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Introduction: Despite numerous investigations into the impact of drugs/

probiotics on the gut microbiota composition in Familial Mediterranean Fever

(FMF) patients, the question as to whether there exists a significant bacterial

diversity(ies) independent of the placebo effect that can be reliably considered in

clinical and nutritional trials remains unresolved.

Methods: This study represents the in augural analysis of the placebo’s influence

on the gut microbiota of both healthy individuals and FMF afflicted men, utilizing

previously collected data from PhyloChip™ DNA microarray experiments. A total

of 15 healthy and 15 FMF male volunteers, aged 18 to 50, participated in this

partially randomized placebo trial, which is accessible through the GEO Series

accession number GSE111835.

Results and Discussion: Key findings from current investigations include i. the

anticipated divergence in gut bacteria resistance to placebo between healthy and

FMF individuals, ii. the minor impact of placebo on gut bacterial diversities in healthy

individuals, with Enterobacteriaceae diversities identified as placebo-resistant among

“healthy” gut bacteria, and iii. the comprehensive influence of placebo on all bacterial

phyla in the gutmicrobiome of FMF patients, extending to nearly all bacterial genera,

except for the resilience of gut Akkermansia muciniphila spp. to placebo in FMF

patients. This study underscores the susceptibility of Faecalibacterium, Blautia, and

Clostridium genera to placebo. Consequently, this investigation holds significance

for the proper design of placebo-controlled trials and establishes a foundation for

further exploration of the gut-brain axis. Furthermore, it contributes valuable insights

to discussions regarding proposals for probiotic therapies, particularly focusing on

Faecalibacterium spp., Blautia spp., and Clostridium spp.
KEYWORDS

placebo, male patients, microbiome, Akkermansia muciniphila, familial Mediterranean
fever, Enterobacteriaceae spp., Faecalibacterium, Blautia
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Introduction

Clinical trials involving healthy controls face challenges in both

subject recruitment and result interpretation (Johnson et al., 2016).

Additionally, the orchestration of placebo-controlled trials is a

complex process (Howick, 2017), particularly in developing

countries (Lepage et al., 2023; Kim et al., 2023). The success of

clinical trials is influenced by diverse factors (Kupersmith and Jette,

2023; Jacobsen et al., 2023; Feldman et al., 2022), and despite the

abundance of such trials, there remains a need to elucidate placebo

effects in both healthy individuals and patients, particularly in

studies related to the gut microbiota (Kleine-Borgmann et al., 2023).

Familial Mediterranean Fever (FMF) is a monogenic autosomal

recessive autoinflammatory disorder resulting from mutations in

the MEFV gene. The disease is characterized by inflammatory

episodes affecting serous membranes, leading to periodic fevers

and pain (Pepoyan A. et al., 2015; Pepoyan AZ. et al., 2015; Talerico

et al., 2020; Bhatt and Cascella, 2023; Gallego et al., 2023; Zadeh

et al., 2011). In the context of FMF, placebos are utilized to assess

the effects of various drugs and functional foods, including

probiotics [beneficial bacteria for humans (Pepoyan and

Trchounian, 2009; Pepoyan et al., 2018b)/animals/plants

(Manvelyan et al., 2023; Pepoyan et al., 2019a)]. While it is

hypothesized that diets rich in antioxidants and supplements with

anti-inflammatory properties may partially alleviate FMF

symptoms and enhance the well-being of patients, research

findings in this realm are contentious (Mansueto et al., 2022;

Damián et al., 2022; Mazzantini et al., 2021). The number of

clinical trials on FMF is notably high, given the monogenic

nature of the disease (Welzel et al., 2021; Tsaturyan et al., 2023;

Pepoyan et al., 2018a; Ataya et al., 2023).

The composition of microbiomes is influenced by various

factors, including host genetics (Lighthouse et al., 2004; Qin et al.,

2022; Boccuto et al., 2023; Pepoyan et al., 2020a), prevailing diseases

(Lighthouse et al., 2004; Qin et al., 2022; Boccuto et al., 2023;

Pepoyan et al., 2020a), environmental conditions (Berg et al., 2020;

Zengler et al., 2019; Kozhakhmetov et al., 2023), and the inherent

self-assembly properties of microbes (van Leeuwen et al., 2023;

Hovnanyan et al., 2015).

Numerous pieces of evidence suggest a nuanced interplay

between microbiota perturbations and the phenotypic expressions

of FMF, with the complexity of this relationship influenced by both

genetic and environmental factors. The modulation of gut

microbiota, encompassing the investigation of probiotic

treatments, holds promise for advancing our understanding and

management of FMF (Di Ciaula et al., 2020).

Nevertheless, there is ongoing controversy regarding the ability

of probiotic treatment to alter the composition of the host

microbiota. The health benefits associated with probiotics may

arise from the metabolites produced by the bacteria and their

interactions with the host’s immune system (Singh et al., 2023).

Notably, probiotics have shown the ability to influence gene

expression, exerting potential anti-inflammatory effects within

the gut microbiota without inducing changes in composition

(Ng et al., 2023).
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In Armenia, a significant number of male patients with Familial

Mediterranean Fever (FMF) has been reported (Tsaturyan et al.,

2023). Additionally, there are documented impairments in the host-

gut microbiota relationship in FMF disease (Tsaturyan et al., 2023).

Moreover, the impact of the probiotic Lactobacillus acidophilus

strain INMIA 9602 Er 317/402 on the gut microbiota composition

of male FMF patients was demonstrated through a placebo/

probiotic comparative analysis (Pepoyan et al., 2018a). However,

existing data and analyses concerning the effects of placebo on the

gut microbiota are limited and do not provide a comprehensive

understanding of the placebo’s influence on the overall bacterial

composition of the gut microbiota.

The primary objective of this study is to assess the effects of a

placebo on the composition of the gut microbiota in male FMF

patients. The central research question aims to determine whether

there exists a significant diversity of bacteria independent of the

placebo effect that can be directly utilized in clinical and

nutritional trials.
Materials and methods

In this study, for the first time, the effect of placebo on the gut

microbiota of healthy and FMF men was fully analyzed by

leveraging the prior PhyloChip™ DNA-microarray-based data

(Tsaturyan et al., 2023; Pepoyan et al., 2018a). Healthy and FMF

male volunteers (15/15) aged 18 to 50 took part in this partially

randomized placebo trial accessible through GEO Series accession

number GSE111835 (Tsaturyan et al., 2023; Pepoyan et al., 2018a)

in which the participant took an empty capsule twice daily as a

placebo for 1 month. The patients also took their main drug, 1 mg

colchicine, as usual. All patients’ diagnoses were confirmed by

genetic analysis. None of the study participants had been treated

with antibiotics, probiotics, hormones, or chemotherapeutic agents

during the month leading up to the study. The duration of the

colchicine treatment by patients was more than 7 years. Patients in

the acute phase were not included in the study.

Standardization protocols of DNA isolation were implemented to

enhance the reliability and comparability of gut microbiome analyses.

Samples’ metadata, such as date, time, and participant information,

were properly documented and stored. Stool samples collected by

volunteer subjects in sterile plastic bags and transported to the

laboratory were studied. In order to obtain optimal yield and quality

of DNA, both ZR Fecal DNA MiniPrep™ (Zymo Research Corp.,

Irvine, CA, USA) and Ultraclean® Fecal DNA Isolation (MoBio

Laboratories Inc., Carlsbad, CA, USA) commercially available kits

were used to isolate total DNA. Chosen DNA extraction kits have been

validated for fecal samples. To ensure that the entire sample is

homogenized consistently to obtain representative microbial DNA,

the bead beating method (FastPrep-24, MP Biomedicals, USA) was

used. The extracted DNA was quantified using an absorbance-based

method (NanoDrop Microvolume Spectrophotometers, Thermo

Fisher, USA). DNA quality was assessed using gel electrophoresis.

gDNA was extracted/amplified (16S rRNA gene) from fecal materials

frozen at -80оC. The primer sequences used for microarrays and 16S
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rRNA clone libraries were: 27f.jgi (Bacteria-specific) 5′-
AGAGTTTGATCCTGGCTCAG-3′ and 1492r.jgi (Bacteria/

Archaea-specific) 5′-GGTTACCTTGTTACGACTT-3′.
Bacterial communities were identified using a third-generation,

culture-independent, high-density DNA microarray analysis

(PhyloChip™; Affymetrix, Santa Clara, CA, USA), according to

the investigations described previously (Tsaturyan et al., 2023;

Pepoyan et al., 2018a).

This method also enables the estimation of differences in the

relative abundance of bacterial taxa based on differences in their

hybridization intensities (Kellogg et al., 2013).

In this study, pharmaceutical-grade empty hard-gelatin

capsules sourced from Vitamax E, LLC in Yerevan, Armenia,

were employed. These gelatin capsules, recognized for their swift

absorption in the gastrointestinal tract and their lack of side effects,

adhere to GMP, USP, and SP standards. The study participants were

unaware that the placebo capsules were empty.

Student’s t-test and Mann-Whitney test were used for statistical

analyses. P< 0.05was considered statistically significant.Multibase 2015

Excel Add-in program (NumericalDynamics, Tokyo, Japan) was also

used in the prior studies (Tsaturyan et al., 2023; Pepoyan et al., 2018a).
Results

Comparative analysis of gut microbiota
composition of non-FMF and FMF men
before and after the placebo
administration: bacterial diversities

A comparative analysis of gut microbiota composition was

conducted for non-FMF and FMF men before and after placebo

administration, focusing on bacterial diversities. The evaluation

covered 18,725 bacterial Operational Taxonomic Units (OTUs) to

identify variations in gut bacterial diversities.

In the non-FMFmale group, the analysis revealed that 140 OTUs

exhibited statistically significant differences after the administration

of the placebo (P < 0.05). The altered bacteria primarily belonged to

the phyla Firmicutes (78 OTUs), Bacteroidetes (17 OTUs),

Proteobacteria (16 OTUs), and Tenericutes (9 OTUs) (Table 1).

Similarly, in the FMF male group after placebo administration,

7,560 OTUs were altered in the gut microbiota of patients. Among

these, 4,777 belonged to Firmicutes, 1,360 to Proteobacteria, 350 to

Bacteroidetes, 119 to Tenericutes, 23 to Actinobacteria, and the

remainder to other bacterial phyla (P < 0.05) (Table 1).
Impact of placebo: differences in bacterial
diversities of Firmicutes

The impact of placebo on bacterial diversities within the

Firmicutes phylum revealed distinctive patterns in non-FMF and

FMF men.

For non-FMF men, Firmicutes OTUs constituted 55.71% of all

different bacterial OTUs, with prominent differences in the order

Clostridiales (66 OTUs). These differences primarily comprised
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OTUs from families Clostridiaceae (6 OTUs), Lachnospiraceae (16

OTUs), and Ruminococcaceae (40 OTUs, mostly from an unclassified

genus, and 7 OTUs from the genus Faecalibacterium). Additionally, 7

OTUs were from the order Lactobacillales, and 5 OTUs were from

Bacillales (Tables 2, 3).

For FMF men, Firmicutes OTUs constituted 63.18% of all

different bacterial OTUs, with predominant differences in the

order Clostridiales (83%) (Table 2).

Analysis from Table 3 indicates that the families Ruminococcaceae

and Lachnospiraceaewere particularly susceptible to placebo within the

Firmicutes phylum. Following placebo administration, the numbers of

altered OTUs from the families Ruminococcaceae for non-FMF men

and FMF men were 40 (63.61%) and 1365 (35.39%), respectively.

Similarly, the numbers of altered OTUs from the families

Lachnospiraceae for non-FMF men and FMF men were 16 (26.51%)

and 2086 (54.96%), respectively (Table 3).
Impact of placebo: differences in bacterial
diversities of Bacteroidetes

The impact of the placebo on the differences in bacterial

diversities within the phylum Bacteroidetes was examined,

highlighting distinctions between non-FMF and FMF men.
TABLE 1 Number of different OTUs after taking the placebo:
bacterial phyla*.

Bacterial phyla
Healthy (non-FMF men)
OTUs

FMF men
OTUs

Firmicutes 78 (55.71) 4,777 (63.18)

Bacteroidetes 17 (12.14) 350 (4.62)

Proteobacteria 16 (11.43) 1,360 (17.99)

Tenericutes 9 (6.43) 119 (1.57)

Actinobacteria 5 (3.57) 23 (0.304)

Other 15 (10.72) 929 (12.34)

Sum 140 7,560
*The impact of the placebo on 18,725 bacterial OTUs was evaluated; P < 0.05.
In parentheses- OTUs percentages.
FMF, familial Mediterranean fever.
OTUs, operational taxonomic units.
TABLE 2 Number of different OTUs after taking the
placebo: Firmicutes*.

Phylum
Firmicutes:
orders

Healthy
(non-FMF men) OTUs

FMF
men
OTUs

Clostridiales 66 (85) 3,969 (83)

Lactobacillales 7 (9) 500 (10.99)

Bacillales 5 (6) 265 (5.99)

Sum 78 4,777
fr
*The impact of the placebo on 18,725 bacterial OTUs was evaluated; P < 0.05.
In parentheses- OTUs percentages.
FMF, familial Mediterranean fever.
OTUs, operational taxonomic units.
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In non-FMF men, among Bacteroidetes OTUs, which

comprised 12.14% of all different bacterial OTUs (Table 1), the

prominent differences were associated with OTUs of the Bacteroidia

class, making up 70.59% of the phylum (Table 4).

For FMF men, among Bacteroidetes OTUs, accounting for

4.62% of all different bacterial OTUs (Table 1), the significant

differences were linked to OTUs of the Bacteroidia class,

constituting 79.44% of the phylum (Table 4). Following placebo

administration, OTUs from the families of Prevotellaceae (30.32%),

Bacteroidaceae (28.88%), and RikenellaceaeII (23.10%) emerged as

the quantitatively dominant different bacterial families within the

class (Table 4).
Impact of placebo: differences in bacterial
diversities of Proteobacteria

In non-FMF men, among Proteobacteria OTUs, constituting

11.43% of all different bacterial OTUs (Table 1), the predominant
Frontiers in Cellular and Infection Microbiology 04
differences were associated with OTUs from the following classes:

43.75% Betaproteobacteria, 25% Alphaproteobacteria, and 25%

Gammaproteobacteria. It is noteworthy that all different

Gammaproteobacteria OTUs belonged to the genus Pseudomonas

(P < 0.05) (Table 5). Interestingly, there were no placebo-induced

alterations in bacterial diversities within Enterobacteriaceae.

For FMF men, among Proteobacteria OTUs, accounting for

17.99% of all different bacterial OTUs (Table 1), the predominant

differences were related to OTUs of the Enterobacteriaceae,

constituting 39.41% of the different Proteobacteria (P <

0.05) (Table 5).
Impact of placebo on hybridization scores
of different bacterial diversities

In line with the substantial number of distinct OTUs recorded

in FMF disease (Table 1), the hybridization scores of bacterial OTUs

in FMF individuals after placebo were significantly greater than

those of non-FMF individuals:
— Ruminococcus spp.: 16 100,866 ± 3 309,224 vs. 531,574

± 8,309.14

— Lachnospiraceae spp.: 17 861,159 ± 4 625,717.4 vs. 200,364.3

± 3,952.3

— representatives from the Bacteroidia: 1 874,301 ± 554,143.2

vs. 146,473.8 ± 8,583.8.
According to the results of the hybridization scores, in the non-

FMF male subjects, the placebo produced quantitative changes in

the altered main bacterial diversities, which were not observed in

the FMF male subjects. There was an increase in Ruminococcus spp

(513,870.3 ± 10,018.57 vs. 531,574 ± 8,309.14; P < 0.05) and

Lachnospiraceae spp. (194,678 ± 4,802.6 vs. 200,364.3 ± 3,952.3,

P < 0.05), as well as representatives of Bacteroidia after the placebo

intake in non-FMF men (Figure 1).
TABLE 4 Number of different OTUs after taking the placebo:
Bacteroidetes *.

Bacteroidetes:
classes

Healthy
(non-FMF people)

FMF people

Bacteroidia

12 (70.59)
(prevailed family:
RikenellaceaeII- 8 OTUs)

277 (79.44)
(prevailed families:
Prevotellaceae: 84
OTUs
Bacteroidaceae- 80
OTUs
RikenellaceaeII- 64
OTUs
Porphyromonadaceae-
24 OTUs)

Flavobacteria 1 (5.88) 37 (11.57)

Sphingobacteria 4 (23.53) 32 (8.99)

Sum 17 350
*The impact of the placebo on 18,725 bacterial OTUs was evaluated; P < 0.05.
In parentheses- OTUs percentages.
FMF, familial Mediterranean fever.
OTUs, operational taxonomic units.
TABLE 5 Number of different OTUs after taking the
placebo: Proteobacteria*.

Proteobacteria:
families

Healthy
(non-FMF people) OTUs

FMF
people
OTUs

Enterobacteriaceae 0 536 (39.41)

Aquabacteriaceae 2 (12.5) 175 (12.87)

Comamonadaceae 2 (12.5) 81 (5.6)

Pseudomonadaceae 4 (25.0) 76 (5.59)

other 8 (50) 492 (35.83)

Sum 16 1,360
f

*The impact of the placebo on 18,725 bacterial OTUs was evaluated; P < 0.05, and the
diversities with comparatively large numbers were considered.
In parentheses- OTUs percentages.
FMF, familial Mediterranean fever.
OTUs, operational taxonomic units.
TABLE 3 Number of different OTUs after taking the
placebo: Clostridiales*.

Order
Clostridiales:
families

Healthy (non-FMF men)
OTU

FMF men
OTU

Ruminococcaceae

40 (63.61)
(mostly from the unclassified genus, and
7 OTUs from the genus Faecalibacterium)

1,365 (35.39)

Lachnospiraceae 16 (26.51) 2,086 (54.96)

Clostridiaceae 6 (9.88) 361 (9.65)

Sum 66 3,969
*The impact of the placebo on 18,725 bacterial OTUs was evaluated; P < 0.05.
In parentheses- OTUs percentages.
FMF, familial Mediterranean fever.
OTUs, operational taxonomic units.
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Overlapping gut bacterial diversities in
non-FMF and FMF men after the placebo
administration (number of OTUs)

After the placebo administration, a total of 54 overlapping gut

bacterial diversities were identified from the pool of 18,725 bacterial

OTUs in both non-FMF and FMF men. These 54 OTUs were

primarily affiliated with the following families:
Fron
— Lachnospiraceae (12 OTUs) (Figure 2).

— Ruminococcaceae (10 OTUs) (Figure 3).
tiers in Cellular and Infection Microbiology 05
Differences in order Clostridiales diversities
in non-FMF men after the
placebo administration

Differences in order Clostridiales diversities were noted in non-

FMF men after the placebo administration. According to Table 3,

the number of distinct OTUs for the families Ruminococcaceae,

Lachnospiraceae, and Clostridiaceae spp. after the placebo intake

was 40, 16, and 6, respectively, for non-FMF men. When comparing

this data with the information on “overlapping gut bacterial
A B

C D

E F

G

FIGURE 1

Hybridization scores of altered gut bacterial diversities in non-FMF and FMF men after the placebo administration. The impact of the placebo on
18,725 bacterial OTUs was evaluated; P < 0.0001. FMF – Familial Mediterranean fever. OTUs – operational taxonomic units. (A) Hybridization score
of Ruminococcus OTUs after placebo in non-FMF men. (B) Hybridization score of Ruminococcus OTUs after placebo in FMF men. (C) Hybridization
score of Lachnospiraceae OTUs after placebo in non-FMF men. (D) Hybridization score of Lachnospiraceae OTUs after placebo in FMF men.
(E) Hybridization score of Bacteroidia OTUs after placebo in non-FMF men. (F) Hybridization score of Bacteroidia OTUs after placebo in FMF men.
(G) Hybridization score of Escherichia OTUs after placebo in FMF men.
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diversities in non-FMF and FMF men after the placebo

administration,” it suggests that there were specific diversities of

bacteria within the Clostridiales order that changed after the placebo

course in healthy individuals but not in patients.
Resistance to placebo gut bacterial
diversities in non-FMF and FMF men
(number of OTUs)

The investigations found that FMF patients did not have

unaffected bacterial genera after the placebo course. A limited

number of changes were observed in the OTUs related to the

genera of Akkermansia. Out of the 217 OTUs belonging to the

genus Akkermansia (phylum: Verrucomicrobia), only 22 changed

after the placebo administration (Table 6). Notably, at the species

level, no changes were observed in OTUs related to Akkermansia

muciniphila with all 108 OTUs remaining unaffected after the

placebo course.
Discussion

Approximately 1,500 bacterial species, spanning over 50

different phyla within the intestinal microbiota, play a crucial role

in maintaining normal human physiology and health (Conz et al.,

2023). The colonic microbiota, boasting the greatest diversity,

harbors up to 100 trillion bacteria. In the symbiotic relationship
Frontiers in Cellular and Infection Microbiology 06
between bacteria and the host, gut bacteria collaborate with the host

to ensure the well-being of the nervous system as well (Morais et al.,

2021). The human gut microbiome exhibits gender-specific

characteristics (Pepoyan et al., 2021; Bardhan and Yang, 2023)

and potential interindividual variations (Chen et al., 2022; Afzaal

et al., 2022; Wan et al., 2023). The link between the intestinal and

systemic immune systems is primarily influenced by the expansion

of the immune response through lymphatic and blood circulation

(Zheng et al., 2020; Campbell et al., 2023; Li et al., 2022).

Currently, a wealth of data supports the notion that disruptions

in the diversity of human gut bacteria, particularly a low level of

bacterial diversity within the genus Faecalibacterium, can lead to

undesirable consequences, such as inflammatory processes (Martıń

et al., 2023). In instances of inflammatory or metabolic diseases, a

reduction in bacterial diversities is also noted in Blautia (Liu et al.,

2021) and Clostridium (Guo et al., 2020). This may explain the

extensive discussions surrounding the potential use of these bacteria

as next-generation probiotics or living biotherapeutics (Martıń

et al., 2023; Guo et al., 2020).

Conversely, in the context of metabolic diseases, there is a

growing focus on mucin-degrading species of A. muciniphila from

the Verrucomicrobia phylum. This species has recently garnered

significant attention and is widely discussed as a potential candidate

for next-generation probiotics (Jian et al., 2023).

Preliminary evidence suggests the potential clinical utility of

probiotics for FMF. Specifically, studies have demonstrated that a

formulation containing eight bacterial strains, known as the De

Simone Formulation and marketed as Vivomixx® in Europe and
FIGURE 2

Overlapping gut bacterial diversities of family Lachnospiraceae in non-FMF and FMF men after the placebo administration (number of OTUs).
P < 0001. FMF, Familial Mediterranean fever; OTUs, operational taxonomic units; g, genus.
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Visbiome® in the US, may have beneficial effects when

administered during the inter-critical period of FMF. This

intervention shows promise in improving symptoms, particularly

in a subgroup of FMF patients characterized by more severe disease

and partial resistance to colchicine (Di Ciaula et al., 2020).

Additionally, our prior investigations evidence the impact of

probiotic Narine (Lactobacillus acidophilus INMIA 9602 Er-2 strain

317/402) on the disease manifestation. Specifically, it has been
Frontiers in Cellular and Infection Microbiology 07
shown that intake of Lactobacillus acidophilus INMIA 9602 Er-2

strain 317/402 has positive effects, including the normalization of

serum C-reactive protein levels in FMF patients during remission

(Pepoyan A. et al., 2015; Pepoyan et al., 2017; Balayan et al., 2015).

In addition to analyzing blood parameters, our previous studies

also delved into the impact of the probiotic Narine on the

composition of specific members of the intestinal microbiota in

patients with FMF (Pepoyan et al., 2018a).
TABLE 6 Number of OTUs of resistant to placebo bacterial diversities.

Bacterial
diversities

FMF people, N=15 Non-FMF people, N=15

Before taking placebo After taking placebo Before taking placebo After taking placebo

Akkermansia
(phylum Verrucomicrobia)

217
195 (89.86)
(P < 0.05)

237
235 (99.12)
(P < 0.05)

A. muciniphila
108

108 (100)
(P < 0.05)

107
105 (95.33)
(P < 0.05)

Enterobacteriaceae 1,228 686 (55.86) 0 0
*The impact of the placebo on 18,725 bacterial OTUs was evaluated; P < 0.05.
In parentheses- OTUs percentages.
FMF, familial Mediterranean fever.
OTUs, operational taxonomic units.
P, comparison of data (before and after placebo administration for the group).
FIGURE 3

Overlapping gut bacterial diversities of family Ruminococcaceae in non-FMF and FMF men after the placebo administration (number of OTUs).
P < 0001. FMF, Familial Mediterranean fever; OTUs, operational taxonomic units; g, genus; f, family.
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In the context of FMF disease (Pepoyan et al., 2017; Balayan et al.,

2015; Manzano et al., 2023; Touitou and Pepoyan, 2008; Lancieri

et al., 2023; Pepoyan et al., 2019b), placebos are employed to evaluate

the impacts of probiotics [microorganisms that confer beneficial

effects on humans (Pepoyan et al., 2023; Garcıá-Santos et al., 2023;

Harutyunyan et al., 2022), animals (Ataya et al., 2023; Balayan et al.,

2019; Rodriguez et al., 2017; Wang et al., 2023; Mirzabekyan et al.,

2023; Šefcová et al., 2023), and plant host metabolism (Rahman et al.,

2018; Pepoyan and Chikindas, 2020; Mockevičiūtė et al., 2023)],

along with their metabolites, as well as medications in general (Ben-

Zvi et al., 2017; Haviv and Hashkes, 2016; Hashkes and Huang, 2015;

Hashkes et al., 2014). While placebos have long served as inert

controls in clinical trials (Gupta and Verma, 2013; Finniss et al.,

2010; Louhiala and Puustinen, 2017), it is essential to recognize that

placebo effects are psychobiological phenomena (Pogany, 2017;

Hashmi, 2018; Liu, 2022; Schaefer et al., 2023; Shafir et al., 2023)

capable of producing effects similar to certain drugs, even when

patients are not knowingly given placebos (Bräscher et al., 2022). The

term “placebo” originates from the Latin word “placere” (Schaefer

et al., 2023; Yetman et al., 2021), meaning “to please” (Dreber et al.,

2023). Surprisingly, approximately 40% of medications exhibit

placebo effects (Sonawalla and Rosenbaum, 2002; Fässler et al.,

2010; Pardo-Cabello et al., 2022; Moerbeek, 2023).

A “pure” placebo is typically represented by empty capsules

(Welzel et al., 2021; Tsaturyan et al., 2023; Franc et al., 2022;

Moerbeek, 2023) or inert substances like starch, dextromaltose,

lactose, talc, mentholated water, and saline (Mitsikostas et al., 2020).

The diversity of placebo effects is attributed to various biological

mechanisms, influenced by the evolutionary development of the

body’s unique defense mechanisms (Benedetti, 2014; Buergler et al.,

2023; Seneviratne et al., 2022; Pronovost-Morgan et al., 2023).

Despite the literature data on placebo-dependent studies on the

gut microbiota of FMF patients, in these studies, the placebo effect is

discussed in part, depending on the nature of the problems

presented in the articles. Perhaps, it was these incomplete

discussions that pointed to the need for a full discussion of

placebo effects on the gut microbiota of FMF patients. This study

revealed distinct effects of a placebo on the bacterial diversities of

the gut microbiota in both healthy and FMF-afflicted men, with a

more pronounced impact observed in those with FMF.

Analysis of hybridization scores indicated that in non-FMF

male subjects, the placebo induced quantitative changes in the

altered main bacterial diversities, a phenomenon not observed in

FMF male subjects.
Overlapping gut bacterial diversities in
non-FMF and FMF men after the
placebo administration

Considering the changed bacterial diversities observed in

both healthy and diseased volunteers across studies, the

overlapping gut bacterial variations should be carefully considered

in placebo-dependent FMF-gut microbiota studies. Dysbiosis and

inflammation in the gut have been associated with various mental

illnesses, including prevalent conditions like anxiety and depression
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(Clapp et al., 2017). Moreover, the impact of gut bacteria on anxiety

and depression levels appears to be influenced by gender (Pepoyan

et al., 2021). It is conceivable that the overlapping gut bacterial

diversities observed in non-FMF and FMF men after placebo

administration represent key bacterial varieties with potential

beneficial effects on anxiety and depression levels in both groups.

During the investigation, interviews were conducted to assess

the anxiety and depression levels of the participants (Pepoyan et al.,

2021). Even simple, non-test interviews indicated that after the

placebo administration, both healthy individuals using the “pills” as

an immunostimulant and patients felt more resilient to various

infections and perceived themselves as healthier than before taking

the “pills.” This observation was supported by the placebo’s effect on

the psychoemotional status of men, potentially influenced by

corresponding changes in intestinal bacteria.

The present research underscores the sensitivity of several species

within the Faecalibacterium, Blautia, and Clostridium genera to the

placebo effect. The significance of Faecalibacterium (Martıń et al.,

2023), Blautia (Liu et al., 2021), and Clostridium spp (Guo et al., 2020).

in inflammatory/metabolic diseases is well-established. The

observation that Faecalibacterium, Blautia, and Clostridium are

influenced by the placebo effect could have noteworthy implications

for clinical studies, particularly within the field of microbiome research.

Clinical trials involving interventions that impact these bacteria must

carefully consider the placebo effect, especially when evaluating the

effectiveness of treatments targeting specific microbiota for diseases. It

is crucial to understand how the placebo, including the type of capsule

used (e.g., empty gelatin capsule), may affect these bacteria to accurately

assess treatment outcomes. These findings are also significant for

discussions regarding the potential use of Faecalibacterium, Blautia,

and Clostridium spp. as probiotics.

These positive changes due to the placebo effect likely indicate

that despite claims that it is ethically wrong to deceive people with

placebos, it is still possible to prescribe placebos in extreme

circumstances (for example, drug shortages).
Differences in gut bacterial diversities in
non-FMF men after the
placebo administration

Care should be exercised in interpreting the changes in bacterial

diversities that occurred after the placebo course, especially when

comparing healthy individuals and patients. In the presented study,

it has been shown that there were bacterial diversities that changed

after the placebo course in healthy individuals but not in patients.

This observation warrants further investigation. It is possible

that the dietary habits of individuals with FMF may also influence

the placebo effect (Mansueto et al., 2022).
Differences in gut bacterial diversities in
FMF men after the placebo administration

As mentioned, the association between genetics and gut

microbiota was recognized in FMF patients (Tsaturyan et al.,
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2023; Pepoyan et al., 2018a). Following a placebo course in FMF

patients, substantial changes were observed compared to healthy

individuals. While some of these changes may be influenced by

factors present in both healthy individuals and FMF patients, it was

evident that these alterations should be duly considered in the

design and interpretation of future clinical trials focused on gut

microbiota in FMF patients.
Bacterial diversities that did not undergo
changes after placebo

The investigations have uncovered that no bacterial genera were

left unaffected after the placebo course in FMF patients. Conversely,

there were no placebo-induced altered bacterial differences

observed in Enterobacteriaceae diversities for non-FMF men. The

Enterobacteriaceae spp. encompasses both pathogenic and

commensal bacterial diversities, including commensal Escherichia

coli (Tsaturyan et al., 2022; Pepoyan et al., 2020b). Prior research

has highlighted that the prevalence of dominant commensal E. coli

in the gut can vary depending on the health status of an individual

(Shahinyan et al., 2003; Stepanyan et al., 2007; Mirzoyan et al., 2006;

Pepoyan et al., 2014). In a study on E. coli isolates in colorectal

cancer patients, Tang and colleagues concluded that “diseased”

isolates suppressed the growth of healthy isolates under nutrient-

limited culture conditions (Shandilya et al., 2021). This effect is

possibly linked to altered gut-microbiota-mediated oxidative stress

(Pepoyan et al., 2020b; Ni et al., 2022), a phenomenon also observed

during FMF disease (Pepoyan et al., 2017).

These studies once again underscore the existence of a gut-

brain connection.
Limitations of the study

Considering the qualitative changes in the microflora found

during our research and the limitations that could affect the results

of the research, more global studies including a larger number of

participants have been planned to be conducted. Although the use

of DNA-microarray-based data for analyzing gut microbiota is a

powerful tool, it comes with potential biases and limitations (e.g.,

detection limitations of low abundance species, reference database

bias, and limited quantitative accuracy). To address these

limitations, using sequencing and quantitative PCR methods in

further research to assess more clearly the qualitative and

quantitative composition of the microflora is planned.
Conclusion

This study addresses the escalating demand for placebo-

controlled trials by synthesizing knowledge on their impact on

human gut microbiota, particularly in FMF patients. Beyond

existing data on FMF patients, the focus is on identifying
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bacterial diversity unaffected by placebos for reliable use in

clinical trials.

Noteworthy findings reveal that gut bacteria in healthy and

FMF patients differ in their response to placebos. In healthy

individuals, placebo minimally influences bacterial diversities,

altering only 140 of 18,725 examined bacterial OTUs. Despite this

limited change, all bacterial phyla are affected, excluding

Enterobacteriaceae spp., which may be of value for studies

involving healthy subjects.

Conversely, placebos affect all gut bacteria phyla in FMF

patients, extending to nearly all bacterial genera. Akkermansia

from the phylum Verrucomicrobia shows relative resistance, with

only 22 out of 217 OTUs affected. Faecalibacterium, Blautia, and

Clostridium genera exhibit susceptibility to placebo in both FMF

and non-FMF men, showcasing distinct diversities altered after

placebo administration.

Importantly, the study reveals that placebo-induced

quantitative changes in bacterial diversities in non-FMF men

differ from FMF male subjects, as indicated by hybridization

scores. This study, critical for placebo-controlled trial design, not

only lays the groundwork for exploring the gut-brain axis but also

informs discussions on probiotic therapies involving

Faecalibacterium spp., Blautia spp., and Clostridium spp.
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