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Drug-resistant Staphylococcus aureus stands as a prominent pathogen in

nosocomial and community-acquired infections, capable of inciting various

infections at different sites in patients. This includes Staphylococcus aureus

bacteremia (SaB), which exhibits a severe infection frequently associated with

significant mortality rate of approximately 25%. In the absence of better

alternative therapies, antibiotics is still the main approach for treating

infections. However, excessive use of antibiotics has, in turn, led to an increase

in antimicrobial resistance. Hence, it is imperative that new strategies are

developed to control drug-resistant S. aureus infections. Bacteriophages are

viruses with the ability to infect bacteria. Bacteriophages, were used to treat

bacterial infections before the advent of antibiotics, but were subsequently

replaced by antibiotics due to limited theoretical understanding and inefficient

preparation processes at the time. Recently, phages have attracted the attention

of many researchers again because of the serious problem of antibiotic

resistance. This article provides a comprehensive overview of phage biology,

animal models, diverse clinical case treatments, and clinical trials in the context of

drug-resistant S. aureus phage therapy. It also assesses the strengths and

limitations of phage therapy and outlines the future prospects and research

directions. This review is expected to offer valuable insights for researchers

engaged in phage-based treatments for drug-resistant S. aureus infections.
KEYWORDS

bacteriophages, drug-resistant Staphylococcus aureus, infection, bacteriophage
therapy, antimicrobial resistance
1 Introduction

For nearly a century, antibiotics have played a pivotal role in humanity’s triumph over

various infectious ailments. However, the unwarranted and improper utilization of

antibiotics has spurred the rapid proliferation and dissemination of bacterial resistance,

especially among multidrug-resistant (MDR) and extensively drug-resistant (XDR)
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bacteria. These strains present a substantial challenge to clinical

infection management. A recent study, published in Lancet, has

confirmed that in the year 2019, there were approximately 1.27

million global fatalities linked to bacterial antimicrobial resistance

(AMR) (Murray et al., 2022). Furthermore, an estimated 4.95

million deaths were associated with bacterial AMR (Murray et al.,

2022). Specifically, it was reported that 569,000 deaths (with a 95%

UI of 406,000-771,000) were linked to bacterial AMR, and an

additional 141,000 deaths (ranging from 99,900 to 196,000) were

attributable to bacterial AMR within the 35 countries situated in the

WHO Region of the Americas during the same year (Aguilar et al.,

2023). It is worth noting that mortality related to antibiotic

resistance has now escalated to become the third most prominent

cause of death on a global scale (Murray et al., 2022). Furthermore,

it is crucial to acknowledge that the incidence of AMR has notably

exacerbated during the COVID-19 pandemic (Centers for Disease

Control and Prevention, National Center for Emerging and

Zoonotic Infectious Diseases, and Division of Healthcare Quality

Promotion, 2022). Unfortunately, the development of novel

antimicrobial agents lags significantly behind the emergence of

drug-resistant bacteria (Butler Mark et al., 2022; Murray et al.,

2022). The World Health Organization (WHO) has cautioned that,

with the ongoing evolution of antibiotic resistance, the number of

human fatalities attributable to multidrug-resistant bacterial

infections is projected to surpass 10 million by 2050. This would

exceed the mortality attributed to cancer, with an associated

economic cost of $100 trillion (Miller and Liu, 2021; Blackman

et al., 2022). In 2017, the WHO compiled a catalog of global priority

pathogens necessitating exploration and development of innovative

antimicrobial drugs (Karaman et al., 2020). Notably, Gram-positive

(G+) bacteria constituted a significant proportion of the clinically

resistant bacterial strains examined, particularly methicillin-

resistant Staphylococcus aureus (MRSA), vancomycin-resistant

Enterococcus faecium (VTEF), and b-lactamase-resistant

Streptococcus pneumoniae, all of which pose considerable

healthcare challenges (Karaman et al., 2020).

Staphylococcus aureus is a Gram-positive pathogenic bacterium

and a key instigator of skin and soft tissue infections (Bitrus et al.,

2018). These infections can culminate in tissue localization,

purulent infections, and, if not effectively controlled, may lead to

Staphylococcus aureus bacteremia (SaB) or even severe septic shock,

with a SaB mortality rate as high as 25% (Wozniak et al., 2020). A

recent study, as published in Lancet, has confirmed that S. aureus

(emerged as the predominant bacterial factor contributing to

mortality in 135 countries. Moreover, it was identified as the

bacterium associated with the highest number of fatalities among

individuals aged 15 and older on a worldwide scale (Ikuta et al.,

2022). In the United States, S. aureus was found to affect an

estimated 119,247 individuals, resulting in 19,832 deaths

(Shahriar et al., 2019). In addition to the extensive secretion of

virulence factors, biofilm formation is an important feature to

protect S. aureus from host defense and eradication measures

(Olsen, 2015; Paharik Alexandra and Horswill Alexander, 2016;

Cangui-Panchi et al., 2022). Between 50 and 70% of nosocomial

infections are caused by biofilm formation on implanted medical

devices (Cangui-Panchi et al., 2022). S. aureus biofilm can protect
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cells from harsh conditions, including nutrient limitation, extreme

temperature and dehydration, and even antibacterial drugs (Lee

et al., 2020; Idrees et al., 2021; Guo et al., 2022; Cangui-Panchi et al.,

2023). It is reported that bacterial cells covered by biofilm are 10-

1000 times more resistant to antibiotics than their corresponding

plankton forms (Paharik Alexandra and Horswill Alexander, 2016).

Presently, clinical strategies for preventing and treating S. aureus

infections predominantly hinge on antibiotic therapy. However, the

imprudent use of antibiotics has resulted in a gradual increase in

drug-resistant S. aureus, particularly in MRSA, which has a global

presence and poses a substantial public health threat (Lázár et al.,

2022). MRSA infections incur higher morbidity and mortality rates

compared to methicillin-susceptible Staphylococcus aureus (MSSA)

infections (Cascioferro et al., 2021), along with elevated treatment

expenses and prolonged hospitalization periods. MRSA was

responsible for over 100,000 deaths that can be attributed to

AMR in the year 2019 (Murray et al., 2022). Presently,

approximately 30% of hospital-acquired infections are attributed

to MRSA, which displays resistance to a broad spectrum of

antibiotics. Vancomycin has emerged as the most frequently

employed drug and the final line of defense against MRSA

infections (van Groesen et al., 2022). Nevertheless, with the rising

incidence of MRSA infections and the extensive use of vancomycin,

MRSA’s susceptibility to vancomycin has progressively waned,

resulting in instances of vancomycin treatment failure (Tong

et al., 2020). In a recent meta-regression model analyzing one-

month mortality due to SaB, it was observed that MRSA exhibited a

higher mortality rate when compared to non-resistant S. aureus (Bai

et al., 2022). In addition, because MRSA can form biofilm on

biological and abiotic surfaces, MRSA biofilm-associated

infections are complex and difficult to eradicate (Idrees et al.,

2021). The penetration of antibacterial drugs on biofilm is

reduced, which makes MRSA survive in the presence of drugs at

reduced concentrations (Idrees et al., 2021). Consequently, it is

imperative to devise innovative infection-control strategies to

combat drug-resistant S. aureus infections.

In recent years, bacteriophages (commonly known as “phages”)

have garnered substantial attention as non-antibiotic agents with

bactericidal properties in infection control (Jamal et al., 2019;

Balcão et al., 2022; Weber-Dab̨rowska et al., 2023). Phages are

viruses capable of infecting and lysing bacteria (Li et al., 2023). They

can rapidly replicate and proliferate following specific invasions of

host bacteria, subsequently releasing endolysins (referred to as

“lysins”) to disrupt bacterial cells, thereby achieving antibacterial

effects. As early as 1919, a decade prior to the discovery of

antibiotics, French scientist Félix d’Hérelle employed phages for

the first time to treat dysentery and other infectious diseases,

yielding positive outcomes (Chanishvili, 2012). However, owing

to a limited understanding of phage biology during that era and the

inefficient phage preparation processes, phage therapy was

gradually supplanted by antibiotics, which exhibited a broad

spectrum of antimicrobial activity and robust efficacy.

Consequently, enthusiasm for phage research and its application

in anti-infective therapy dwindled over subsequent decades. With

the widespread use, and at times, misuse of antibiotics, bacterial

drug resistance has become an increasingly grave concern, resulting
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in a near cessation of new antibiotic research and development in

the 21st century. Faced with the critical problem of bacterial drug

resistance, humanity may confront a “post-antibiotic era”

characterized by the absence of effective antibiotics (Luepke et al.,

2017). Thus, there exists an urgent necessity to discover new

alternatives to antibiotics for combating infections, such as plant

extracts, honey, propolis, synbiotics, antimicrobial peptides,

vaccines, antibodies, pattern recognition receptors, probiotics,

metals and antimicrobial enzymes (Gupta and Sharma, 2022;

Roque-Borda et al., 2022; MaChado et al., 2023). Meanwhile,

phage therapy has been rekindled and is gaining renewed

attention and development (Rahimi-Midani et al., 2021).

Although the Food and Drug Administration (FDA) has not yet

authorized any phage products for clinical use, numerous studies

and phase I/II clinical trials have demonstrated the safety and

efficacy of phage therapy (Bao et al., 2020; Mulzer et al., 2020;

Petrovic Fabijan et al., 2020; Rubalskii et al., 2020; Dedrick et al.,

2021; Johri et al., 2021; Wu et al., 2021). Both the European Union

and the United States initiated clinical trials of phage therapy in

2013 and 2016, respectively, which initially substantiated the

efficacy and safety of phage therapy against drug-resistant

bacterial infections (Jault et al., 2019; Poirel et al., 2020;

Uyttebroek et al., 2022). Phage therapy is widely regarded as one

of the most promising avenues for combatting pathogenic bacteria

in humans, including drug-resistant S. aureus (Álvarez et al., 2019).

This paper reviews the biological characteristics of phages, the

mechanisms and advantages of phage therapy, as well as the

research and application of phage therapy in the prevention and

management of drug-resistant S. aureus infections. We also

investigate the challenges of phage therapy, explore promising

research directions and technological approaches, and envisage

the future of phage therapy. This endeavor is aimed at offering

guidance and insight for the study and implementation of phage-

based treatment for drug-resistant S. aureus infections.
2 Biological features and classification
of phages

Phages are viruses that infect bacteria (Clokie et al., 2011;

Abedon and Murray, 2013; Isaev et al., 2021a; Isaev et al., 2021b).

They consist of an outer protein shell and inner genetic material

composed of nucleic acids. Phages lack complete cellular structures

and exist as minute entities. Most of them can remain active in

environments with a pH range of 5 to 9 and utilize bacteria, as hosts

for their reproduction (Salmond and Fineran, 2015; Anand et al.,

2020; Li Z. et al., 2021). Bacteriophages hold significant roles within

ecosystems, influencing the structure and development of bacterial

communities in their natural habitats (Simmonds et al., 2017). Due

to their widespread presence and abundance, it is believed that

phages are involved in approximately 20-40% of bacterial lysis

events (Chevallereau et al., 2022). In natural settings, the evolution

of phages is, in turn, impacted by the density and diversity of

bacterial populations. The ability of phages to infect different hosts,
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known as their host range, is a highly adaptable trait, with the

density, diversity, and quality of potential hosts being crucial factors

influencing this trait (Meyer et al., 2012). At a fundamental level,

expanding the host range benefits phages by allowing them to infect

a wider array of hosts. However, phages with an extended host

range may experience ecological costs, such as reduced replication

rates in new hosts, and evolutionary costs, resulting in decreased

performance in their original hosts. In contrast, phages can narrow

their host range when they encounter an abundance of high-quality

hosts in the microbial community (Holtzman et al., 2020; Sant et al.,

2021). The ability to bind to new receptors is a pivotal step in the

evolution of phage host range, often brought about by mutations in

genes that encode phage tail proteins. Hosts with distinct receptors

can drive the evolution of diverse phage genotypes, each with a

unique host range (De Sordi et al., 2017; Cornuault et al., 2020).

Furthermore, phages exhibit significant diversity, characterized

by variations in their virion structures (including tailed, non-tailed,

enveloped, and filamentous phages), types of genetic material

(double or single-stranded DNA or RNA), and gene content.

Among these, double-stranded DNA tailed phages are the most

prevalent in publicly accessible databases (Dion et al., 2020). In

terms of morphology, all known phages that infect S. aureus belong

to the order Caudovirales, which is also known as the tailed phages

(Azam and Tanji, 2019). It is worth noting that in an update to

phage taxonomy by the ICTV in August 2022, the phage

classification was modified, and the order Caudovirales was

replaced by a new class called “Caudoviricetes.” (Turner

et al., 2023).

Phages can be classified into two types based on their different

modes of action on host bacteria (Sharp, 2001; Kutter and

Sulakvelidze, 2004). The first type is the virulent phage or lytic

phage, which replicates and proliferates inside the host bacterial

cell. Eventually, it lyses the bacteria, releasing progeny phages (Dion

et al., 2020). The virulent phage attaches to specific receptors on the

bacterial surface and injects its genetic material into the host for

replication. The resulting progeny phages cause bacterial lysis

through holin and endolysins, leading to the termination of the

infection. These progeny phages are then released into the

surrounding environment to initiate the killing process once

again. Under normal circumstances, the second type of phage

does not produce progeny phages or cause bacterial lysis. Instead,

it integrates its genome into the host bacterial chromosome and

transfers it to the progeny bacterium’s genome as the bacterium

replicates and divides. This type of phage is referred to as a

temperate phage or a lysogenic phage (Rohwer and Segall, 2015;

Hampton et al., 2020). In the lysogenic cycle, phage genome (known

as a prophage) replicates with host DNA, either integrated into the

host chromosome or in a free plasmid-like state, forming a long-

term stable coexistence with the host (Zhang et al., 2022).

Subsequently, when the bacterium replicates and divides, the

phage genome is transferred to the genome of the progeny

bacteria, which is accompanied by vertical genetic transfer (Zhang

et al., 2022). To date, phage lambda, is probably the most

thoroughly studied and widely used temperate phage
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(Corteset al., 2021). Phage lambda can propagate for many

generations in the lysogenic cycle. The lytic-driving gene persists

in prophage, but it is inhibited. Under some stressors (such as

antibiotics), this lysogenic state will be induced and transformed

into the lytic, which will lead to the lysis of the host (Zhou et al.,

2023). Furthermore, prophage induction promotes horizontal gene

transfer between bacteria and phages (Clokie et al., 2011).

Prophages entering the lysis cycle will reprogram the host’s

metabolism, which will be beneficial to phage replication, affect

the bacterial community structure through phage-mediated host

death, promote horizontal gene transfer and promote

biogeochemical cycle (Zhang et al., 2022).
3 Mechanism of phage action and
advantages of phage therapy

Phage therapy typically employs virulent phages to lyse bacteria

for the treatment of pathogenic bacterial infections. The lysis of

bacteria by virulent phages can be divided into two processes based

on their genome types: single-stranded genome phages encode

lysogenic effector molecules capable of inhibiting bacterial

peptidoglycan biosynthesis, while double-stranded DNA phages

synthesize two proteins—holin and endolysins—that disrupt the
Frontiers in Cellular and Infection Microbiology 04
intracellular membrane or cell wall of the host bacteria (White et al.,

2011; Drulis-Kawa et al., 2015). When the phage lytic cycle is

completed and progeny phages mature within the bacterial cell,

holin forms pores in the bacterial inner membrane. Subsequently,

endolysins pass through the inner membrane and act on the

bacterial cell wall’s peptidoglycan, causing the peptidoglycan

linkage bonds of the cell wall to break, leading to osmotic lysis of

the bacteria. The growth and lysis of bacteria by virulent phages can

be divided into four stages, as depicted in Figure 1: adsorption,

penetration, biosynthesis, maturation, and release (Maciejewska

et al., 2018).

(1) Adsorption: Adsorption is the process of specific binding

between phage surface proteins and receptors on the surface of host

bacteria. The principal surface proteins consist of phage-encoded

polysaccharide depolymerases. These depolymerases are

responsible for targeting the polysaccharide elements present in

the bacterial cell envelope, including the bacterial capsule, the

lipopolysaccharide (LPS) in Gram-negative bacteria, or the

extracellular matrix found within biofilms (Roach et al., 2017).

This specificity depends on the complementarity of their molecular

structures. Adsorption represents the initial and critical step in

infection. Phages can adsorb to bacteria with specific receptors,

whether they are living or deceased. However, phage nucleic acid

cannot enter deceased host bacteria. (2) Penetration: After
B

A

FIGURE 1

Illustration of the bacteriophage lifecycle and mechanism of bacterial lysis. (A) Lytic cycle, ①Recognition of host by phage; ②Absorption of
bacteriophage to bacteria; ③Phage penetrates nucleic acid; ④Replication of phage nucleic acid; ⑤Synthesis of phage elements; ⑥Assembly of
progeny phages; ⑦Bacterial lysis and release of progeny phages. (B) Role of phage endolysin in bacterial lysis: in the early stage of phage infection,
the phage creates holes in the bacterial cell wall with the assistance of the VAPGH protein (which degrades a part of peptidoglycan) and injects
nucleic acid into the host bacteria. Phage endolysins and holin are synthesized during the late stage of progeny phage reproduction. Holin forms
pores in the bacterial inner membrane, allowing endolysins to reach the peptidoglycan.
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adsorbing to the host bacteria, tailed phages dissolve a small hole in

the host bacteria’s cell wall with the assistance of lysozymes located

at the end of their tails. Virion-associated peptidoglycan hydrolases

(VAPGH) are a class of lysozymes commonly found on the phage

base plate. Their primary function is to locally degrade the

peptidoglycan layer of the bacterial cell wall (Gordillo Altamirano

Fernando and Barr Jeremy, 2019). Subsequently, through the

contraction of the tail sheath, the nucleic acid contained in the

phage’s head is injected into the bacterial cell, while the protein

capsid remains outside the bacterial cell. (3) Biosynthesis: Once

phage nucleic acid enters the bacterial cell, it initiates mRNA

production through transcription and translates it into enzymes,

regulatory proteins, and structural proteins related to biosynthesis.

Simultaneously, it replicates a substantial quantity of nucleic acids

for the progeny phages using its own nucleic acid as a template. (4)

Maturation and Release: After the synthesis of proteins and nucleic

acids of the progeny phages within the bacterial cytoplasm, they

assemble into fully mature phages.

Once the quantity of progeny phages attains a specific

threshold, holin creates openings in the bacterial inner

membrane. Subsequently, endolysins traverse the inner

membrane and target the peptidoglycan within the bacterial cell

wall. This action results in the cleavage of the peptidoglycan linkage

bonds within the cell wall, leading to osmotic lysis of the bacteria,

thus liberating the progeny phages. These released phages can infect

new host bacteria, ultimately leading to the lysis and demise of the

host bacteria.

In comparison to traditional antibiotics, phage therapy offers

several advantages. Firstly, there is an abundance and wide

distribution of bacteriophages in nature, estimated at around 10

(Gupta and Sharma, 2022) types (Comeau et al., 2008; Khan et al.,

2022), allowing for rapid and cost-effective screening, unlike the

development of new antibiotics. Secondly, phages exhibit a

remarkable level of specificity towards bacterial infections,

selectively targeting the infecting bacteria without harming other

bacterial species, unlike broad-spectrum antibiotics that can

disrupt the balance of microbial flora (Langdon et al., 2016;

Gordillo Altamirano Fernando and Barr Jeremy, 2019). Thirdly,

phages naturally diminish upon the removal of host bacteria after

eliminating the target bacteria in vivo, preventing in vivo

accumulation and associated toxic and side effect (Gindin et al.,

2019; Petrovic Fabijan et al., 2020). Fourthly, phages exclusively

infect bacteria, do not enter human cells, and do not disturb the

normal metabolism of human cells. Moreover, no mutagenic

effects or genotoxicity on the human body have been observed

(Uyttebroek et al., 2022). Fifthly, the production of phage

resistance occurs at a rate 10 times slower than that of antibiotic

resistance (Doss et al., 2017). Additionally, bacteriophages can

play a synergistic role in combination with antibiotics without

promoting antibiotic resistance (Nouraldin et al., 2016; Regeimbal

James et al., 2016; Oechslin et al., 2017; Gu Liu et al., 2020; Nick

et al., 2022). Lastly, phages can disrupt the structure of bacterial

biofilms by secreting cell wall hydrolases and extracellular

polysaccharide depolymerase, effectively combatting bacterial

biofilm (Gordillo Altamirano Fernando and Barr Jeremy, 2019;

Kortright et al., 2019; Royer et al., 2021).
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4 Application of phage therapy against
drug-resistant S. aureus infection

Bacteriophages have been widely employed in both human and

animal research and treatment, with the NCBI database currently

housing 69 preserved genomes of virulent S. aureus phages,

including 26 Podoviridae phages and 43 Myoviridae phages

(Kornienko et al., 2020). This section summarizes typical cases of

phage therapy for drug-resistant S. aureus infection, as further

detailed in Table 1.
4.1 In vitro experiments of phage therapy
against drug-resistant S. aureus infection

Chan and Abedon initially proposed that treatment strategies

could be categorized based on the number of phage types employed:

“monophage therapy” using a single phage type, and “polyphage

therapy” involving multiple phage types (Chan and Abedon, 2012).

Titze et al (Titze and Krömker, 2020). utilized a phage mixture

(7.4 × 109 PFU/mL) against S. aureus isolate 7142 with nuc gene-

positive, resulting in a reduction of bacterial colonies by 4.2 log10
CFU/mL after 12 h. Liu et al. (2022) isolated four distinct

bacteriophages against drug-resistant S. aureus from various

sources, namely nasal swabs, soil, and sheep feces: APTC-SA-2,

APTC-SA-4, APTC-SA-12, and APTC-SA-13. Genome sequencing

revealed that none of these bacteriophages contained virulence or

antibiotic resistance genes. Sensitivity testing demonstrated that a

single phage was effective against 80%-95% of S. aureus isolates,

including 32 clinical MSSA, 17 MRSA isolates, and 2 ATCC strains.

In contrast, the phage cocktail APTC-C-SA01, comprising four

phages, exhibited sensitivity to over 98% of S. aureus isolates,

displaying a strong complementary effect. Moreover, the

frequency of phage-resistant mutants decreased from 0.12~0.21 ×

10–7 to 0.9 × 10–9.

Studies have revealed that phages can reduce the minimal

inhibitory concentration (MIC) of certain antibiotics and can act

synergistically with antibiotics (Grygorcewicz et al., 2020; Gu Liu

et al., 2020; Kebriaei et al., 2020a). The term phage-antibiotic

synergy (PAS) was initially introduced by Comeau et al. (2007) to

describe an accidental discovery where sublethal concentrations of

antibiotics substantially increased the production of lytic phages by

bacteria. This phenomenon was linked to the augmented biomass

and biosynthetic capabilities of bacteria in the presence of antibiotic

levels that were sufficient to hinder cell division without causing cell

death. For the viruses, this led to a shorter latent period and a larger

burst size, enabling quicker propagation and a decrease in the

bacterial population. From an evolutionary perspective, the

imposition of two distinct selective pressures on bacteria may

reduce the likelihood of them developing potential resistance

(Torres-Barceló and Hochberg, 2016). Furthermore, Gu Liu et al.

(2020) revealed that phages can reduce the MIC required for

bacterial strains that are already resistant to antibiotics. This effect

depends on the type of antibiotic and the specific balance between

the two agents, and it is significantly influenced by the host’s
frontiersin.org
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TABLE 1 Application of phage against drug-resistant Staphylococcus aureus infection in animals and humans.

Antibiotic Outcome Reference

ceftiofur sodium (5
mg/kg)

Compared to
treatment with
ceftiofur sodium,
phage therapy was
more effective in
reducing the number
of MRSA and
inflammatory
reaction

(Teng et al., 2022)

amoxicillin (75 µg/
mL, approximately
150 times MIC)

The bacterial load
could be significantly
reduced by using
phage cocktail or
amoxicillin alone

(Brouillette et al., 2023)

vancomycin
(150 mg/kg
intraperitoneal twice
daily for five
consecutive days)

AB-SA01 treatment
decreased the
bacterial load with
efficacy similar or
superior to
vancomycin
treatment

(Kifelew et al., 2020)

——

FSA012 treatment
improved the
survival rate of mice
and the effect of
intraperitoneal
injection was better.

(Fujiki et al., 2022)

Two I/P doses of
clarithromycin (10
mg/kg) given in 12
h intervals

Animals receiving
liposomes entrapped
cocktail of phages
showed higher
reduction in
bacterial burden on
all days as compared
to free cocktail of
phages and
clarithromycin
treated mice.
Furthermore,
entrapment of
liposomes led to a

(Chhibber et al., 2018)
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Bacterial strain
Infected
object
and type

Phage/
Cocktail

Phage dose
Delivery
vehicle

Route of
administration

S. aureus CVCC 546(MRSA) mice, mastitis phage 4086–1
1 × 108 PFU/
mL,100 µL

—— mammary duct

S. aureus ATCC 29740 (MSSA) mice, mastitis

StaphLyse™ phage

cocktail (SAML-4,
SAML-12, SAML-
150, SAML-229,
SATA-8505)

108PFU in 100 µL,
two repeated doses
at 8 h and 16 h after
S. aureus infection

——
intramammary
or intravenously

multidrug-resistant S. aureus
SA63–2498

mice, diabetic
foot ulcer

AB-SA01 phage
cocktail (J-Sa36,
Sa83, and Sa87)

70 µL AB-SA01,
equivalent to 7.9
log10 PFU

——

Topical wounds
were coverd with
AB-SA01 soaked
Gauze patches
and Opsite

S. aureus clinical isolate SA003 mice, mastitis phage FSA012

5 × 109 pfu/head for
MOI of 100 or
5 × 107 pfu/head for
MOI of 1

——

intraperitoneally
(i.p.) or
intravenously (i.v.)

S. aureus ATCC 43300 (MRSA)
mice, diabetic skin
wound infection

phage cocktail (MR-
5 and MR-10)

109 PFU/50 µL MR-
5 and 109 PFU/50
µL MR-10

liposome Local administration
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TABLE 1 Continued

n
Antibiotic Outcome Reference

significant increase
in phage titer at the
wound site

s

nafcillin
subcutaneously
(40 mg/kg four times
per day) and
rifampicin orally
(40 mg/kg two times
per day) for 7 days

No significant
differences in
bacterial load
between treatment
study groups, but no
phage neutralization
at euthanasia in the
phage-loaded
hydrogel group
compared with that
five out of eight
animals receiving
phage in saline
developed
neutralizing
antibodies.

(Onsea et al., 2021)

——

phage-loaded
microparticles
showed robust
mitigation of MRSA
in an acute lung
infection mouse
model and not any
gross toxicity
towards human lung
epithelial cells

(Kalelkar et al., 2022)

n
Cefalexin or
doxycycline as
suppressive therapy

Beneficial with a
clinically substantial
improvement of the
function for
all patients

(Ferry et al., 2020)

concomitant
intravenously
cefazolin (2 g every
8 h) for 6 weeks

negative bacterial
culture and no
adverse events
related to
bacteriophage
therapy

(Ramirez-Sanchez
et al., 2021)
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Bacterial strain
Infected
object
and type

Phage/
Cocktail

Phage dose
Delivery
vehicle

Route of
administratio

S. aureus JAR060131RifR
(rifampicin resistance)

rabbit, fracture-
related infection

phage ISP 800 µL,109 PFU/mL
emulsion-
based hydrogel

subcutaneous acces
tube injection

S. aureus JE-2 (MRSA) mice, lung infections

phage cocktail
(phage K, phage 110,
phage 134, phage
135 and phage 136)

1 × 108 PFU/mouse

porous
microparticles
engineered from
poly (lactic-co-
glycolic acid (PLGA)

endotracheal
delivery

S. aureus clinical isolate (MSSA)
patients, prosthetic
knee infection

phage cocktail
(PP1493, PP1815,
and PP1957)

1 mL of 1 × 1010

PFU/mL for each
phage and final
dilution 1 × 109

PFU/mL

——
direct administratio
into the joint

S. aureus clinical isolate (MSSA)
patient, prosthetic
knee infection

phage SaGR51ø1

one-time dose of 10
mL of phage (2.89 ×
1010 PFU/mL) and
daily infusions every
12 h for 6 weeks

——
intra-
articular infusion
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TABLE 1 Continued

ivery
icle

Route of
administration

Antibiotic Outcome Reference

intra-articular or
intravenous infusion

Daptomycin was
used for three weeks

All intraoperative
bacteriological
cultures were
negative and there
has been no
evidence
of recurrence

(Schoeffel et al., 2022)

intravenously

flucloxacil-lin,
cefazolin or
vancomycin as
antibiotic therapy
supplemented by
ciprofloxacin and/
or rifampicin

No adverse reactions
were reported, AB-
SA01 intravenously
administered was
safe in severe drug-
resistant S. aureus
infections and it was
possible that there
was a synergistic
effect between
phages
and antibiotics

(Petrovic Fabijan
et al., 2020)

intravesical titration

either ceftriaxone (1
g once daily
intravenously),
amoxicillin and
clavulanic acid (1 g
twice daily orally),
or ciprofloxacin (500
mg twice
daily orally)

non-inferiority of
bacteriophages in
terms of efficacy
compared with
antibiotics, and high
tolerability and
safety. However,
superiority of
bacteriophages over
placebo was
not observed.

(Leitner et al., 2021)

I, Multiplicity of infection.
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0
8

Bacterial strain
Infected
object
and type

Phage/
Cocktail

Phage dose
De
veh

S. aureus clinical isolate (MRSA)
patient, knee and
hip prosthetic
joint infection

phage SaWIQ0488ø1

one-time dose of 10
mL of phage (1.2 ×
109 PFU/mL) and
daily infusions every
24 h for 3 days

——

S. aureus clinical isolate (MRSA
and MSSA)

patients, bacteraemia
AB-SA01 phage
cocktail (J-Sa36,
Sa83, and Sa87)

109 PFU per 1 mL
ampoule in 50–100
mL 0.9%Il twice
daily for 14 days

——

Staphylococcus spp, etc clinical isolate
patients, urinary
tract infections

Pyophage cocktail
20 mL in a double-
blind manner twice
daily for 7 days

——

MSSA, Methicillin-sensitive Staphylococcus aureus; MRSA, Methicillin-resistant Staphylococcus aureus; PFU, Plaque-forming unit; M
l

O
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microenvironment. Prior studies have demonstrated the efficacy of

combined phage-antibiotic therapy against S. aureus infections in

vitro. For instance, Kebriaei et al. (2022) combined phage Sb-1 with

daptomycin, resulting in a 2 log10 CFU/mL reduction in MRSA

biofilm colony counts compared to the use of a single antibiotic.

Similarly, Simon et al. (2021) demonstrated synergistic effects

between phage Sb-1 and oxacillin. Phage Sb-1 alone reduced

MRSA levels by 35%, whereas in combination with oxacillin, it

reduced MRSA levels by approximately 90%. Likewise, Joo et al.

(2023) confirmed that the combined application of vancomycin and

bacteriophage K, compared with vancomycin or bacteriophage K

alone, reduced MRSA in biofilm to less than 2 log10 CFU/mL,

indicating significant synergy.
4.2 Animal experiments of phage therapy
against drug-resistant S. aureus infection

In a study conducted by Teng Fei et al. (Teng et al., 2022) using

a mouse model, a phage treatment group (with a concentration of 1

× 108 PFU/mL) and a ceftiofur sodium treatment group (with a

dosage of 5 mg/kg) were compared. The results showed that the

phage therapy group reduced the number of drug-resistant S.

aureus in the mammary glands by 8 log10 CFU/g, while the

antibiotic group reduced it by 4 log10 CFU/g. Notably, the phage

therapy group exhibited a more effective reduction in drug-resistant

S. aureus compared to the antibiotic group. Additionally, the

concentrations of tumor necrosis factor (TNF-a) and interleukin-

6 (IL-6) in the treatment groups decreased significantly, especially

in the phage treatment group. This indicates that phage treatment

can more effectively reduce the inflammatory response in mouse

mammary glands compared to ceftiofur sodium treatment.

Similarly, Brouillette et al. (2023) formulated a phage cocktail

called StaphLyse™, comprising five Myoviridae virulent S. aureus

phages (SAML-4, SAML-12, SAML-150, SAML-229, and SATA-

8505), which meet FDA safety standards for the treatment of

mastitis in mice. StaphLyse™, at a concentration of 109 PFU/mL,

successfully lysed 709 strains of S. aureus, including MSSA, MRSA,

and vancomycin-intermediate Staphylococcus aureus (VISA)

strains, with a lysis rate of 100%. In in vitro experiments,

StaphLyse™ (at approximately 1010 PFU/mL) reduced colony

counts of S. aureus ATCC 29740 by 5.8 log10 CFU/mL after 1 h.

In a mouse infection model, researchers observed that

administering StaphLyse™ intramammary (108 PFU in 100 µL)

at 8 and 16 h after infection was the most effective treatment

regimen. This reduced the bacterial load per gram of mammary

tissue by 2.82 log10 CFU. In comparison, the amoxicillin control

group (75 µg per gland, approximately 150 times the MIC of

amoxicillin for S. aureus ATCC 29740) reduced the bacterial load

per gram of mammary tissue by 4.45 log10 CFU. Additionally,

prophylactic use of StaphLyse™ (administered 4 h prior to

infection) was also effective, reducing S. aureus levels by 4.03

log10 CFU per gram of mammary gland. In another study,

Kifelew et al. (2020) employed the phage cocktail AB-SA01 to

treat multidrug-resistant S. aureus wound infections in diabetic

mice. This cocktail was produced according to current good
Frontiers in Cellular and Infection Microbiology 09
manufacturing practice (CGMP) standards and had undergone

two phase I clinical trials (Lehman et al., 2019; Petrovic Fabijan

et al., 2020). Results indicated that on the fourth day of treatment,

the bacterial load in the phage treatment group and vancomycin

treatment group had decreased by approximately 3.3 log10 CFU/

swab compared to the normal saline control group. On the third day

after treatment, compared to the normal saline control group, the

bacterial load in the phage treatment group and vancomycin

treatment group had decreased by approximately 8 log10 CFU/

swab and 3.3 log10 CFU/swab, respectively. Additionally,

Laboratory et al. found that combining AB-SA01 with

vancomycin exhibited a synergistic effect, enhancing the

elimination of MRSA and preventing the development of phage

resistance (Kebriaei et al., 2020b).

Different routes of administration also impact the therapeutic

effectiveness of phages. In a mouse model infected with SA003,

Fujiki et al. (2022) administered phage FSA012 (GenBank database

accession number NC_023573.1) intraperitoneally and

intravenously. This improved the survival rate of mice from 20%

to 75% and 40%, respectively. Notably, FSA012 exhibited a broad-

spectrum host range similar to Staphylococcus phage K, forming

plaques in 94.4% (33/35) of animal-associated MRSA and MSSA

strains and 60.0% (24/40) of human-associated MRSA strains.

Furthermore, pharmacokinetic studies revealed that phage

FSA012 was detected in the liver, lung, and intestine of mice

without inducing any inflammatory reactions or potential side

effects in the organs of mice.

However, as an active preparation, bacteriophages exhibit low

stability and long-term effectiveness at the infection site (Guerin

and Hill, 2020; Bichet et al., 2021), which somewhat limits their

efficacy against infections. One strategy to protect bacteriophages

from the influence of the adaptive immune system is encapsulating

them in a carrier (Gembara and Dab̨rowska, 2021; Wdowiak et al.,

2022). Chhibber et al. (2018) employed liposomes as phage delivery

vehicles to encapsulate a Myoviridae virulent S. aureus phage

cocktail for treating MRSA-induced skin wound infections in

diabetic mouse models. The results showed that 70% of mice in

the blank control group died within 24 to 48 h after MRSA

infection, and the bacterial loads at the wound increased to 9

log10 CFU/mL. In contrast, no deaths occurred in the phage

cocktail group (administered 100 µL at 109 PFU/mL),

clarithromycin group (administered at 10 mg/kg), or liposome-

encapsulated phage cocktail group (administered 100 µL at 109

PFU/mL). Over time, the bacterial loads in the treatment groups

decreased, particularly in the liposome-encapsulated phage cocktail

group. The bacterial loads decreased from 8.39 ± 0.72 log10 CFU/

mL to 1.84 ± 0.17 log10 CFU/mL on the 7th day. The stability study

of phages revealed that on the first day after administration, the

phage cocktail titers in the wound of mice in the free phage cocktail

treatment group and the liposome-encapsulated phage cocktail

group decreased to approximately 105 PFU/mL and 107 PFU/mL,

respectively. This indicates that liposome encapsulation can

effectively prevent the decrease in bacteriophage activity and

initial titer in the wound. It increases the time the bacteriophage

functions at the infection site, thereby accelerating wound healing

in mice.
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Similarly, Onsea et al. (2021) treated rifampicin resistant S.

aureus-induced fracture-related infections in a rabbit model by

loading phages onto hydrogel. Initially, all animals in the treatment

groups (Groups 3–5) received subcutaneous nafcillin (40 mg/kg,

four times daily) and oral rifampicin (40 mg/kg, twice daily) for 7

days post-infection. Subsequently, Group 3 received phage

injections (1 mL, 108 PFU/mL in normal saline, twice daily),

Group 4 underwent a single topical application of phage-loaded

hydrogel (800 µL, 109 PFU/mL), while Group 5 maintained the

original antibiotic treatment. Results showed that infection was

eradicated in 2 animals in Group 3, 1 animal in Group 4, and all

animals in Group 5. Bacterial loads in the treatment groups

decreased from 2 × 106 CFU to approximately 105 CFU.

However, there was no statistically significant difference in

bacterial loads between the treatment groups. Notably, the

production of phage-neutralizing antibodies significantly impacts

phage efficacy (Rotman et al., 2020). In this study, phage-

neutralizing antibodies were only detected in the plasma of

rabbits from Group 3, not in Group 4 or Group 5, suggesting that

the hydrogel vehicle effectively reduces phage-neutralizing

antibody production.

Additionally, Kalelkar et al. (2022) developed porous particles

from degradable poly(lactic-co-glycolic acid) (PLGA) and

successfully delivered a phage cocktail to the lungs of mice,

effectively reducing MRSA-induced lung infections. Results

indicated that compared to the control group of mice infected

with MRSA, the bacterial loads in the porous particle vehicle group

remained largely unchanged, indicating the vehicle had no

antibacterial effect. The free phage cocktail group exhibited a

reduction of approximately 1 log10 CFU/mg, while the porous

particle group loaded with the phage cocktail demonstrated the

most significant effect, with a bacterial load reduction of

approximately 2 log10 CFU/mg. This suggests that PLGA vector

synergistically enhanced the phage’s efficacy. Furthermore, the

porous particle group loaded with the phage cocktail exhibited no

significant toxicity to human lung epithelial cells, and the bacteria

recovered from mice remained sensitive to the phage, with no

emergence of phage antibodies. These findings underscore that the

use of appropriate vehicles can enhance phage therapy’s

effectiveness, reduce its biotoxicity, and mitigate drug

resistance concerns.
4.3 Clinical cases/trials of phage therapy
against drug-resistant S. aureus infection

In addition to laboratory investigations, several clinical cases

have showed the promising potential of phage therapy against drug-

resistant S. aureus infections. Ferry et al. (2020) notably improved

the clinical condition of three patients with recurrent S. aureus

clinical isolate (MSSA) prosthetic knee infections (PKIs) by

employing a phage cocktail in conjunction with inhibitory

antibiotics. Initially, all patients underwent “Debridement

Antibiotics and Implant Retention” (DAIR) treatment and

received a course of antibiotics, but these interventions proved

ineffective, and the patients’ prosthetic knee joints remained
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severely infected. Consequently, hospital pharmacists formulated

three phage cocktail preparations (PP1493, PP1815, and PP1957) at

a final concentration of 109 PFU/mL, which were subsequently

injected directly into the joints post-DAIR surgery and joint closure.

This treatment was followed by combined antibiotic therapy for 6 to

12 weeks, along with suppressive antibiotic treatment (SAT). After

follow-ups at 7, 11, and 30 months, two patients exhibited only mild

synovial fluid discharge and limited synovial inflammation, with no

persistent or recurrent bacterial infections. Moreover, their C-

reactive protein levels were negative, and clinical symptoms, such

as pain-free ambulation, significantly improved. Similarly, in

another clinical case involving S. aureus PKI infection, Ramirez-

Sanchez et al. (2021) successfully cured a 61-year-old female patient

using sequential intra-articular infusions of phage cocktail AB-

SA01 and a single lytic phage, SaGR51ø1. Initially, after several

courses of intravenous cefazolin injections, oral rifampicin and

amoxicillin administration, the patient’s knee joint infection

persisted. Phage therapy was then attempted, beginning with

intravenous infusions of phage cocktail AB-SA01 (once every 12

h for 2 weeks) and cefazolin (once every 8 h for 6 weeks). During

this treatment, bacterial cultures from the patient’s blood and

synovial fluid returned negative results, and her pain subsided.

However, the unavailability of further phage cocktail AB-SA01

products led to the cessation of phage therapy after two weeks,

resulting in knee pain recurrence and positive S. aureus clinical

isolate (MSSA) cultures five days later. Subsequently, during the

second treatment cycle, 10 mL of phage solution SaGR51ø1 (2.89 ×

1010 PFU/mL) was aseptically injected into the joint cavity (once

every 12 h for 6 weeks), accompanied by intravenous cefazolin

administration (once every 8 h for 6 weeks). After completing both

treatment cycles, the patient’s synovial fluid exhibited no

inflammation, bacterial cultures returned negative results, and no

adverse events associated with phage therapy were reported. These

findings suggest that virulent phage SaGR51ø1 exhibits a favorable

safety and efficacy profile against S. aureus PKI infections.

Furthermore, phage therapy has demonstrated efficacy and safety

against PKI infections caused by MRSA (B. et al., 2022; Schoeffel

et al., 2022), as seen in similar clinical cases.

As mentioned earlier, an increasing number of prominent and

extensively documented clinical case reports, along with the

improved accessibility of phage identification and production

technologies, have contributed to the expanded adoption of

phages in clinical medicine during recent years (Strathdee et al.,

2023). In a single-arm, non-comparative clinical trial, an Australian

hospital assessed the safety of S. aureus phage in humans by

administering phage cocktail AB-SA01 as adjuvant therapy to 13

critically ill patients with S. aureus bacteremia (Petrovic Fabijan

et al., 2020). All patients initially received antibiotics such as

flucloxacillin (n = 10), cefazolin (n = 2), or vancomycin (n = 1),

supplemented with ciprofloxacin and/or rifampicin, followed by

intravenous administration of phage cocktail AB-SA01 between 4

and 10 days after antibiotic treatment initiation. Results revealed

that after 90 days of phage therapy, seven patients (54%) displayed

clinical improvement and survived, while six patients (46%)

succumbed, including three within one week. During AB-SA01

infusion and the 4-h period thereafter, no adverse reactions such as
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fever, rash, or hypotension were observed. Moreover, no serious

inflammatory reactions were reported in patients, signifying the

safety and tolerability of AB-SA01 via intravenous administration

against S. aureus clinical isolate (MRSA and MSSA). However,

further controlled trials are needed to determine AB-SA01’s

efficacy. In addition, Ooi et al. (2019) demonstrated the safety

and tolerability of multiple intranasal administrations of AB-SA01

in patients with recalcitrant chronic rhinosinusitis caused by S.

aureus clinical isolate. This study is a phase I clinical trial involving

multiple ascending doses, conducted in humans for the first time. It

is a single-center, prospective, and open-label trial. The trial has

been registered at http://anzctr.org.au, with the identifier

ACTRN12616000002482. Nine patients have been enrolled in the

trial, and they are divided into three cohorts, with each cohort

consisting of three patients. Each cohort received intranasal

irrigation with AB-SA01 twice daily, following an ascending dose

scheme: 3 × 108 PFU for 7 days (cohort 1), 3 × 108 PFU for 14 days

(cohort 2), and 3 × 109 PFU for 14 days (cohort 3). Results indicated

that all participants’ vital signs, including body temperature and

blood pressure, as well as clinical biochemical parameters such as

hemoglobin and platelet levels, remained within normal ranges

before administration, 0.5 h and 2.0 h post-AB-SA01

administration, and at the exit visit. No serious adverse events

were reported, underscoring the safety and tolerability of AB-SA01.

Furthermore, S. aureus infection diminished in all patients, with

eradication achieved in two patients, suggesting promising

preliminary efficacy results. However, due to the small sample

size, further randomized clinical trials are necessary to confirm

AB-SA01’s efficacy.

Subsequently, Leitner et al. (2021) conducted a randomized,

placebo-controlled, double-blind clinical trial (Identifier,

NCT03140085) to treat urinary tract infections (UTIs) in patients

undergoing transurethral resection of the prostate (TURP) using

intravesical phage cocktail Pyophage. Among 474 screened patients,

113 with positive urine S. aureus cultures entered the study (including

Staphylococcus spp., Streptococcus spp., Enterococcus spp., and

Escherichia coli, with colony counts ≥104 CFU/mL). Patients were

randomly assigned to receive treatment, resulting in 97 patients

receiving one of three interventions: the phage group (n = 28), the

placebo group (n = 32), or the antibiotic group (n = 37). Post-

treatment assessments revealed no statistically significant differences

in success rates or adverse event incidence among the three groups.

Notably, intravesical phage therapy’s efficacy in treating

Staphylococcus-induced UTIs was comparable to that of antibiotic

treatment, but it did not outperform the placebo control group. This

outcome may be attributed to bladder irrigation, which unexpectedly

reduced bacterial loads in all groups. This randomized double-blind

clinical trial reiterated phage therapy’s safety and tolerance while

encouraging larger, high-quality clinical investigations.
4.4 Endolysin therapy against drug-
resistant S. aureus infection

In 1958, Jacob et al. made the pioneering discovery that

bacteriophages can encode a class of proteins exhibiting the
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capacity to lyse bacteria. These proteins, termed endolysins or

lysins, serve a crucial role in the bacteriophage infection process

by lysing the host bacteria. Lysins are cell wall hydrolases

synthesized by phage genes during the late stages of dsDNA

phage infection in bacteria. In the bacteriophage lysis replication

cycle, lysins pass through cell membrane pores formed by holin and

subsequently target the peptidoglycan within the bacterial cell wall.

They cleave and hydrolyze vital chemical bonds in the

peptidoglycan, ultimately leading to bacterial lysis and demise.

This process facilitates the release of progeny phages into the

extracellular environment (Abdelrahman et al., 2021).

While complete phages remain a viable antibacterial option,

their limited antibacterial spectrum, intricate preclinical and clinical

evaluations, and inadequate regulatory frameworks have impeded

the widespread adoption of phage therapy (Abdelkader et al., 2019;

Rahman et al., 2021). In contrast, lysin development has progressed

more rapidly. Lysins offer advantages such as non-proliferation,

high bactericidal activity, a broad host spectrum, well-defined

pharmacokinetics, reduced likelihood of developing resistance,

and antibodies that do not significantly diminish bactericidal

activity. Consequently, lysins have emerged as significant

candidates for antibiotic alternatives (Kortright et al., 2019;

Röhrig et al., 2020; Abdelrahman et al., 2021; Lu et al., 2021;

Murray et al., 2021; Hatfull et al., 2022; Zhu et al., 2022).

In 1959, Freimer et al. successfully purified lysins with

bactericidal properties. In 2001, phage lysins were first employed

as local antibacterial agents. The presence of the outer membrane in

Gram-negative bacteria poses a physical barrier to lysins, impacting

their effectiveness. In contrast, lysins can directly target

peptidoglycan bonds and lyse the cell walls of Gram-positive

bacteria, making lysins particularly effective against infections

caused by Gram-positive bacteria (Abdelrahman et al., 2021;

Murray et al., 2021). As a result, extensive research has focused

on combating Gram-positive bacteria, especially drug-resistant S.

aureus, with lysins. For example, lysin LysP108 exhibited up to 90%

antimicrobial activity against MRSA and hindered bacterial biofilm

formation (Lu et al., 2021). The catalytic domain of lysin CHAP

LysGH15 reduced S. aureus levels in milk by approximately 2.5

log10 CFU/mL after 8 h at 4°C (Yan et al., 2021). Chimeric lysin

ClyC decreased MRSA suspensions in vitro and in mice by 9 log10
CFU/mL and 2 log10 CFU/mL, respectively, and exhibited synergy

with penicillin (Li X. et al., 2021). Recombinant lysin XZ.700

inhibited S. aureus clinical isolate proliferation and skin

colonization (Pallesen et al., 2023).

Furthermore, lysins are susceptible to degradation by gastric

acid and proteases upon entering the body, posing a considerable

obstacle to lysin therapy’s application. Encapsulation technology

offers an effective means of protecting lysins (Haddad Kashani et al.,

2017; Gondil and Chhibber, 2021; Murray et al., 2021). Portilla et al.

(2020) encapsulated LysRODI in pH-sensitive liposomes, which

reduced S. aureus clinical isolate suspensions in weakly acidic (pH

5) environments and S. aureus within biofilms by 2 log10 CFU/mL.

Yao et al. (2021) encapsulated chimeric lysin ClyC in alginate

hydrogel, preserving ClyC’s stability while reducing cytotoxicity

resulting from high concentrations (250 µg/mL) of ClyC in local

infections. The researchers found that the cumulative release of
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ClyC from ClyC-alginate hydrogel in Tris buffer at 37°C after 72 h

was approximately 23 ± 0.45%, and ClyC maintained its structural

integrity without hydrolysis or degradation during gelation and

release. ClyC-alginate hydrogel demonstrated almost zero

cytotoxicity when incubated with BHK-21 cells, compared to 80%

relative cytotoxicity for 250 µg/mL free ClyC after 24 h. In a mouse

model of S. aureus T23-induced osteomyelitis, ClyC-alginate

hydrogel reduced bacterial loads in the femur and surrounding

tissues by 2 log10 CFU/mL, showing efficacy equivalent to that of

free ClyC. However, this study warrants longer experimentation

periods to assess its effects on bone healing and local inflammation

adequately. Additionally, Kaur et al. observed increased bactericidal

activity when delivering LysMR-5 via alginate-chitosan

nanoparticles (Alg-Chi NPs) (Kaur et al., 2020). Results indicated

that after 4 h of incubation at 37°C, the bacterial loads reduced to

106 CFU/mL with blank Alg-Chi NPs (500 µg/mL), 104 CFU/mL

with free LysMR-5 (155 µg/mL), and 103 CFU/mL with LysMR-5-

loaded Alg-Chi NPs (500 µg/mL), compared to the initial bacterial

loads of 108 CFU/mL.

In 2013, Micreos introduced Gladskin (also known as Lysin

SA.100 or Staphefeckt SA.100), the world’s first phage lysin product.

It is primarily used as an adjuvant treatment for inflammatory skin

diseases caused by MRSA (Totté et al., 2017). Staphefekt is currently

registered as a (class 1) medical device in Europe, available in

polycestol cream and over-the-counter gel forms. In vitro studies

demonstrated that Staphefekt specifically targeted MSSA and

MRSA, without affecting other commensal skin bacteria and

without inducing drug resistance (Pastagia et al., 2013). In three

case reports, local treatment with Staphefekt SA.100 inhibited drug-

resistant S. aureus, effectively curing chronic recurrent S. aureus-

related skin diseases that were previously resistant to antibiotics like

clarithromycin, flucloxacillin, and fusidic acid cream during the

early stages of treatment (Totté et al., 2017). While this study

highlights Staphefekt’s potential as an alternative to conventional

antibiotics for treating drug-resistant S. aureus-related skin

infections, its efficacy and safety require further investigation

through randomized controlled clinical trials.

Subsequently, in a multi-center, placebo-controlled, double-

b l inded , and randomized super ior i ty t r ia l (Home |

ClinicalTrials.gov; Identifier, NCT02840955), 100 patients with

moderate to severe atopic dermatitis received 12 weeks of

Staphefekt treatment. Results indicated that short-term

application of Staphefekt did not significantly impact non-

infectious specific dermatitis patients. Simultaneous application

of topical corticosteroids (TCS) and emollients may have masked

any clinical benefits. However, the trial demonstrated that

Staphefekt was safe and well tolerated (Totté J. et al., 2017; de

Wit et al., 2019).

Gangagen, an Indian company, has developed an engineered

lysin called P128 to combat S. aureus infections in the nasal cavity,

especially MRSA infection. They have successfully completed a

phase IIa cl inical tr ial (ClinicalTrials .gov; Identifier :

NCT01746654). Additionally, SAL200, another endolysin

candidate for treating SaB, is currently undergoing a phase IIa

clinical trial (Jun et al., 2017; Abdelkader et al., 2019; Indiani et al.,
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2019). Furthermore, Exebacase, a lysin designed for targeting

MRSA (also known as CF-301 or PlySs2), has completed phase II

clinical trials in humans (ClinicalTrials.gov; Identifier:

NCT03163446). These trials have demonstrated the safety and

efficacy of lysin and its synergistic effects when combined with

antibiotics (Fowler et al., 2020). Currently, Exebacase is being

investigated in experimental treatments for MRSA bacteremia

and endocardit is patients in phase III cl inical tr ials

(ClinicalTrials.gov; Identifier: NCT04160468). If successful, it will

become the first lysin-based drug (Traczewski Maria et al., 2021).
5 Future perspectives

Bacteriophages exhibit diverse characteristics and can be readily

engineered. They possess the ability to selectively target bacteria

without affecting eukaryotic cells, rendering them advantageous in

comparison to antibiotic therapy. In the “post-antibiotic era,” they

are poised to play a pivotal role in combating superbugs (Parasion

et al., 2014). However, phages confront several challenges and

hurdles in clinical applications (Hu and Tong, 2021): (1) Phage

capsid proteins, being biological macromolecules with significant

immunogenicity, can trigger the body’s immune clearance

mechanisms against phage agents, consequently diminishing the

effective phage dosage. (2) Prolonged antagonistic coevolution

between bacteriophages and bacteria results in an incomplete

level of host specificity. Moreover, phages can acquire, carry, and

transmit bacterial gene fragments, posing the risk of disseminating

drug-resistant genes (Ando et al., 2015). (3) Phages possess a high

degree of specificity for recognizing and infecting host bacteria,

which narrows their range of action and limits the broad application

of phage preparations. (4) Similar to antibiotics, repetitive use of

phage preparations can lead to bacterial tolerance against phage

infection. (5) Although phage therapy has not been associated with

serious toxicity or side effects, phages can release substantial

endotoxins when lysing Gram-negative bacteria, raising safety

concerns (Matsuda et al., 2005). (6) Clinical evidence supporting

the efficacy of phage therapy remains insufficient. Existing

randomized controlled clinical trials have not yielded robust

results. Phage therapy often serves as an adjunct to combination

therapy, complicating the assessment of phage’s independent

therapeutic impact (Ooi et al., 2019; Petrovic Fabijan et al., 2020;

Leitner et al., 2021). (7) There is a dearth of standards and

guidelines for the clinical application of phages, including

standardized treatment protocols and efficacy evaluation criteria

(Matsuda et al., 2005; El Haddad et al., 2019; Suh Gina et al., 2022).

(8) Ambiguity surrounds the ownership of intellectual property

rights for phages. Given their natural origin and ease of isolation

from the environment, protecting phages under existing legal

frameworks is challenging, which dampens enthusiasm among

phage practitioners and research and development companies

(Gordillo Altamirano Fernando and Barr Jeremy, 2019). (9)

Clinical practitioners, patients, and their families often lack

knowledge about phages and phage therapy, leading to

inadequate or erroneous implementation of phage treatment.
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Although exciting progress has been made in phage therapy,

more in-depth research is needed in the following aspects to

improve the potential future clinical use of phage therapy in the

future (Heilmann et al., 2010; Chen et al., 2018; Al-Ishaq et al.,

2021). (1) Efforts to diminish the immunogenicity of phages by

masking or modifying their antigenic epitopes can enhance their

efficacy against systemic infections (Łobocka et al., 2021). In

addition, encapsulating phages with liposomes, nanomaterials, or

hyaluronic acid can also mitigate immune clearance (Sarhan and

Azzazy, 2015; Singla et al., 2016; Kaur et al., 2021; Tabare et al.,

2023). (2) Addressing bacterial resistance to phages is paramount.

Engineered phage technology can be employed to design phage

receptors within highly conserved regions of pathogenic bacteria

(Ojala et al., 2013; Smith et al., 2023). Continuous refinement and

optimization of phage cocktail formulations aligned with clinical

needs can help counteract phage resistance (Samson et al., 2013;

Barbu et al., 2016; Piel et al., 2022). (3) Genetic engineering can be

utilized to modify the receptor binding proteins (RBPs) of phages,

expanding their host range (Rehman et al., 2019). (4) Standardizing

phage preparations for clinical treatment necessitates updates in

regulatory strategies to accommodate the complexity of phage

products (Cooper et al., 2016; Suh Gina et al., 2022). (5) The

unique characteristics of phage self-replication and growth in

clinical settings present challenges in determining optimal

treatment condit ions , including t iming, dosage , and

administration methods. Although some studies have elucidated

the pharmacokinetic principles of phage self-replication and growth

(Sarhan and Azzazy, 2015), considerable research is needed to guide

drug utilization. This area remains a focal point for future research.

In conclusion, despite the challenges ahead, phage therapy

holds great promise in the face of increasing antibiotic resistance.

With proper oversight and intellectual property policies in place,

phages are expected to play a more significant role in the field of life

sciences. The clinical application and industrial development of

phage therapy are poised for growth in the near future.
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