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Most tick-borne viruses (TBVs) are highly pathogenic and require high

biosecurity, which severely limits their study. We found that Sindbis virus

(SINV), predominantly transmitted by mosquitoes, can replicate in ticks and be

subsequently transmitted, with the potential to serve as a model for studying

tick-virus interactions. We found that both larval and nymphal stages of

Rhipicephalus haemaphysaloides can be infected with SINV-wild-type (WT)

when feeding on infected mice. SINV replicated in two species of ticks (R.

haemaphysaloides and Hyalomma asiaticum) after infecting them by

microinjection. Injection of ticks with SINV expressing enhanced Green

Fluorescent Protein (eGFP) revealed that SINV-eGFP specifically aggregated in

the tick midguts for replication. During blood-feeding, SINV-eGFPmigrated from

the midguts to the salivary glands and was transmitted to a new host. SINV

infection caused changes in expression levels of tick genes related to immune

responses, substance transport and metabolism, cell growth and death. SINV

mainly induced autophagy during the early stage of infection; with increasing

time of infection, the level of autophagy decreased, while the level of apoptosis

increased. During the early stages of infection, the transcript levels of immune-

related genes were significantly upregulated, and then decreased. In addition,

SINV induced changes in the transcription levels of some functional genes that

play important roles in the interactions between ticks and tick-borne pathogens.

These results confirm that the SINV-based transmission model between ticks,

viruses, and mammals can be widely used to unravel the interactions between

ticks and viruses.
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1 Introduction

Ticks are obligate blood-feeding arthropods and the most

important vectors of pathogens after mosquitoes (Dantas-Torres

et al., 2012). Ticks can transmit a wide range of pathogens,

including viruses, parasites, and bacteria (de la Fuente et al., 2008;

Ferreri et al., 2014; Solano-Gallego et al., 2016; Krause et al., 2019;

Rashid et al., 2019; Siddique et al., 2020) that have harmful effects

on both human health and animal husbandry (Parola and Raoult,

2001; Grisi et al., 2014; De Meneghi et al., 2016; Ghosh et al., 2019;

Ghafar et al., 2020).

Ticks have been reported to transmit more than 35 viruses from

multiple viral families (Fang et al., 2015; Mansfield et al., 2017b;

Madison-Antenucci et al., 2020). Tick-borne viruses (TBVs) that

are pathogenic to humans and animals are primarily from the

Flaviviridae family and the order of Bunyavirales, respectively

(Gonzalez, 2014; Kazimirová et al., 2017; Mansfield et al., 2017b).

Among them, the louping ill virus of the Orthoflavivirus genus is

one of the earliest TBVs identified in ticks and is the causative agent

of sheep and grouse encephalitis (Wilson, 1946; Bichaud et al., 2014;

Shi et al., 2018). Tick-borne encephalitis virus (TBEV) (Mansfield

et al., 2009) and Powassan virus (POWV) (Kemenesi and Banyai,

2019) are another two members of Orthoflavivirus genus. Both are

very harmful zoonotic TBVs (Kaiser, 2008) as they invade the

central nervous system of humans and animals, with clinical

manifestations including high fever, disorders of consciousness,

and even paralysis, resulting in acute nerve damage. Crimean–

Congo hemorrhagic fever virus (CCHFV), first reported in the

1960s (Chumakov et al., 1968; Zivcec et al., 2016), belongs to the

Orthonairovirus genus in the Nairoviridae family of the

Bunyavirales, also known as Xinjiang hemorrhagic fever virus in

China, is the most genetically diverse arbovirus among TBVs

(Deyde et al., 2006; Bente et al., 2013; Hawman and Feldmann,

2023). It infects humans and most mammals with clinical

manifestations including high fever, headache, chills, and

bleeding. In severe cases, it can cause multiple organ failure and

even death (Whitehouse, 2004; Hawman and Feldmann, 2023).

An increasing number of new viral diseases caused by viruses

transmitted by tick bites has been reported (Jongejan and Uilenberg,

2004; Liu et al., 2014; Mansfield et al., 2017b; Wang et al., 2019;

Madison-Antenucci et al., 2020; Casel et al., 2021; Dong et al.,

2021), including other arboviruses belonging to the genus

Alphavirus of the Togaviridae family. Sindbis virus (SINV), a

representative of the genus Alphavirus, is not a classical TBV but

has nevertheless been isolated from ticks of the genus Hyalomma

near the Mediterranean Sea and in the Arab region (Gresikova et al.,

1978; Kostiukov et al., 1981; Scalia et al., 1996; Al-Khalifa et al.,

2007). It is commonly found in birds and can be transmitted to

other hosts (mammals, birds, reptiles, and amphibians) through

mosquitoes. The virus causes myositis and encephalitis in mice and

slight fever symptoms in humans (Brummer-Korvenkontio et al.,

2002; Adouchief et al., 2016). SINV has a wide range of hosts,

replicates rapidly in a variety of host cells, and reaches high titers;

therefore, it has been widely used in virology studies (Hernandez

and Paredes, 2009; He et al., 2010; Jose et al., 2017; Lasswitz et al.,

2022). Recent studies have shown that, similar to severe fever with
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thrombocytopenia syndrome virus (SFTSV), SINV can replicate in

ticks, and both cause similar immune responses in ticks, specifically

the activation of the RNAi antiviral response (Xu et al., 2021). The

study by Xu et al., 2021 also preliminarily confirmed that SINV has

the potential to be used as a model for studying the interactions

between ticks and TBVs.

It has been confirmed that the interactions between ticks and

tick-borne pathogens (TBPs) are similar to those between other

pathogens and arthropods. Pathogens can be recognized in ticks by

receptor-ligand binding, as they are in mosquitoes (Beerntsen et al.,

2000; Villar et al., 2015; Phelan et al., 2019; Kurokawa et al., 2020).

Infection of mosquitoes with dengue virus (DENV), West Nile virus

(WNV), and other pathogens destroys the mosquito cytoskeleton

(Vlachou et al., 2005; Wang et al., 2010), and cytoskeleton

remodeling is also a universal mechanism in the interactions

between ticks and TBPs (such as Borrelia burgdorferi and

Anaplasma phagocytophilum) (Cotte et al., 2014; de la Fuente

et al., 2016a; Fogaca et al., 2021). Pathogens can interfere with the

innate immunity of ticks and facilitate infection (Hajdusek et al.,

2013; Fogaca et al., 2021; Maqbool et al., 2022). Knockdown of

RNAi-associated proteins Argonaute and Dicer in I. ricinus– and

Ixodes scapularis–derived cell lines resulted in increased LGTV

replication and production, proving their role in the tick’s antiviral

RNAi response (Ayllon et al., 2015). In tick midguts, A.

phagocytophilum facilitates and establishes infection through up-

regulation of the JAK/STAT pathway (Ayllon et al., 2015).

Subolesin and NF-kB protein levels are higher in ISE6 tick cells

infected with A. phagocytophilum (de la Fuente and Contreras,

2015; Naranjo et al., 2013). Defensin-2 has shown to upregulated

both in bacterial and TBEV infection (Chrudimská et al., 2011; Pelc

et al., 2014). Apoptosis plays an important role in the infection of A.

phagocytophilum, as confirmed both in vivo and in vitro (de la

Fuente et al., 2016a). RNA silencing of X-linked inhibitor of

apoptosis protein significantly increases tick colonization by the

bacterium A. phagocytophilum (Severo et al., 2013). Similarly, some

TBVs, such as louping ill virus (Johnson, 2017; Oliva Chávez et al.,

2017), TBEV (Mansfield et al., 2017a) and SFTSV (Fares and

Brennan, 2022) utilize the major cellular pathways (innate

immunity, apoptosis and RNAi responses) in mammalian or tick

cells to facilitate virus replication. In vitro, when an I. ricinus–

derived cell line was infected with flavivirus, the transcription level

of cytochrome C gene was upregulated, which is a molecule known

to be associated with apoptosis (Mansfield et al., 2017a). Langat

virus (LGTV)-infected ISE6 cells showed an increase in histone

protein expression (Grabowski et al., 2016).

Research on TBPs has focused on studying the interactions

between ticks and bacteria (Khanal et al., 2017; Taank et al., 2018;

Dahmani et al., 2020; Kurokawa et al., 2020; Ramasamy et al., 2020)

while we are in the early stages of our understanding of tick-virus

interactions (Mansfield et al., 2017a; Damian et al., 2020; Maqbool

et al., 2022; Migné et al., 2022). Most TBVs are virulent and the

requirements for biosafety research are high, which severely

restricts and hinders relevant basic research on TBVs (Kaiser,

2008; He et al., 2010; Maffioli et al., 2014; Adouchief et al., 2016;

Grabowski et al., 2016; Grabowski and Hill, 2017; Kazimirová et al.,

2017; Mansfield et al., 2017b; Grabowski et al., 2018; Shi et al., 2018;
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Zhuang et al., 2018; Kemenesi and Banyai, 2019; Salata et al., 2021;

Ahmed et al., 2022; Maqbool et al., 2022; Raney et al., 2022).

Currently, there is an urgent need to establish alternative low-

pathogenic TBV models that conform to the replication and

transmission dynamics of most TBVs in ticks. To address these

conditions, utilizing SINV as a model pathogen, we established a

series of methods to prove the feasibility of using SINV to study the

interaction between ticks and viruses. We believe that the

application of SINV-based tick transmission models will provide

a new platform for future examination of interactions between ticks

and viruses.
2 Materials and methods

2.1 Ticks and animals

Laboratory colonies of Rhipicephalus haemaphysaloides and

Hyalomma asiaticum were maintained by feeding on New

Zealand White rabbits (weighing approximately 3 kg) or 6–8-

week-old BALB/c mice, provided by the Shanghai Laboratory

Animals Center (Shanghai Institutes for Biological Science,

Chinese Academy of Sciences, Shanghai, China) (Zhou et al.,

2006). These two species of ticks have been undergoing

continuous breeding in our lab for over 10 years. We usually feed

ticks on clean grade rabbits to ensure that the ticks are not infected

with any other pathogens.
2.2 Cells and tissue culture

BHK-21 cells preserved in our laboratory were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 8% heat-inactivated fetal bovine serum (Biological

Industries, Kibbutz Beit Haemek, Israel) and 1% penicillin-

streptomycin. The cells were cultured and passaged in a 5% CO2

incubator at 37°C. The tick cell line, ISE8/CTVM-19, from embryos

of Ixodes scapularis, was maintained in L-15 (Leibovitz) medium

(L15 medium supplemented with 20% heat-inactivated fetal bovine

serum, 10% tryptose phosphate broth, 1% L-glutamine (200 mM),

and 1% penicillin-streptomycin at 30°C) (Bell-Sakyi et al., 2007;

Weisheit et al., 2015).

Unfed adult R. haemaphysaloides were sterilized in 70% ethanol

for 30 s and then dried with filter paper. The salivary glands and

midguts of each tick were removed by microdissection, immediately

transferred to L15 medium supplemented with 1% penicillin-

streptomycin at 30°C, and cultured in vitro, as previously

described (Grabowski et al., 2017).
2.3 Virus culture and infection

BHK-21 cells were cultured in T75 flasks until reaching a

density of 70–80%. After washing the cells once with serum-free

DMEM, 3 mL of serum-free DMEM was added to each flask,

followed by 50 mL of SINV-wild-type (WT) and SINV-eGFP virus
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(supplied by Dr. Margaret MacDonald from Rockefeller University

and Dr. Zhang Yuqiang from Fudan University) solutions at a titer

of 1 × 107 (PFU)/mL. The cells were incubated at 37°C for 1 h before

the addition of complete DMEM containing 10% fetal bovine

serum. Viruses were collected 48 h post-infection. The collected

viruses were freeze-thawed three times, concentrated using a

column (Amicon Ultra-15 10 kDa centrifugal filter unit; Merk-

Millipore, Billerica, MA, USA), and subjected to a viral plaque assay

to determine the titer.

Infection with SINV requires a constant neutral pH, which can

be achieved by further supplementation with tick basic medium as

described above (Bell-Sakyi et al., 2007; Weisheit et al., 2015). A

total of 50 mL of SINV-WT virus solution with a titer of 1.2 × 109

PFU/mL was resuspended in 1 mL of tick basic medium, and 500

mL was added to 30–50% confluent tick cell cultures or tick tissues

(salivary glands and midguts) (Grabowski et al., 2017, 2019),

cultured in a 6-well plate. Infection of CTVM-19 cells with SINV

was monitored by quantitative real-time polymerase chain reaction

(qRT-PCR) every two days (Bell-Sakyi et al., 2007; Weisheit

et al., 2015).
2.4 Tick infection by microinjection

The SINV-WT stock solution with a viral titer of 1.2 × 109 PFU/

mL was diluted 10- or 100-fold with DMEM. Unfed female ticks

were microinjected with 1 mL per H. asiaticum and 0.5 mL per R.

haemaphysaloides to the coxa of the fourth right leg (60 females per

group, injected 20 females per dilution, two independent groups).

After microinjection, ticks were maintained in an incubator at 24°C

and 95% humidity. Ticks at different time points after infection

were collected (1 adult tick per sample), and used for determination

of the infectious viral particles by plaque assays.

For tissue tropism assays, unfed female R. haemaphysaloides (at

least 60 ticks) were microinjected with SINV-WT/SINV-eGFP

stock solution (0.5 mL per tick) as mentioned above. Different tick

tissues (midguts, salivary glands, and ovaries) infected with different

virus doses were collected by microdissection at different time

points post-infection, and used for the subsequent detections.
2.5 Transmission of SINV by
R. haemaphysaloides

Fifty 3-4-week-old C57 mice were divided into two groups. The

mice were intraperitoneally injected with SINV-WT/SINV-eGFP (2

× 107 PFU/mouse) or an equal volume of DMEM as control.

Twenty-four hours after injection, mice were infested with

different developmental stages of R. haemaphysaloides (a mouse

was infested with 200 larvae, 50 nymphs, or two adult females and

one male ticks). Post-engorgement, the ticks were collected and

stored at 24°C in a constant temperature biochemical incubator

with 95% humidity for molting. Starting on day 7 after molting,

molted nymphs (30 nymphs per sample) and female R.

haemaphysaloides (one adult tick per sample) were collected at

14 d intervals. qRT-PCR and plaque assays were used to determine
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whether the collected nymphs or adult ticks were infected with

SINV, and the infection rates in adult ticks were calculated. The

same batch of ticks that tested positive was fed on healthy 3–4-

week-old C57BL/6J mice (each stage of the tick bit at least 3 mice).

On the 3rd feeding day, the mice were sacrificed, and different

tissues (brain, blood, heart, liver, spleen, and lungs) were collected

for SINV detections, as described above.
2.6 Virus plaque assays

Samples from the transmission experiments as described above

were collected, including the samples of ticks (larvae, nymphs or

adult ticks) and different tissue (from ticks or mice) lysates infected

with SINV (SINV-WT/SINV-eGFP). Then, 200–500 mL of

phosphate-buffered saline (PBS) was added to each sample (for

nymphs, 30 unfed nymphs each sample; for adult ticks, one whole

tick per sample), and after grinding by tissue crusher, a part of the

tick lysate was used for RNA extraction, and the remaining part was

used for virus plaque assays. BHK-21 cells were cultured in 6-well

plates at a density of 90%. The cells were then washed once with

serum-free DMEM. The tick samples were diluted in a 10-fold series

(10-1–10-10) and the appropriate dilution was selected for each

sample type (the ticks and tick tissues infected by microinjection are

usually diluted in several series because of the high viral dose,

whereas samples of ticks from transmission experiments were used

as stock solutions directly). The sample suspension (0.5 mL) was

inoculated at each dilution, with three replicate wells per dilution.

Blank controls of DMEMwithout the virus were used in three wells.

Samples were incubated at 37°C for 1 h and shaken every 20 min.

The viral suspension was discarded, and 2 mL of cooled solid

medium containing 0.5% low-melting-point agarose (prepared by

mixing 4% FBS-containing 2× DMEM culture medium and an

equal volume of 1% low-melting-point agarose) was added. Cells

were further incubated at 37°C with 5% CO2, and changes in cells

were continuously observed. When significant cytopathic effects

were observed (about 48–72 h after infection), the cells were

covered with a second layer of low-melting-point agarose

medium containing 10% crystal violet staining solution and

incubated at room temperature for approximately 6 h. Next, 1

mL of 4% formaldehyde was added to fix the cells, the supernatant

was discarded, the morphology of the plaques was observed, and

their number was recorded. The virus titer of the test sample was

displayed as PFUs per milliliter: Sample titer (PFU·mL-1) =

(number of plaques per well × sample dilution)/volume of sample

added to each well (mL). The mean viral titer in the supernatant at

each time point was calculated.
2.7 Transmission electron
microscopy analysis

Glutaraldehyde-fixed midguts of female R. haemaphysaloides

infected with SINV by microinjection were prepared as ultra-thin

sections and then subjected to standard TEM procedures

(Umemiya-Shirafuji et al., 2008). The sections were then viewed
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and photographed using a Tecnai G2 Spirit BIOTWIN TEM (FEI,

Hillsboro, OR, USA).
2.8 RNA extraction and transcriptome of R.
haemaphysaloides midguts and
salivary glands

Adult R. haemaphysaloides were divided into two groups (300

female ticks per group, two independent groups). The experimental

group ticks were microinjected with SINV-WT (6 × 104 PFU/per

tick), while the ticks of control groups were injected with an equal

volume of DMEM (0.5 mL/per tick). The midguts and salivary

glands of different experimental groups were collected at different

time points after microinjection (unfed female ticks infected for 3

days or 9 days) or different time points of blood-feeding (infected

female ticks fed for 3 days or 5 days). Midguts and salivary glands of

both unfed and fed R. haemaphysaloides females were homogenized

in TRIzol reagent (Invitrogen, Carlsbad, CA, USA), and purified

RNA was used for the construction of paired-end cDNA libraries

using a NEBNext® Ultra™ RNA Library Prep Kit (New England

Biolabs, Ipswich, MA, USA), according to the manufacturer’s

instructions. Sequences were tagged with specific barcodes, and

paired-end reads were sequenced using an Illumina HiSeq platform

(Illumina San Diego, CA, USA) at the Beijing Genomics Institute

(BGI, Beijing, China).

RNA-seq data were cleaned and formatted using an Agilent

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

High-quality reads were assembled using the Trinity program with

default parameters (Grabherr et al., 2011). The assembled

transcripts were extended and clustered using TGICL software

(Pertea et al., 2003). Assembled transcripts were processed for

functional annotation and classification. The de novo approach

fo r t ranscr ip tome as sembly , TransDecoder (h t tp : / /

transdecoder.sourceforge.net), was used to identify putative

protein coding sequences from the contigs. Seven different

functional databases (NR, NT, Gene Ontology [GO] terms

[Harris et al., 2008], Clusters of EuKaryotic Orthologous Groups

[KOG] [Tatusov et al., 2000], Kyoto Encyclopedia of Genes and

Genomes [KEGG] pathways [Kanehisa et al., 2004], and SwissProt

and InterPro [Zdobnov and Apweiler, 2001]) were used to annotate

all assembled transcripts (Unigenes). Differentially expressed genes

(DEGs) were identified using the MA-plot-based method with a

random sampling model by comparing the unfed library with the

engorged library. Genes with a fold change > 3 and a P-value <

0.001 were considered differentially expressed.
2.9 qRT-PCRs

The different developmental stages of R. haemaphysaloides and

tissues from female R. haemaphysaloides (midguts and salivary

glands) or mice (brain, blood, heart, liver, spleen, lungs and

kidneys) were collected for RNA extraction as described above.

RNA was converted into first-strand cDNA using a HiScript III RT

SuperMix for quantitative polymerase chain reaction (qPCR)
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(+gDNA wiper) kit (Vazyme Biotech, Nanjing, China) following the

manufacturer’s protocols. The double-stranded cDNAs were used

as a template for qRT-PCR along with specific primers

(Supplementary Tables S1, S2, S3, and S4), which were designed

using Primer Premier 5 (Premier Biosoft International, Palo Alto,

CA, USA). qRT-PCR was performed using the ChamQ Universal

SYBR qPCR Master Mix (Vazyme Biotech) green and gene-specific

primers on a QuantStudio 5 System (Applied Biosystems, Foster

City, CA, USA). The qRT-PCR cycling parameters were 95°C for 30

s, followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. All samples

were tested three times. Relative quantification was performed using

the 2-△△Ct method (Livak and Schmittgen, 2001, Ginzinger, 2002).

In particular, all data were normalized to the expression of

elongation factor-1 (ELF1A) (GenBank accession no. AB836665)

(Nijhof et al., 2009), and their level of expression expressed relative

to that of tissue (midguts or salivary glands from ticks) and cell

samples (from CTVM-19 cells).

In the SINV transmission experiment, the absolute qPCR

method was employed to determine the viral load in different

developmental stages of R. haemaphysaloides or the tissues of

mice, using primers targeting the non-structural protein 1 (Dahl

et al., 2022).
2.10 TUNEL staining

Paraformaldehyde-fixed midguts of unfed female R.

haemaphysaloides infected by microinjection at different time

points were subjected to paraffin sectioning and antigen retrieval.

The sections were then permeabilized with 0.1% Triton X-100 and

incubated for 1 h with 1:9 terminal deoxynucleotidyl transferase

mixed with fluorescently-labeled deoxyuridine triphosphate at 37°

C, following the instructions of the Roche In Situ Cell Death

Detection Kit POD (Roche, Mannheim, Germany). To stain the

nuclei, sections were washed three times with PBS (0.14 M NaCl,

0.0027 M KCl, 0.01 M phosphate buffer; pH 7.4)/0.5% Tween-20,

and then incubated with 1 mg/mL 4′, 6′-diamidino-2-phenylindole

(DAPI, Invitrogen) in dd H2O for 20 min. After washing, the

sections were mounted using a fluorescent mounting medium

under glass coverslips, and then viewed and photographed using

a Zeiss LSM880 Laser Scanning Confocal Microscope (Carl Zeiss,

Jena, Germany).
2.11 Western blot

Total prote ins from midguts of unfed female R.

haemaphysaloides infected by microinjection at different time

points were extracted using Tris-buffered saline (TBS) (10 mM

T r i s - H C l , p H 7 . 5 ; 1 5 0 mM N a C l w i t h 1 mM

phenylmethanesulfonyl fluoride). The total concentration of the

extracted protein was determined using the Bradford Protein Assay

Kit (Beyotime, Shanghai, China) following the manufacturer’s

instructions. For SDS-PAGE (12%; Genescript, Nanjing, China),

loading of 20 µg protein/well was performed, and proteins on the
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gel were transferred onto a nitrocellulose membrane. Anti-

RhCaspase 7 (Wang et al., 2020), RhATG8 (Wang et al., 2021),

and anti-GFP primary antibodies (Cell Signaling Technology,

Danvers, MA, USA) were used to detect apoptosis, autophagy,

and SINV-eGFP in the protein extracts, and anti-tubulin primary

antibodies (Proteintech, Rosemont, IL, USA) were used as

constitutive controls to normalize the signal from the target

protein. After primary incubation, a goat anti-mouse IgG (H + L)

secondary antibody conjugated with HRP (Invitrogen) and IRDye

800CW goat anti-mouse IgG (H + L) (LI-COR, Lincoln, NE, USA)

were used as secondary antibodies in the assays. Images were

captured using a ChemiDoc Touch (Bio-Rad, Hercules, CA, USA)

or Odyssey Imaging System (LI-COR).
2.12 Data analysis

GraphPad PRISM 6.0 software (Graph Pad Software Inc., La

Jolla, CA, USA) was used for all data analyses. Mean ± standard

error (SEM) values were calculated for three independent

experiments, and two-tailed Student’s t tests were used to identify

significant differences between groups (*p < 0.05; **p < 0.01, ***p <

0.001, ****p < 0.0001).
3 Results

3.1 Transmission of SINV via R.
haemaphysaloides at different
developmental stages

To demonstrate that SINV could be transmitted via ticks, we

attached R. haemaphysaloides at different developmental stages

(including larval, nymphal, and adult ticks) to SINV- WT/SINV-

eGFP-infected mice (Figure 1A). Post-engorgement, ticks were

collected for molting or oviposition. The results showed that the

SINV titer increased over time in both molted nymphal and adult

ticks (Figures 1B, C). However, no viral RNA was detected in the

eggs or hatched larvae laid by engorged female R. haemaphysaloides

(Supplementary Figures S1A, B). As time passed after molting, the

virus replicated within the ticks, and the positivity rate in adult ticks

(one whole adult tick per sample, molted from engorged nymphs)

gradually increased, reaching 100% approximately 5 weeks after

molting, as determined by qRT-PCR (Figure 1D). We conducted

virus plaque assays on qRT-PCR-positive nymphs and adults and

found that only samples with high viral RNA copy numbers formed

plaques after infecting BHK 21 cells (Figure 1E). SINV RNA

transcripts were detected in both blood and brain of the mice

bitten by SINV-infected nymphs and adult R. haemaphysaloides

(Figures 1A, F). However, the tissue lysates from mice exposed to

SINV-infected adult R. haemaphysaloides failed to form viral

plaques after infecting the BHK-21 cells. Viral plaque formation

only occurred in the BHK-21 cells infected with blood and brain

lysate samples from mice bitten by SINV-infected nymphal R.

haemaphysaloides (Figure 1G).
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FIGURE 1

SINV transmission through mouse-tick experiment. (A) Schematic diagram of SINV transmission between mice and ticks. (B) qRT-PCR detections in
R. haemaphysaloides nymphs (larval bite) at different time points after molting, with eight replicates per time point and 30 R. haemaphysaloides
nymphs per sample. (C) qRT-PCR detection in adult R. haemaphysaloides (nymphal bite) at different time points after molting (1 adult R.
haemaphysaloides per sample, 4 female and 4 male R. haemaphysaloides examined independently at each time point). (D) Statistics on the positive
rates of molted R. haemaphysaloides adults in (C). (E) Virus plaque assays of qRT-PCR-positive R. haemaphysaloides samples. (F) qRT-PCR
detections in infected tissues of C57BL/6J mice. For the mice bitten with SINV-infected nymphal R. haemaphysaloides, 50 SINV-infected nymphs
were attached to the back of three mice. For the mice bitten with SINV-infected adult R. haemaphysaloides, one SINV-infected female R.
haemaphysaloides and one male R. haemaphysaloides were attached to the back of mice. Different tissues from mice were collected for SINV-
related assays on days 3–4 of tick feeding. (G) Virus plaque assay of qRT-PCR-positive mice tissue samples in (F). The viral RNA levels in the
transmission experiment were detected and calculated by absolute quantitative PCR. The significance of the differences in (B), (C) and (F) was
determined by the Student's t-test: *p < 0.05, ns means not significant
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3.2 Replication curves of SINV with
different titers in different ticks

H. asiaticum and R. haemaphysaloides females were infected

with different doses of SINV by microinjection, and we found that

SINV could replicate in both species of ticks, and the replication

curve with the same virus gradient showed the same trend

(Figure 2). The preliminary results showed that SINV can be used

as a model for studying tick-virus interactions. While viral

replication increased with increasing quantity of virus in

inoculum until 1.2 × 105 PFU/per tick, it diminished at higher

doses (6 × 105 PFU/per tick and 1.2 × 106 PFU/per tick). Based on

these results, we selected 6 × 104 PFU/per tick as the infective dose

for subsequent experiments (Figure 2). Only injected with the

appropriate dose of the virus (6 × 104 PFU/per tick and 1.2 × 105

PFU/per tick), the virus continues to replicate within ticks. Based on

these results, we confirmed this dosage (6 × 104 PFU/per tick) as the

infective dose for the subsequent experiments.
3.3 Tissue tropism of SINV in
R. haemaphysaloides

When ticks were infected with different doses of SINV-eGFP,

we found that the virus specifically aggregated in the tick midguts

during the early stage of infection (120 h after microinjection)

(Figures 3A, B), whereas aggregation of specific fluorescence was

not observed in the other two tissues (salivary glands and ovaries).

We also cultured tick tissues in vitro and infected them with SINV-

eGFP, and confirmed that SINV replicates in both the midguts and

salivary glands of ticks (Supplementary Figures S1C, D). The

specific fluorescence intensity in the midguts of ticks treated with

different viral doses increased with increasing infection duration

(Figure 3B). TEM results showed that the number of viral particles

in the tick midguts increased with increasing infection time at

the same infection dose (Figure 3C). The results of qPCR and

virus plaque assays also confirmed that SINV-eGFP mainly

accumulated in the tick midguts, and that the amount of virus in

the midguts increased significantly with the duration of infection
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(Figures 3D, E). We did not observe specific fluorescent aggregates

in tick ovaries after microinjection of SINV (Figure 3A, B), and

SINV-eGFP failed to replicate in the tick embryonic cell line

CTVM-19 (Figure 3F).
3.4 Global transcriptome profiles of the
midguts of unfed female ticks infected
with SINV

To screen for regulatory molecules associated with SINV

replication in tick midguts, we collected unfed tick midguts

(infected with SINV-WT by injection for 3 days or 9 days) for

transcriptome sequencing and differential analysis with control

groups at the same time points. Heat-map clustering analysis of

all DEGs revealed that the expression-clustering patterns were

reproducible within the different experimental groups and clearly

separated from those of the corresponding control samples and

SINV-WT-infected samples (Figures 4A, D). KEGG annotation

analysis of the DEGs at different infection time points showed that

the differentially expressed gene composition was broadly similar,

but the number of KEGG-annotated DEGs at 3 days of infection

was higher than that at 9 days of infection (Figures 4B, E). Many of

the genes were differentially expressed, with 1374 (a total of 822

upregulated and 552 downregulated DEGs detected) and 3922 (a

total of 2167 upregulated and 1755 downregulated DEGs detected)

genes differentially expressed at 3 days and 9 days of infection,

respectively (Figures 4C, F). These results are in contrast to the

difference in KEGG-annotated DEGs, demonstrated in Figures 4B,

E. We detected SINV-specific DEGs (TRINITY_DN6189_c0_g1) in

DEG libraries at different time points during infection, and the

number of SINV transcripts was significantly greater at 9 days than

at 3 days after infection (Figures 4C, F). To determine a relevant

time point for analysis of tick-virus interactions during SINV viral

cycle, we counted the DEGs with widely-recognized pathways (cell

growth and death, substance transport and catabolism, and

immune system) associated with host resistance to pathogenic

infection and found a greater number of associated genes at 3

days of infection (Figure 4G).
A B

FIGURE 2

The replication curves of SINV in different tick species. (A) The replication curves of SINV in H. asiaticum by virus plaque assays. (B) The replication
curves of SINV in adult female R. haemaphysaloides by virus plaque assays. 60 females per group, injected 20 females per dilution, two independent
groups. For each infection time point, 3 ticks were taken per injection dose, one tick per sample. The injection volume to each female H. asiaticum
was 1 mL, while the injection volume to each female R. haemaphysaloides was 0.5 mL. The PFU of virus at the starting time point was regarded as 1,
and the ordinate is the concentration at each subsequent time point which is a multiple of the starting point. Bars represent the mean ± SD of three
replicates. Significance of differences as determined by Student’s t-test: *p < 0.05, ***p < 0.001, ****p < 0.0001.
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3.5 SINV infection-induced programmed
cell death in the tick midgut

The cDNAs of tick midguts at different infection time points

were subjected to qRT-PCR to evaluate the expression profiles of

autophagy- and apoptosis-related genes. To investigate the

expression patterns of autophagy related gene (ATG) homologs

associated with autophagy, 12 putative R. haemaphysaloides-specific

ATGs (RhATGs) were identified (Wang et al., 2021). Most RhATGs

were upregulated between 1 day and 3 days (early stage) of

infection, whereas the transcription levels of apoptosis-related

genes did not change significantly in the early stage of infection,

but increased significantly with prolonged infection (Figures 5A, B).

Western blot results showed that autophagy levels were elevated in

the tick midgut at the beginning of the infection but decreased later,

and apoptosis levels (cleaved-caspase7) increased with prolonged

infection (Figure 5C). Unfed tick midguts exhibited positive

TUNEL staining after infection with SINV-WT at 5 days and 10

days and apoptosis increased over time (Figure 5D).
3.6 Immune response of tick midguts was
activated in the early stage of
SINV infection

After tick infection with a viral load of 6 × 104 PFU/tick by

microinjection, the transcription levels of innate immune-related

genes (including four innate immune pathways: JAK-STAT, IMD,

toll-like, and RNAi interference) were detected by qPCR at different

infection time points. All innate immune-related genes were
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identified using BLAST analysis (Altschul and Lipman, 1990)

(http://www.ncbi.nlm.nih.gov/BLAST/). The results showed that

the transcription levels of most innate immune-related genes of

R. haemaphysaloides were significantly elevated during the early

stage of infection (infection 1 day–3 days) (Figures 6A–D). As the

infection time increased, the transcription levels of innate immune-

related genes downregulated (Figures 6A–D). These results indicate

that innate immunity may play a very important role in the early

stages of SINV infection in the tick midguts. We found that if

the immune storm response fails to clear the virus from

R. haemaphysaloides in the early stages of SINV infection, SINV

will continue to replicate and coexist with R. haemaphysaloides, and

that viral replication causes disruption of the tick midguts

(Supplementary Figure S3), which may ultimately lead to the

death of the individual tick.
3.7 Transcriptional changes in other tick-
pathogen interaction molecules reported
after SINV infection

To screen for key regulatory molecules involved in SINV

transmission, ticks infected by microinjection with SINV were

attached to rabbit ears, and the midguts and salivary glands of

ticks collected at different feeding time points were analyzed for

transcriptome differences. The results showed that the total number

of DEGs in the midguts of ticks during early feeding (3 days after

attachment) was significantly higher than that on day 5 (Figure 7A).

We reviewed the articles related to tick-pathogen interactions and

screened some of the tick-pathogen interaction molecules with the
B
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FIGURE 3

Molecular biology verification of SINV replication in the midguts and salivary glands of unfed female R. haemaphysaloides in vivo infected by
microinjection. (A, B) Distribution of SINV-eGFP in different tissues of female R. haemaphysaloides at different infection time points. MG: midgut; SG:
salivary gland; OV: ovary; scale bar: 100 mm. (C) TEM observation of the number of SINV particles at different infection time points; scale bar: 100
nm. (D) Virus plaque detection of SINV at different infection time points in the midguts of unfed female R. haemaphysaloides. (E) qRT-PCR to verify
the replication of SINV in the midguts and salivary glands of unfed female R. haemaphysaloides. (F) The replication curves of SINV in CTVM-19 cells.
Bars represent the mean ± SD of three replicates.
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results of our transcriptome difference analysis. Statistical analysis

of the reported transcript levels of molecules interacting with

pathogens in tick midguts (Ayllon et al., 2015; Alberdi et al.,

2016; de la Fuente et al., 2017; Antunesi et al., 2019) showed that,

compared with other pathogens, SINV may have similar

mechanisms of infection in tick midguts (Figure 7B). The number

of DEGs at the two feeding time points in tick salivary glands was

basically the same (Figure 7C), and changes in the transcription

levels of molecules interacting with other pathogens (Ayllon et al.,

2015: Alberdi et al., 2016; de la Fuente et al., 2017; Antunesi et al.,

2019), were also found in the differential transcriptome analysis of

the salivary glands (Figure 7D). We examined changes in SINV
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transcription levels in the midguts and salivary glands at different

feeding time points and found that the number of SINV transcripts

in the midguts gradually decreased, whereas in the salivary glands,

the number of SINV transcripts first increased and then decreased

(Figure 7E). When adult R. haemaphysaloides were infected with

SINV-eGFP fed blood, SINV-specific fluorescence disappeared

from the fed tick midguts, whereas a large amount of SINV-

eGFP-specific fluorescence accumulated in the salivary glands of

fed ticks, tentatively demonstrating that SINV-eGFP migrated from

the tick midguts to the salivary glands during blood-feeding

(Figure 7F). We performed qRT-PCR validation of several

molecules with clearer functional validation, such as clathrin
B C
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FIGURE 4

Transcriptome sequencing and DEG analysis of the tick midguts at different time points of SINV infection by microinjection. (A, D) Cluster analysis of
transcriptome sequencing in the midguts of unfed female R. haemaphysaloides at different infection time points after microinjection. Histogram of
the KEGG functional annotation of transcriptome DEGs in SINV-infected tick midguts at 3 d (B) and 9 d (E). (C, F) Volcano plots of DEGs in the
midguts of unfed female R. haemaphysaloides at different infection time points after microinjection, with upregulated genes shown in red and
downregulated genes shown in green. (G) Histograms of immune, transport and catabolism, cell growth and death-related genes among the DEGs
in the 3 d and 9 d transcriptomes in the midguts of SINV-infected ticks. TRINITY_DN6189_c0_g1 refers to SINV- specific transcripts.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1334351
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2024.1334351
(Hajdusek et al., 2013; Sonenshine and Macaluso, 2017), HSP70

(Ayllon et al., 2015; Alberdi et al., 2016; Mansfield et al., 2017a),

histamine release factor (HRF) (Dai et al., 2010), Salivary glands

proteins (Salps) (Liu et al., 2011; Hajdusek et al., 2013; Sonenshine
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and Macaluso, 2017; Kurokawa et al., 2020; Fogaca et al., 2021) and

so on. Based on the above results, some of the DEGs with significant

transcription level changes were detected at different transmission

time points. The transcription level changes of different genes in the
B

C D

A

FIGURE 5

Changes of autophagy and apoptosis levels during SINV replication in the midguts of unfed female R. haemaphysaloides. Quantitative qPCR analysis
of the expression levels of (A) autophagy-related genes and (B) apoptosis-related genes after virus infection, bars represent the mean ± SD of three
replicates. Significance of differences as determined by Student’s t-test: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C)Western blot
detection of autophagy- and apoptosis-related genes at different viral infection time points. The midguts of unfed female R. haemaphysaloides
infected at 3, 5, and 10 d were collected, and anti-RhATG8 (pcAb), anti-RhCaspase7 (pcAb), and anti-a-tubulin (mAb) were used as primary
antibodies. (D) TUNEL staining (red fluorescence) of the tick midgut at different time points following SINV infection. Unfed female R.
haemaphysaloides infected SINV by microinjection (6 × 104 PFU/per tick), and the midguts were collected by microdissection at different time points
after injection (22 tick midguts per time point, 15 tick midguts for RNA extraction, 10 tick midguts for western blot, 2 tick midguts for TUNEL assays).
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midguts and the trend of the changes in the salivary glands were not

the same (Figure 7G), which was consistent with the results of the

transcriptome difference analysis (Figures 7B, D).
4 Discussion

In this study, we demonstrated that SINV can be transmitted via

ticks and confirmed that SINV replicated in the midguts and
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salivary glands of ticks both in vivo and in vitro (Figures 3A, B

and Supplementary Figures S1C, D). Not only these two tick species

(R. haemaphysaloides and H. asiaticum), we also confirmed that

SINV replicated in laboratory-reared Haemaphysalis longicornis

(Supplementary Figure S4), and we preliminarily believe that

SINV can replicate in most tick species. Therefore, we are

interested in knowing whether SINV can replicate in tick cell

lines. We found that SINV did not replicate in I. scapularis tick

embryonic cells (ISE8/CTVM-19). Furthermore, unlike other
B
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FIGURE 6

Trends in transcription levels of innate immunity-related genes in ticks during SINV replication in the midguts of unfed female R. haemaphysaloides,
infected by microinjection. Quantitative qPCR analysis of the expression levels of (A) RNAi pathway-related genes. (B) Toll-like pathway-related
genes. (C) JAK-STAT pathway-related gene and (D) IMD pathway-related genes after SINV infection. Unfed female R. haemaphysaloides infected
SINV by microinjection (6 × 104 PFU/per tick), and the tick midguts were collected as mentioned above. Bars represent the mean ± SD of three
replicates. Significance of differences as determined by Student’s t-test: *p < 0.05.
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classical TBVs, such as TBEV (Lindquist and Vapalahti, 2008),

POWV (Raney et al., 2022), SFTSV (Zhuang et al., 2018), and

CCHFV (Bente et al., 2013), SINV did not replicate in the tick

ovaries and the virus was not found in eggs laid by SINV-infected
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females (Figure 3F and Supplementary Figures S1A, B). These

results indicate that R. haemaphysaloides is a competent vector

for SINV, but can only transmit the virus in trans-stadial modes.

SINV replicated in tick tissues both in vivo and in vitro, but not in
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FIGURE 7

Transcriptome sequencing and differentially expressed gene analysis of the tick midguts and salivary glands at different feeding times of SINV
infection by microinjection. (A) Differential expressed genes analysis of female R. haemaphysaloides midguts transcriptome infected with SINV at
different feeding times. (B, D) Transcription level analysis of molecules interacting with pathogens in the midguts or salivary glands that have been
reported to date. Green indicates upregulated genes with fold change greater than 20 (log2 normalized fold change > 4.32). Black indicates no
significant difference. Red indicates downregulated genes with fold change greater than 20 (log2 normalized fold change > 4.32). (C) Differentially
expressed gene analysis of tick salivary gland transcriptome infected with SINV at different feeding times. (E) qRT-PCR detections of SINV in the
midgut and salivary glands of fed female R. haemaphysaloides at different feeding time points. (F) The distribution of SINV in the midguts and salivary
glands of fed adult female R. haemaphysaloides under a fluorescence microscope; scale bar: 100 mm. (G) qRT-PCR detections of tick-pathogen
interactions related genes in the midguts and salivary glands of fed female R. haemaphysaloides at different feeding time points. Bars represent the
mean ± SD of three replicates. Significance of differences as determined by Student’s t-test: *p < 0.05.
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CTVM-19. This indicates that in vitro cultures of tick tissues may be

closer to the physiological condition inside the ticks, while there are

significant differences between tick cell lines and ticks, the reasons

for these differences still require further exploration.

To screen the DEGs for SINV-tick interactions, the presence of

SINV in ticks was divided into two phases, the replication phase

(Figures 4A–F) and the phase of SINV transmission (Figures 7A–

D). We facilitated infection with SINV using microinjection to

ensure the stability, accuracy, and representativeness of the

screened genes. During the SINV replication stage, we found that

the number of DEGs increased significantly with the duration of

infection (Figures 4C, F). SINV mainly replicated in the midguts of

ticks (Figures 3A, B, E); therefore, we screened the DEGs in the

midguts during the replication period of SINV. Similar to several

classic TBVs, such as SFTSV (Xu et al., 2021; Fares and Brennan,

2022), LIV (Johnson, 2017), LGTV (Regmi et al., 2020) and CCHFV

(Papa et al., 2017), we found that SINV replication can activate the

innate immune responses of ticks (Figures 4B, E, G and Figure 6). In

addition, we also confirmed that SINV infection caused PCD in the

tick midguts (Figures 4B, E, G and Figure 5), which is considered to

be a common molecular mechanism for the interactions between

ticks and pathogens (Ayllon et al., 2015; de la Fuente et al., 2016b;

Mansfield et al., 2017a; Hart and Thangamani, 2021).

For the tick-borne phase of SINV transmission, which involved

two main tissues (midguts and salivary glands), we found that the

number of DEGs in the midguts of ticks decreased significantly as

SINV migrated out of the midguts (Figure 7A) and hypothesized

that the presence of undifferentiated stem cells in the midguts of

ticks is associated with a self-repairing process (Sonenshine, 1991;

Parthasarathy and Palli, 2007; Maqbool et al., 2022), whereas the

salivary glands of the ticks are highly differentiated cells (Walker

et al., 1985; Sonenshine, 1991; Simo et al., 2017) that did not have

the ability to self-repair, and that the number of DEGs remained

stable despite the decrease in the amount of pathogens (Figure 7C).

The trends in the expression of genes associated with tick-pathogen

interactions were consistent with the results obtained by qRT-PCR.

For example, we found that the endocytosis-related gene, clathrin,

which mediated migration of A. phagocytophilum in ticks

(Hajdusek et al., 2013; Sonenshine and Macaluso, 2017), might

play an important role in facilitating the passage of SINV across the

midgut barrier, but there was no significant change in the

transcription levels in the salivary glands. Salps have been

reported to play important roles in the tick-borne transmission of

several pathogens (such as TBEV, B. burgdorferi and A.

phagocytophilum) (Liu et al., 2011; Hajdusek et al., 2013;

Sonenshine and Macaluso, 2017; Kurokawa et al., 2020; Fogaca

et al., 2021), and we found significant changes in the transcription

levels of several salivary gland proteins during transmission of

SINV, but not in the midguts (Figure 7G). We also found that

tick HRF (critical for the transmission of B. burgdorferi in ticks)

(Dai et al., 2010) and heat shock protein 70 (HSP70, related to the

infection of A. phagocytophilum) (Ayllon et al., 2015; Alberdi et al.,

2016; Mansfield et al., 2017a) were downregulated during SINV
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transmission via tick salivary glands, and the mechanism needs to

be further investigated.

Beyond that, there were still some limitations of this study.

Firstly, it is currently difficult for us to make further comparisons

between the differences in physiological responses of ticks induced

by SINV and other TBVs due to the lack of relevant studies

(Mansfield et al., 2017b; Damian et al., 2020; Maqbool et al.,

2022). Secondly, although the PCR positivity rate among adult

ticks infected with SINV through feeding reached 100%, it did not

correlate with the positivity rates observed in viral plaque assays

performed on lysate samples from ticks that tested positive via PCR.

Our working hypothesis revolves around the potential insufficiency

of the viral load within a single adult tick. This scarcity of virus

could impede the formation of virus-specific plaque when the tick’s

lysate infects BHK21 cells. This disconnection might explain the

disparities between the positivity rates of viral RNA and the

presence of virus-specific plaque. The limited formation of virus-

specific plaques of BHK-21 cells, infected with blood and brain

lysate samples from mice, bitten by SINV-infected adult ticks, may

result from a low dose of SINV infection (each mouse can only be

infested with 1-2 adult ticks).In contrast, nymphs have the ability to

attach to mice in larger quantities (50–100 nymphs per mouse),

which represents a high dose of viral infection. As a result, it

becomes more probable that tissue lysates of mice bitten by SINV-

infected nymphs will generate virus-specific plaques upon infection

of BHK21 cells.

To better understand the interactions between ticks and viruses,

an increasing number of TBVmodels have been developed (Maffioli

et al., 2014; Grabowski et al., 2018; Zhuang et al., 2018; Salata et al.,

2021; Ahmed et al., 2022; Raney et al., 2022). The model based on

Langat virus (LGTV) is considered the most widely used, due to its

lower biosafety constraints and the close relationship with TBEV

and POWV (Kaiser, 2008; Kazimirová et al., 2017; Zhou et al., 2018;

Kemenesi and Banyai, 2019; Ahmed et al., 2022; Raney et al., 2022).

Although SINV is usually considered a mosquito-borne virus (He

et al., 2010; Adouchief et al., 2016), we demonstrated for the first

time that SINV can also be transmitted trans-stadially in ticks, just

like LGTV (Ahmed et al., 2022). Compared to LGTV, SINV has a

more diverse range of virological detection methods and a more

comprehensive foundation of virus-related research (Suhrbier et al.,

2012; Adouchief et al., 2016; Hameed et al., 2022).

In summary, we described a new TBV model based on SINV/

SINV-eGFP with good biosafety and stability. Firstly, we

demonstrated that SINV has a similar transmission pathway to

that of other TBPs. Furthermore, combining the results of the

transcriptome difference analyses, the presence of SINV in ticks was

divided into two phases, the replication phase (involving the

midguts, which mainly results in autophagy, apoptosis, and the

innate immune response of the midguts), and the transmission

phase (involving the midguts, hemolymph, and salivary glands,

which mainly exhibit changes in the transcriptional levels of the

molecules involved in pathogen interaction in the majority of the

ticks that have been reported) (Figure 8). Compared to other viruses
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that can only be transmitted by ticks, we believe that the application

of the SINV-based tick-virus interaction model will be more

advantageous in understanding the differences between ticks and

other vector organisms. Further research is needed to understand

the underlying factors that contribute to this difference in

replication behavior of SINV in different vectors. This approach

allows us to delve deeper into the complex interactions between

ticks and viruses. It also provides a new perspective for exploring

potential common molecular mechanisms of the interactions

between ticks and viruses.
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FIGURE 8

Scheme showing the replication and transmission of SINV in female R. haemaphysaloides. The replication stage in the midguts induces autophagy,
apoptosis, and innate immune response. Transmission stages (feeding stages) in ticks (Organs involved: midguts, hemolymph, and salivary glands)
induce molecules that interact with pathogens in ticks that have been reported to date. MG, midgut; HE, hemolymph; SG, salivary gland.
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SUPPLEMENTARY FIGURE 1

Molecular biology verification of SINV replication in the midguts and salivary

glands of unfed female R. haemaphysaloides in vitro. (A) and (B) Distribution of

SINV-eGFP in different tissues of unfed female R. haemaphysaloides cultured in
vitro at various infection time points. MG: midgut; SG: salivary gland; OV: ovary;

scale bar: 100 mm. (C) and (D) qRT-PCR to verify the replication of SINV in the
eggs and larvae. Bars represent the mean ± SD of three replicates.

SUPPLEMENTARY FIGURE 2

Analysis of midgut and salivary gland transcriptome differences in ticks infected
with SINV at different blood-feeding time points (A) Cluster analysis of

transcriptome sequencing of the fed female R. haemaphysaloides. Midguts

and salivary glands at different feeding time points of SINV infection. Histogram
of the GO functional annotation of transcriptome DEGs in SINV-infected fed

tick midguts (B) and salivary glands (C).

SUPPLEMENTARY FIGURE 3

Fluorescence microscope observation of SINV-eGFP in the tissues of female

R. haemaphysaloides 360 h after microinjection. MG: midgut; SG: salivary

gland; OV: ovary; scale bar: 100 mm.

SUPPLEMENTARY FIGURE 4

Fluorescence microscope observation of SINV-eGFP in the tissues of female

H. longicornis at different time points after microinjection. MG: midgut;.
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