithelialization, as well as the role of integrins in mediating bacterial

infections during wound chronicity, and the challenges and prospects of

integrins as therapeutic targets for infected wound healing.
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1 Introduction

Integrins are heterodimers composed of non-covalently associated a and b subunits

that link the extracellular matrix (ECM) to the cytoskeleton and mediate dynamic

connections between extracellular adhesion molecules and the intracellular actin

cytoskeleton as well as intermediate filaments (Hynes, 2004). Intracellular proteins that

bind to the cytoplasmic tail of integrins regulate the binding of integrins to extracellular

ligands and integrin localization and transport. Cytoplasmic integrin-binding proteins also

function downstream of integrins, mediating connections to the cytoskeleton and signaling

cascades that affect cell motility, growth, and survival (Morse et al., 2014). In mammals,

integrins are composed of 18 a and eight b subunits, classified into laminin-binding

integrins (Figure 1): a1b1, a2b1, a3b1, a6b1, a7b1, and a6b4, collagen-binding integrins:
a1b1, a2b1, a3b1, a10b1, and a11b1, leukocyte integrins: aLb2, aMb2, aXb2, and aDb2
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and RGD-recognizing integrins: a5b1, aVb1, aVb3, aVb5, aVb6,
aVb8, and aIIbb3, and with different binding properties and

different tissue distribution (Takada et al., 2007). Integrins are

involved in various bodily processes, including trauma, immunity,

infection, cell proliferation, inflammation, angiogenesis, and tumors

(Hostetter, 1996; LaFlamme and Auer, 1996; Desgrosellier and

Cheresh, 2010; Mezu-Ndubuisi and Maheshwari, 2021).

Skin wounds, in the context of successful healing, include dynamic

processes in three overlapping phases: inflammation, proliferation, and

tissue remodeling (Martin, 1997). Wound repair is tightly regulated by

many factors, including cell-ECM interactions (Martin, 1997), growth

factors, and matrix metalloproteinases (MMP) (Gál et al., 2017). The

integrin family regulates all processes of wound healing (Table 1), such

as hemostasis, inflammation, angiogenesis (Figure 2), re-

epithelialization (Figure 3), and fibrosis. Disruption of these

regulatory mechanisms at any stage can lead to chronic or non-

healing wounds where factors such as persistent inflammation and

impaired barrier (Brem and Tomic-Canic, 2007; Harding et al., 2002),

oxygenation response (Bishop, 2008), bacterial infection (Edwards and

Harding, 2004), age (Swift et al., 2001), and disease state (Brem and

Tomic-Canic, 2007) can impede the skin’s ability to repair wounds

effectively. In reality, chronic wounds are often accompanied by

bacterial infections, and some bacteria, such as Staphylococcus aureus

(S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), can mediate

the integrin family to promote the formation of chronic wounds and

thus cause them to persist (Edwards and Harding, 2004; Canchy et al.,

2023). Abnormal wound healing is a major challenge in the treatment

of skin wounds, and chronic wounds pose a serious emotional and

financial burden to patients (Olsson et al., 2019). In this review, we

review the role of integrins as bridges in bacterial-cell interactions in the

context of wound healing and assess the role of integrins as nodes to
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inhibit bacteria in wound chronicity, as well as the challenges and

perspectives of integrins as targets for therapeutic wound healing.
2 Role of integrins in
bacterial infections

Prolonged inflammation may result in wounds that do not heal,

such as chronic ulcers (Wang et al., 2018). The causes of chronic

wounds are complex: local tissue hypoxia, wound bacterial

colonization, and repetitive ischemia-reperfusion injury can all

lead to chronic wounds (Mustoe et al., 2006), and inflammation

due to bacterial colonization of wounds remains one of the most

causes of persistent wound healing (Mustoe et al., 2006). The ECM

is a non-cellular, three-dimensional macromolecular network

composed of collagen, proteoglycan/glycosaminoglycan, elastin,

fibronectin, laminin, and several other glycoproteins that regulate

a variety of cellular functions and are essential for the maintenance

of normal body homeostasis (Theocharis et al., 2016). The ECM

serves as the primary microenvironment for wound healing, and

integrin-mediated adhesion to the ECM may play an important

role. Most chronic wounds at this stage are accompanied by

bacterial infections, the most common causative agents being S.

aureus and P. aeruginosa (Rhoads et al., 2012; Silva et al., 2018).

Mechanisms such as the formation of bacterial biofilm, among

others (Bjarnsholt, 2013; Wu et al., 2019). Such as in mouse

periodontal disease (PD), bacterial biofilms inhibit b6 integrin

expression and transforming growth factor-b1 signaling, leading

to gingival inflammation (Uehara et al., 2022). Bacterial biofilms

present in periodontal pockets inhibit avb6 integrin expression

levels in periodontal disease and exacerbate the inflammatory
FIGURE 1

Members of the human integrin superfamily. At least 18 a subunits and eight b subunits have been identified in humans, and they can produce 24
different integrins. The integrin subunits that bind to each other to form heterodimers are connected by solid lines. By Figdraw.
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TABLE 1 Main secretory sites and functional roles of different types of integrins.

Type Ligands Secretion sites Functional roles

a1b1 Laminin, collagen EC, FBL, monocytes,
macrophages, and myofibroblasts

Mediating VEGF-driven angiogenesis, negative feedback regulation of
collagen synthesis in FBL (Senger and Davis, 2011; Gardner et al., 1999;
Senger et al., 1997)

a2b1 Laminin, collagen Platelets, KC, EC and FBL Mediates KC migration and VEGF-driven angiogenesis (Senger et al.,
1997; Grenache et al., 2007)

a3b1 Laminin, platelet-reactive protein KC、EC and FBL Regulation of KC migration during re-epithelialization (Margadant et al.,
2009), control of angiogenesis and TGF-b1-mediated responses (da Silva
et al., 2010)

a4b1 Thrombospondin, fibronectin, bone bridge
protein, ADAM, EDA, VCAM, etc
(Huhtala et al., 1995; Shinde et al., 2015;
Abonia et al., 2006)

Leukocytes, FBL, and EC Regulation of FBL proliferation and TGF-b1 processing (Shinde
et al., 2015)

a5b1 Fibronectin, bone bridging protein, pro-
fibronectin, ADAM, CCN, etc (Huhtala
et al., 1995; Lau, 2016)

Platelets, KCs, ECs, FBLs Promote KC migration (Di Russo et al., 2021), etc.

a6b1 Laminin, coagulation-reactive protein,
Cyr61, CCN, etc (Lau, 2016)

Platelets, EC, leukocytes, and FBL may be involved in platelet-vessel wall interactions and angiogenesis
(Huang et al., 2016); interaction with CCN1/Cyr61 promotes
myofibroblast senescence and controls fibrogenesis (Jun and Lau, 2010)

a7b1 Laminin Expressed by muscle cells,
vascular smooth muscle cells, etc
(Riederer et al., 2015; Burkin and
Kaufman, 1999)

a8b1 FN, TGF-b1, etc. Myofibroblasts Lead to fibrotic reaction (Bouzeghrane et al., 2004)

a9b1 EDA-FN, VEGF, etc (Shinde et al., 2015;
Eto et al., 2002; Vlahakis et al., 2005)

KCs, FBLs, neutrophils, and ECs Regulation of KC and FBL growth, neutrophil chemotaxis, and EC
migration and angiogenesis (Nakayama et al., 2010; Oommen et al., 2011;
Høye et al., 2012)

a10b1 Collagen FBL May mediate the adhesion of FBL to collagen and dynamic connective
tissue remodeling events (Zeltz and Gullberg, 2016)

a11b1 Collagen FBL Controls myofibroblast differentiation and may mediate adhesion of FBL
to collagen and contribute to collagen reorganization (Zeltz and
Gullberg, 2016)

avb1 FN, TGF-b1, etc. KC、EC Mediating KC adhesion during re-epithelialization (Jakhu et al., 2018)

avb3 Fibronectin(pro), FGF-2, TGF-b1, CCN1/
Cyr6, CCN2/CTGF and CCN3/NOV, etc
(Lau, 2016; Rusnati et al., 1997; Lin
et al., 2005)

EC, platelets, FBL,
and macrophages

Required for neoangiogenesis; regulates fibronectin network structure and
stability; mediates EC adhesion to CCN1/Cyr6 and CCN2/CTGF; EC
survival; pericyte retention in the vasculature; and FBL proliferation
(Mitchell et al., 2009)

avb5 TGF-b1, VEGF, CCN1/Cyr6, CCN3/NOV,
etc (Lau, 2016; Lin et al., 2005)

EC, FBL, and Skin KC may be involved in the conversion of FBL to myofibroblasts (Geuijen and
Sonnenberg, 2002), and the interaction with CCN1/Cyr61 mediates FBL
migration (Lygoe et al., 2004)

avb6 FN, TGF-b1 and -b3, etc. KCs Regulates inflammation and KC proliferation, contributing to the
basement membrane and granulation tissue remodeling (Jakhu
et al., 2018)

avb8 FN, and TGF-b (Lainé et al., 2021) Dendritic cells, FBLs and ECs Mediates TGF-b to regulate inflammation (Worthington John
et al., 2015)

a6b4 Laminin-332, Other LM (Sehgal
et al., 2006)

KC、EC Promotes KC adhesion and migration (Geuijen and Sonnenberg, 2002);
regulates angiogenesis in EC (Mercurio et al., 2001; Nikolopoulos
et al., 2004)

aIIbb3 Fibronectin(pro), FN, CCN1/Cyr6 and
CCN2/CTGF, etc (Lau, 2016; Andre
et al., 2002)

Platelets Mediates platelet aggregation in clot formation and regulates fibrin
network structure and stability (antithrombotic effect) (Blue et al., 2009)

a4b7 VCAM, etc (Abonia et al., 2006) Leukocytes, dendritic cells Involved in leukocyte transport (Gubatan et al., 2021)

aEb7 Calcineurin T lymphocytes, dendritic cells Mediated leukocyte transport (Kilshaw, 1999)

(Continued)
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response (Bi et al., 2017). Biofilm formation is tied to the regulated

synthesis of extracellular matrix components (Rowan-Nash Aislinn

et al., 2019), a structural group of different bacterial species that

contribute to the chronicity of most wound healing, and bacteria

associated with biofilms are highly resistant to antibiotics

(Venkatesan et al., 2015). In addition, there are other pathogenic

bacteria, such as anaerobic bacteria (Choi et al., 2019) and

Streptococcus hemolytic type B (Silva et al., 2018).
2.1 Integrins and S. aureus

S. aureus is one of the most important human pathogens. S.

aureus is known for its role in hospital-acquired infections and
Frontiers in Cellular and Infection Microbiology 04
methicillin resistance and is now considered a global clinical

problem (Chambers and DeLeo, 2009). This microorganism

causes a variety of surface and systemic diseases and is frequently

associated with oral mucositis. It is also a causative or worsening

agent in various skin conditions, including atopic dermatitis,

carbuncles, cellulitis, boils, hair follicles, Kawasaki syndrome,

impetigo, psoriasis, and scalded skin syndrome (Morishita et al.,

1999; Skov and Baadsgaard, 2000; Yarwood et al., 2000; Chiller

et al., 2001; Cho et al., 2001a; Cho et al., 2001b; Breuer et al., 2002;

Patel and Finlay, 2003). S. aureus is a major cause of wound

infections and is thought to delay wound healing (Bowler et al.,

2001) (Table 2). A prominent feature common to almost all S.

aureus isolates is the expression of ECM-binding proteins,

collectively referred to as microbial surface component
TABLE 1 Continued

Type Ligands Secretion sites Functional roles

aLb2 Lumican, etc. Leukocytes Mediated leukocyte extravasation through the endothelium (Tan, 2012)

aMb2 Fibronectin(pro), FN, CCN1/Cyr6, CCN2/
CTGF, etc (Lau, 2016)

Monocytes, macrophages, NK,
neutrophils, and T cells

Involved in leukocyte transport across the endothelium (Tan, 2012);
complexed with uPAR and its ligand uPA to promote fibrinolysis and
fibrin clot clearance by monocytes and neutrophils (Sisco et al., 2007)

aXb2 Fibronectin (Garnotel et al., 2000) Monocytes, macrophages,
dendritic cells, and NK

Involved in leukocyte transport (Tan, 2012)

aDb2 VCAM-1 and CCN1/Cyr6, etc (Lau, 2016;
Grayson et al., 1998)

Macrophages, eosinophils Involved in leukocyte transport (Tan, 2012)
FBL, fibroblasts; KC, keratin-forming cells; EC, endothelial cells; VEGF, vascular endothelial cell growth factor; FN, fibronectin; TGF-b, transforming growth factor beta; EDA, extra domain A;
ADAM, a disintegrin and metalloproteinase; CCN, Cyr61-CTGF-Nov; Cyr6, cysteine-rich protein 6; VCAM, vascular cell adhesion molecule; uPAR, urokinase-type plasminogen
activator receptor.
FIGURE 2

Promotion of new capillary formation by integrins during wound healing. Vascular endothelial growth factor (VEGF) induces a 5- to 7-fold increase
in the protein expression of two collagen receptors, a1b1 and a2b1 integrins, on the surface of dermal microvascular endothelial cells (ECs) through
the induction of mRNAs encoding a1 and a2 integrins subunits. a5 integrin localizes to cell junctions and participates in the angiopoietin (Ang)/Tie2
signaling pathway to maintain vascular homeostasis. avb3 integrin synergizes with VEGF to activate angiogenesis in ECs through VEGFR-2
phosphorylation. a6b1 integrin appears to promote platelet pro-mediated angiogenesis associated with endothelial colony forming cells (ECFCs).
VEGF-A can induce endothelial and cancer cell migration by directly binding a9b1 integrin. By Figdraw.
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recognition adhesion matrix molecules (MSCRAMMs) (Patti et al.,

1994; Foster and Höök, 1998). It is possible to colonize the host by

attaching to components of the ECM to initiate infection (Foster

and Höök, 1998), such as cell wall-attached fibronectin-binding

proteins A and B that allow bacteria to bind tightly to the ECM

protein fibronectin (FN) (Flock et al., 1987; JÖNsson et al., 1991).

Integrin b1-containing receptors are known for their role in cell

adhesion and their ability to signal the transduction of cell

attachment to the ECM (Schwartz and Ginsberg, 2002). In the in

vitro experiments, S. aureus can invade eukaryotic cells by indirectly
Frontiers in Cellular and Infection Microbiology 05
engaging the b1 integrin-containing host receptor, but non-

pathogenic Staphylococcus carnosus is not invasive (Agerer et al.,

2003). a5b1 integrin is a vital cell surface receptor that mediates the

attachment of eukaryotic cells to the ECM protein fibronectin

(Hynes, 1996). FN has recently been shown to act as a molecular

bridge linking FN-binding proteins (FnBP) -expressing S. aureus to

a5b1 integrin on the surface of human cells (Joh et al., 1999). This

interaction not only tightly anchors S. aureus to its eukaryotic host

cells but also promotes the internalization of the microbe by human

epithelial and endothelial cell and mouse fibroblasts (Dziewanowska

et al., 1999; Sinha et al., 1999; Fowler et al., 2000; Jett Bradley and

Gilmore Michael, 2002) (Figure 4). In addition, an in vitro study

found that one study found that necrotizing soft tissue infections with

S. aureus isolates showed high rates of internalization and

cytotoxicity to human myocytes, and the cellular basis of the high

internalization rate in myocytes was attributed to the higher

expression of a5b1 integrins in myocytes (Baude et al., 2019). The

ability of S. aureus to be internalized by and survive in host cells, such

as keratinocytes, may contribute to developing persistent or chronic

infections, eventually leading to deeper tissue infection or

dissemination. Internalization of S. aureus by immortalized

keratinocytes requires bacterial FnBPs and is mediated by the

significant fibronectin-binding a5b1 integrin. However, unlike the

internalization of immortalized keratinocytes, the internalization of S.

aureus by native keratinocytes can occur through FnBP-dependent

and non-dependent pathways (Kintarak et al., 2004). In addition, in

oral infections, multi-strain oral biofilms inhibit avb6 integrin

expression in gingival epithelial cells (Bi et al., 2017). And
FIGURE 3

Shows that integrins regulate the re-epithelialization phase of the wound healing process. Galectin-3 promotes epithelial cell migration by cross-linking
Mannoside Acetylglucosaminyltransferase 5 (MGAT5)-modified complex N-glycans on a3b1 integrins and subsequently activating a3b1-integrin-Rac1
signaling to promote lamellar pseudopod formation. The interaction of a5b1 integrins with fibronectin may contribute to keratinocyte proliferation in
addition to promoting keratinocyte adhesion and motility on this matrix. a9b1 integrin interacts with another ECM component, elastic microfibril
interface localization protein 1 (EMILIN1), to regulate keratinocyte proliferation, but a9b1 integrin antagonizes a3b1-dependent mTLD/BMP-1 expression
and skin basement membrane reorganization and maturation. avb1 and a6b4 integrins also regulate keratinocyte migration. By Figdraw.
TABLE 2 Role of different integrins in normal wound healing
(granulation tissue) and bacterial infection.

Type Granulation tissue Bacterial infections

a5b1 Regulates re-epithelialization
and promotes migration of
keratin-forming cells (Di Russo
et al., 2021)

Mediating the attachment of
eukaryotic cells to the extracellular
matrix protein fibronectin
(JÖNsson et al., 1991)

avb3 Regulates angiogenesis and
promotes FBL proliferation
(Mitchell et al., 2009)

Mediated Staphylococcus aureus
bloodstream infection (Flock
et al., 1987)

avb6 Regulates inflammation and
keratin-forming cells
proliferation (Jakhu
et al., 2018)

Regulation of bacterial biofilms
(Hynes, 1996; Mathelié-Guinlet
et al., 2020)

aIIbb3 Mediated platelet aggregation
(Blue et al., 2009)

Mediated adhesion of Aureus to
platelets (Miajlovic et al., 2010;
Zapotoczna et al., 2013)
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periodontal inflammation caused by avb6 integrin deficiency also

resulted in significant alterations in the oral microbiome (Uehara

et al., 2022). However, the second fibronectin-binding integral

protein avb6 found on keratin-forming cells does not mediate S.

aureus internalization (Kintarak et al., 2004).

In vitro infection tests have shown that S. aureus counteracts the

extracellular bactericidal mechanism of mast cells (MCs) by

increasing fibronectin-binding protein expression and inducing

Hla-ADAM10 (a disintegrin and metalloproteinase 10)-mediated

upregulation of b1 integrins in MCs (Goldmann et al., 2016). An

experiment on mice showed that IFN-gamma intervention, partly by

b1 integrins, drives enhanced antimicrobial and pro-inflammatory

responses of human MCs to S. aureus (Swindle et al., 2015). An in

vitro study found that a protein exported by S.aureus, a-toxin
interacts with b1-integrin, a receptor for the host ECM protein,

suggesting that b1-integrinmay be a potential receptor for a-toxin on
epithelial cells. The a-toxin inhibits S. aureus adhesion and

internalization by interfering with integrin-mediated pathogen-host

cell interactions (Liang and Ji, 2006).

In addition, an a5b1/avb3 integrin antagonist has been found

to inhibit S. aureus invasion of epithelial cells (Melby et al., 2000). A

study of mouse models found that vascular endothelial dysfunction

was attributed to the ability of S. aureus aggregation factor A (ClfA)

to adhere to avb3 integrins expressed on endothelial cell (EC), with

fibrinogen (Fg) playing a pivotal role (McDonnell et al., 2016a). The

direct binding of the S. aureus surface protein iron-regulated surface

determinant B (IsdB) to EC avb3 integrins plays an essential role in
Frontiers in Cellular and Infection Microbiology 06
host cell adhesion and invasion, ultimately leading to life-

threatening disease (Mathelié-Guinlet et al., 2020). Therefore,

avb3 integrin blockade represents an attractive target for treating

S. aureus blood-borne infections. Furthermore, force-enhanced

adhesion between IsdB and integrins may be one of the multiple

mechanisms that have been developed by staphylococci to

effectively colonize or invade their hosts while resisting the shear

forces encountered in various environments after infection (Otto,

2014), and S. aureus can adhere to platelets through the high-

affinity form of IsdB bound to the platelet integrin aIIbb3 integrin

without the need for additional ECM proteins (Miajlovic et al.,

2010; Zapotoczna et al., 2013). In addition, aDb2 integrins have

been observed to have a role in Salmonella typhimurium and S.

aureus infections (Nascimento et al., 2008).

Integrin-linked kinases and Rac1 mediate the invasion of S. aureus

into keratinocytes, and the bacteria can invade keratinocytes via the

integrin-linked kinase-Rac1 pathway. Thus, integrin-linked kinase may

be a critical factor in preventing staphylococcal skin infections

(Sayedyahossein et al., 2015), and therefore, this is speculated to be a

biological target for the treatment of S. aureus infections.
2.2 Integrins and P. aeruginosa

P. aeruginosa is a ubiquitous gram-negative environmental

bacterium that can cause serious infections in skin wounds, such

as in patients with severe burns (Azzopardi et al., 2014). It can form
FIGURE 4

Staphylococcus aureus (S. aureus) evades bactericidal mechanisms. Fibronectin (FN) acts as a molecular bridge linking FnBP-expressing S. aureus to
a5b1 integrin on the surface of human cells, tightly anchoring S. aureus to its eukaryotic host cells, and also facilitating microbial internalization by
human epithelial and endothelial cells (ECs) and mouse fibroblasts. Furthermore, internalization of S. aureus by immortalized keratinocytes requires
bacterial FnBPs and is mediated by the significant fibronectin-binding a5b1 integrin. S. aureus counteracts the extracellular bactericidal machinery of
mast cells (MCs) by increasing fibronectin-binding protein expression and inducing Hla-ADAM10-mediated upregulation of b1 integrins in MCs.
Vascular endothelial dysfunction is attributed to S. aureus aggregation factor A (ClfA) to adhere to avb3 integrins expressed on endothelial cells,
where fibrinogen (FG) plays a key role. Direct binding of the S. aureus surface protein IsdB to endothelial avb3 integrins plays a vital role in host cell
adhesion and invasion, ultimately leading to life-threatening disease. By Figdraw.
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biofilms (Mah et al., 2003) and invade and increase the host cells. P.

aeruginosa has been shown to have the propensity to enter and

colonize injured epithelial cells (Engel and Eran, 2011), and there is

ample experimental evidence that loss of epithelial polarity

increases the harmful effects of P. aeruginosa on host cells (Engel

and Eran, 2011). P. aeruginosa has evolved ways of manipulating

host epithelial cell polarity to promote infection (Engel and Eran,

2011; Tran Cindy et al., 2014). Integrins are usually restricted to the

basolateral plasma membrane of epithelial cells, and when reaching

the basolateral side, P. aeruginosa has access to integrins

(Thuenauer et al., 2020). Current studies on integrin-mediated P.

aeruginosa are mostly limited to a5b1 and avb5 integrins in

respiratory epithelial cells (Buommino et al., 2014; Roger et al.,

1999; Leroy-Dudal et al., 2004). The P. aeruginosa lectin the fucose-

specific lectin LecB clears integrins from the surface of cells at the

wound margin and blocks cell migration and wound healing dose-

dependent manner (Thuenauer et al., 2020). Further studies are

needed to determine the role of integrins in P. aeruginosa infections

in infected wounds, which seems to be a clear direction for treating

P. aeruginosa infections.
2.3 Integrins and other bacterial

Integrins also mediate the infectious effects of some other species of

bacteria on the organism. Entry into epithelial cells and prevention of

primary immune responses are prerequisites for successful colonization

and subsequent infection of human hosts by Streptococcus pyogenes

(group A streptococci, GAS). The interaction of GAS with fibrinogen

promotes integrin-mediated internalization of bacteria into keratin-

forming cells, and a1b1 and a5b1 integrins are the major keratin-

forming cell receptors involved in this process (Siemens et al., 2011).

Excessive bacterial invasion disrupts the attachment between the tooth

surface and epithelium, leading to periodontitis. Integrin a5 may be

involved in the invasion of aggregatibacter actinomycetemcomitans Y4

into gingival epithelial cells, and the resulting signal transduction

cascade decreases cell adhesion and reduces the defensive role of

gingival epithelial cells by reducing integrin expression (Kochi et al.,

2017). Adhesion of Candida albicans germ tube human endothelial cell

lines is mediated by avb3 and this adhesion is significantly blocked by

the anti-b3 monoclonal antibody Gly-Arg-Gly-Asp-Ser-Pro

(GRGDSP) peptide or heparin and completely eliminated by their

combination (Santoni et al., 2001). Therefore, avb3 blockade may be

used as one of the therapeutic options against Candida albicans

infection. In addition, H. pylori induces the expression of integrin

a5b1 and activates H. pylori-infected gastric epithelial cells via

proteinase-activated receptor-2 (PAR2)-induced trypsin, which may

play an important role in H. pylori-associated carcinogenesis (Seo

et al., 2009).
2.4 Integrins and targeted therapy for
bacterial infections

The integrin family, a large group of proteins in the human

body, is involved in a variety of physiological processes, and for this
Frontiers in Cellular and Infection Microbiology 07
family of proteins, we can effectively use them to regulate a number

of pathophysiological processes in the organism. Based on the

mechanism of integrin-mediated bacterial infection in wound

healing, it appears that bacterial infection in the vast majority of

cases requires the regulation of integrins. Earlier, it was found that

the interaction of staphylococcal alpha toxin with a5b1 integrin and
the overproduction of TNF-a may contribute to the destruction of

epithelial cells during S. aureus infection (Liang and Ji, 2007).

Recently, S. aureus has also been found to counteract the

extracellular bactericidal mechanism of mast cell by increasing the

expression of fibronectin-binding proteins and inducing Hla-

ADAM10-mediated upregulation of b1 integrins in mast cell

(Goldmann et al., 2016). At this point, it may be possible to

effectively treat S. aureus infections by inhibiting targets

associated with integrins. As inhibition of the major integrin

aVb3 reduces the attachment of S. aureus to sheared human

endothelial cells (McDonnell et al., 2016b), blocking aVb3 is an

attractive target for the treatment of S. aureus blood-borne

infections. There is evidence that alpha-melanocyte-stimulating

hormone (a-MSH), a neuropeptide produced primarily by the

pituitary gland but which is also produced by many extra-

pituitary cells, including skin keratin-forming cells, has anti-

inflammatory and antimicrobial effects and reduces the

internalization of S. aureus. a-MSH prematurely downregulates

the production of integrins such as beta1 and heat shock surface

protein 70 (Donnarumma et al., 2004), to reduce infection and the

inflammatory response.

In contrast, one study found that in mouse skin lacking

integrin-linked kinase in the epidermis, S. aureus penetrated the

skin 35 times more than normal skin; thus, integrin-linked kinase

has potential as a targeted therapy for the prevention of S. aureus

skin infections (Sayedyahossein et al., 2015). Fibronectin or b1
integrin-blocking antibodies completely eliminate IFN-g-dependent
S. aureus junctions, and IFN-g can trigger human mast cells

mediated by b1 integrins to enhance antibacterial and pro-

inflammatory responses to IFN-g-dependent S. aureus (Swindle

et al., 2015). In these cases, increasing integrin levels requires

integrin activation, and common activators such as talin, kindlin,

and mechanical force (Sun et al., 2019; Lu et al., 2022). It has also

been found that P. aeruginosa can produce the fucose-specific lectin

LecB, which specifically removes integrins from the surface of cells

located at the wound edge and blocks cell migration and wound

healing in a dose-dependent manner (Rowan-Nash Aislinn et al.,

2019; Thuenauer et al., 2020). When appropriate, integrin

supplementation may antagonize this blocking effect and promote

wound healing.

In clinical trials for the treatment of sepsis, cilengitide prevented

ClfA from binding aVb3 on endothelial cells, slowing infection

without affecting normal endothelial cell function (McDonnell

et al., 2016b). Thus, targeted inhibition of aVb3 treatment seems

to be locally applied for wound healing. The a5b1 integrin is one of

the staphylococcal a-toxin receptors involved in mediating the

cytotoxicity of a-toxin (Liang and Ji, 2007). a-MSH exerts a

protective effect on the skin by reducing infection and

inflammatory processes through the downregulation of b1
integrins (Donnarumma et al., 2004). LecB inhibitors can also be
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used as a treatment strategy in addition to antibiotics (Sommer

et al., 2018; Thuenauer et al., 2020). In contrast, integrin receptors

promoted increased binding of S. aureus to IFN g-treated huMCs

(Swindle et al., 2015), demonstrating the complexity of the MC

response in relation to the cytokine environment. For these, there

are no practical clinical studies yet, so appropriate drug

development and clinical trials become a top priority for integrin-

targeted therapy.
3 Conclusion and prospect

The integrin family is a group of functionally diverse protein

families that play key roles in various physiological and pathological

mechanisms by acting as a bridge between protein-cell, cell-cell, and

bacterial-cell. The integrin family’s role in bacterial-cell linkage

during wound healing suggests that treatment targeting integrins

can effectively promote wound healing and reduce bacterial

infections. However, the human body is a unified organic whole,

and integrins can largely regulate the promotion of overall wound

healing. Therefore, activation of integrins is preferred in most cases.

At this stage, there are few studies on the activation of integrins to

block bacterial infections, which is a wide research space and

requires our joint efforts to fill the gap. However, in order to treat

bacterial infections in pathological wound healing, the targeting of

integrins needs to be context-specific and, when certain conditions

allow, appropriately inhibited, and these need to be explored and

evaluated more. S. aureus and P. aeruginosa, the two most common

gram-positive and gram-negative bacteria in hospital-acquired

infections, are reviewed in the article, which focuses on the

mechanism of their invasion into the organism via integrins and

provides a systematic review for the treatment of clinical bacterial

infections as well as a summary of recent studies on integrins and

their related derivatives as target therapeutics. In conclusion, the use

of integrins as targets for blocking bacterial infections has very

high potential.
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