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Marmosets as models of
infectious diseases
Ian C. T. Herron*, Thomas R. Laws and Michelle Nelson

CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
Animal models of infectious disease often serve a crucial purpose in obtaining

licensure of therapeutics and medical countermeasures, particularly in situations

where human trials are not feasible, i.e., for those diseases that occur infrequently

in the human population. The common marmoset (Callithrix jacchus), a

Neotropical new-world (platyrrhines) non-human primate, has gained

increasing attention as an animal model for a number of diseases given its

small size, availability and evolutionary proximity to humans. This review aims to

(i) discuss the pros and cons of the common marmoset as an animal model by

providing a brief snapshot of how marmosets are currently utilized in biomedical

research, (ii) summarize and evaluate relevant aspects of the marmoset immune

system to the study of infectious diseases, (iii) provide a historical backdrop,

outlining the significance of infectious diseases and the importance of

developing reliable animal models to test novel therapeutics, and (iv) provide a

summary of infectious diseases for which a marmoset model exists, followed by

an in-depth discussion of the marmoset models of two studied bacterial

infectious diseases (tularemia and melioidosis) and one viral infectious disease

(viral hepatitis C).
KEYWORDS

common marmoset, immunology, inflammation, animal models, Francisella tularensis,
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1 Introduction

1.1 The common marmoset (Callithrix jacchus)

The common marmoset (Callithrix jacchus), henceforth referred to as the marmoset, is

a Neotropical new-world (now increasingly referred to as platyrrhines) non-human

primate (NHP) native to the north-eastern regions of Brazil. Having diverged from

humans some 33 million years ago, the common marmoset is phylogenetically and

anatomically more similar to humans than rats or mice which diverged approximately

96 million years ago. As such, a significant degree of cross-reactivity of reagents designed

for human targets with those in the marmoset is observed (Barton et al., 1984; Neubert

et al., 1996; Kireta et al., 2005; Jagessar et al., 2013; Neumann et al., 2016). However, a

greater evolutionary distance exists between the divergence of new-world NHPs from
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humans compared with old-world (now increasingly referred to as

catarrhines) NHPs (e.g. rhesus macaques and cynomolgus

macaques) from humans, with the latter occurring some 23

million years ago (Mansfield, 2003). Consequently, there exists

more physiological and immunological differences between

humans and marmosets than humans and old-world primates,

which have traditionally been used as NHP models of various

human diseases. Nevertheless, the marmoset represents an

attractive alternative to the old-world primates and this is

reflected by their increasing use in the field of biomedical science.

Whilst a comprehensive review of the basic biology and

physiology of the marmoset is beyond the scope of this

manuscript, the reader is directed to a number of excellent

reviews published on these topics (Abbott et al., 2003; Orsi et al.,

2011; ‘THart et al., 2012; Preuss, 2019). Here, a brief overview of the

marmoset is presented to provide the reader with sufficient

background to appreciate the pros and cons of using this new-

world primate as a model of infectious diseases. This information is

also summarized in Table 1. The marmoset is considerably smaller

than the old-world primates, weighing around 350 to 450 g with a

body size comparable to that of a rat (Orsi et al., 2011). As such,

animals are more easily handled and the associated costs

(e.g., husbandry, housing, feeding, etc.) are reduced considerably.

Additionally, their smaller size makes biocontainment both

safer and cheaper. The small size of the marmoset means smaller

amounts of a given test substance/therapeutic can be administered,
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again reducing costs and aiding where manufacture is difficult.

Aside from their small size, marmosets have a compact life-span

and reach sexual maturity in approximately 1.5 years. Marmosets

are easily bred in captivity and frequently give birth to multiple

offspring; these offspring are born as bone marrow chimeric twins

that are the result of fusion of the placental bloodstreams

(Benirschke et al., 1962; Sweeney et al., 2012). Consequently,

marmoset twins are immunologically highly comparable. In this

regard, the marmoset is biologically unique; researchers can exploit

this aspect of their biology to perform paired experimental analyses,

i.e., where one sibling receives treatment with a given therapeutic

and the other receives a placebo. Such paired analyses are highly

beneficial, particularly in pre-clinical studies. Further, marmoset

twins have been used in adoptive transfer experiments in the study

of the pathogenesis of multiple sclerosis (MS) (Massacesi et al.,

1995; Genain and Hauser, 1997). Importantly, marmosets are a

naturally outbred species and are exposed to environmental factors

(e.g., bacteria) that shape their developing immune systems. As the

links between the environmental microbiome and host immune

system continue to emerge, this feature of the marmoset is

particularly advantageous as it better reflects the human

condition. Marmosets are susceptible to infection with many

wild-type viruses that, in their native forms, either do not cause

disease or cause a different disease in the mouse (Mansfield, 2003;

Carrion and Patterson, 2012). Indeed, to render mice vulnerable to

infection, an adapted rodent virus is frequently used. These viruses,

although based on the wild-type virus, are genetically modified and

thus may fail to recapitulate human disease (Sarkar and Heise,

2019). Finally, and of particular importance to infection models,

marmosets are not known to carry endogenous viruses that cause

disease in humans (Abbott et al., 2003). Thus, with fewer biosafety

considerations the marmoset represents an animal model that is

safer, cheaper and less labor intensive.

Whilst the marmoset presents a number of practical advantages,

it is vital that the potential disadvantages of the species are not

overlooked. For example, though the marmoset is comparatively

cheaper and easier to handle than the larger old-world primates, mice

are both considerably smaller and cheaper than the marmoset.Whilst

the small size of the marmoset may be advantageous, this may also

limit what procedures/techniques can be performed. For example, the

amount of blood that can be obtained from a live marmoset is

typically 1% of its body weight (Jagessar et al., 2013; ‘T Hart, 2019). A

study wishing to perform comprehensive immunophenotyping of

marmoset immune cells may not be feasible given the limited amount

of blood available at each blood draw – particularly those studies

incorporating large panels that require multiple controls. While

outbred animals are more representative to humans, this

heterogeneity may produce more variability in experimental

outcome, necessitating greater numbers. Studies involving NHPs

are also limited to a smaller number of animals, which can

negatively influence statistical power. Finally, and most

importantly, any study involving NHPs is subject to ethical

concerns, concerns for the wellbeing of the animals and ever-

growing societal and political pressures. Any study using NHPs

will require specialist facilities and trained staff, including

veterinary staff.
TABLE 1 Advantages and disadvantages of the common marmoset as a
small animal model of disease.

Advantages Disadvantages

Small size (approximately 350 to
450 g)

Limited blood draw volumes

Compact life-span Increased cost/gestation period (compared
to rodents)

Cheaper to house and feed/lower
husbandry costs

No germ-free marmosets

Early sexual maturity and high
reproductive efficacy
(multiple offspring)

Studies restricted to smaller numbers
of animals

Susceptible to infection with wild-
type viruses

Fewer analytical tools (immunological/
molecular, etc.) available

Disease closely mimics
human disease

Ethical concerns of using NHPs

Fewer biosafety concerns (free
from endogenous organisms that
cause disease in humans)

Increased evolutionary distance from
humans compared with old-world
primates, e.g., rhesus macaque and
cynomolgus macaque

Easier and safer to contain
in biocontainment

Immunological repertoire very
similar to that in humans (~86%
identical between marmoset
and human)

Many human reagents are cross-
reactive with marmoset
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1.2 Marmosets in biomedical research

Marmosets have been used in biomedical research for many

decades. Over the past twenty or so years, marmoset research has

increased in pace with biomedical research in general, driven in part

by a growing inventory of reagents and analytical tools. Notable

advances include the sequencing of the marmoset genome (Worley

et al., 2014), the generation of transgenic animals by germline

transmission (Sasaki et al., 2009; Tomioka et al., 2017a; Tomioka

et al., 2017b), the creation of gene knockout marmoset models

(Kumita et al., 2019; Yoshimatsu et al., 2019) and an ever-growing

array of marmoset-specific reagents, including microarrays (Datson

et al., 2007), ELISA and ELISPOT assays (Zhu et al., 2016), and

monoclonal antibodies (Kametani et al., 2009). A number of

marmoset-specific monoclonal antibodies are available

commercially; however, these are specific to a few targets and

conjugated to only few commonly used fluorophores. In spite of

the challenges presented by reagent availability and technical issues,

the marmoset has been utilized as an appropriate animal model in a

number of contexts, including infectious disease, autoimmunity,

neurobiology and, more traditionally, in developmental biology,

reproductive biology, toxicology/drug development, and behavioral

research. Since the focus of this review is infectious disease, a

comprehensive discussion of each of these areas of research is

simply not feasible. The reader is directed to a number of excellent

review articles, which outline the value of the marmoset in these

contexts (Mansfield, 2003; ‘T Hart et al., 2012; Okano et al., 2012;

Han et al., 2022; Inoue et al., 2022).

Marmoset models utilized in neuroscience, behavioral science

and reproductive biology are very well characterized, and there is a

wealth of published literature in these areas. In contrast, one area that

remains relatively unexplored is the marmoset immune system and

the mechanisms of immune regulation. As noted, this is partly due to

the limited availability of analytical tools and reagents that cross-react

with the marmoset. Given their phylogenetic similarity to humans,

the marmoset immune system is likely more similar to our own than

that of a mouse. Nevertheless, much of our understanding of the

molecular basis of the human immune system has been elucidated or

predicted using murine experimental models. Thus, to understand

the value of the marmoset in immunology research, a more in-depth

characterization of the marmoset immune system is required. Such

an endeavor would lead to the development of a wider array of

analytical tools and reagents specific for the marmoset. A greater

characterization of the marmoset immune system would benefit a

number of existent marmoset disease models. In the proceeding

section, important immunological features that are relevant to the

study of infectious disease are outlined, with an emphasis on the

reagents and techniques developed for the marmoset.
2 Marmoset immunology: like mice
and man?

To best utilize the marmoset in immunological research, we

need to understand the marmoset immune system. To use the

marmoset as a surrogate of human diseases and conditions, we need
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to be confident that what we see in the marmoset actually

recapitulates what we see in humans. Though many aspects of

marmoset immunology remain elusive, several important findings

that highlight the similarities and differences between marmoset

and man have been reported over the years.

The ability of the immune system to recognize foreign (non-

self) antigens is central to the adaptive immune response. One

indicator of an immune systems breadth is the variability of the

molecules involved in antigen recognition, [i.e., major

histocompatibility complex (MHC) molecules, T-cell receptors

(TCRs) and immunoglobulins (Igs)] (Kametani et al., 2018). The

structure of the MHC in the marmoset has been elucidated. In the

marmoset, class I MHCmolecules are encoded by Caja genes (Caja-

B, Caja-G, Caja-F loci), which are orthologs of the human leukocyte

antigen (HLA) genes (classical: HLA-A, HLA-B, HLA-C; non-

classical: HLA-G, HLA-E) in humans (Shiina et al., 2011). Caja

genes exhibit a high degree of homology with human HLA genes,

particularly Caja-G and HLA-G, which are evolutionarily closely

related (Kametani et al., 2018). Importantly, HLA orthologs have

not been identified in rodents (Kametani et al., 2018), reflecting the

increased evolutionary distance between mouse and man. In spite of

these similarities, marmoset Caja genes are associated with multiple

alleles at each locus, but the diversity is nevertheless limited in the

marmoset compared to that in man (Shiina et al., 2011; Kono et al.,

2014). Furthermore, the human homolog of Caja-G (i.e., HLA-G) is

a non-classical MHC molecule, represented by a single gene locus

with a low number of alleles. The expression of Caja-G is restricted

to cells of the placenta and on certain regulatory T-cells (Ferreira

et al., 2017; Kametani et al., 2018; Zhuang et al., 2021). HLA-G has

been suggested to possess immunosuppressive functions (Lin and

Yan, 2016). Conversely, in the marmoset, Caja-G is ubiquitously

expressed and polymorphic, more akin to human classical class I

HLA molecules (Van Der Wiel et al., 2013; Kono et al., 2014; Li

et al., 2014a; Neehus et al., 2016). The specific function of Caja-G in

the marmoset in unclear, but it may possess immune activating

functions (Münz et al., 1999; Neehus et al., 2016; Kametani et al.,

2018). Uncovering the role of Caja-G in the marmoset may provide

valuable insight into the immunological mechanisms in the species.

Orthologs of the genes encoding HLA-G ligands in man (LILRB1

and LILRB2) have also been predicted (Kametani et al., 2018). Aside

from the class I HLA molecules, functional homologs of human

HLA-DR andHLA-DQ (both encoding class II MHCmolecules) are

present in the marmoset but, relative to humans, the diversity of

these molecules is restricted (Antunes et al., 1998). Nevertheless, the

function of these class II orthologs appears to be similar to their

human counterpart (Kametani et al., 2018). Evidence to support the

divergence of Caja-DRB and the DRB*W16 allele in the marmoset

has been reported (Prasad et al., 2006; Prasad et al., 2007). Aside

from HLA molecules, the homology of the TCR repertoire between

humans and marmosets is high, displaying a greater than 90%

homology between man and marmoset in the CDR3-FR4 region

(Matsutani et al., 2011; Kitaura et al., 2012). Homology of human

and marmoset immunoglobulins are yet to be fully-characterized.

Yet, in a recent study of primate genomes and transcriptomes by

Olivieri and colleagues, immunoglobulin genes were identified

(Olivieri and Gambón Deza, 2018). In the marmoset, an isotype
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of each class of immunoglobulin was identified. Notably, the CH2

exon of the IgD gene is absent in the marmoset, whilst the CH1 and

CH3 exons are evolutionarily conserved (Olivieri and Gambón

Deza, 2018). The diversity of the B-cell response in the marmoset

is, however, predicted to be more restricted (Griffiths et al., 2006;

Kametani et al., 2018). For those molecules involved in immune

effector responses (e.g., cytokines), complementary DNA (cDNA)

sequences and amino acid sequences between marmosets and

humans were 86% identical, compared with 61% between mouse

and humans (Kohu et al., 2008). Numerous approaches have been

adopted for the analysis of marmoset cytokines and chemokines,

measuring the level of expression at the protein (i.e., by enzyme-

linked immunosorbent assays (ELISAs) and cytometric bead arrays

(CBAs)) and mRNA (i.e., by quantitative polymerase chain reaction

(qPCR)) level (Fujii et al., 2013; Jagessar et al., 2013; Ngugi et al.,

2022). The assessment of intracellular cytokines has also been

performed using flow cytometric techniques (Mietsch et al.,

2020). A list of assays designed for analysis of serum cytokines

and chemokines that are reported to work in the marmoset are

presented in Table 2.

To understand the process of immune cell differentiation in the

marmoset, there is a need to understand the primate hematopoietic

system, and how this compares to humans. The markers CD34 and

CD117 are used to identify hematopoietic stem cells (HSCs) in mice

and humans (Okada et al., 1992; Galy et al., 1995). Human HSCs are

CD34+ CD117lo, whereas mice HSCs are CD34- CD117+

(Papayannopoulou et al., 1991; Okada et al., 1992; Gunji et al.,

1993; Galy et al., 1995; Mestas and Hughes, 2004). Identification

and characterization of marmoset HSCs was made possible by the

development of anti-marmoset CD34 and CD117 monoclonal

antibodies (Izawa et al., 2004; Kametani et al., 2009; Shimada

et al., 2015). Marmosets are reported to express both CD34 and

CD117; however, the differentiation of CD117+ cells into cells of the

erythroid and myeloid (but not lymphoid) lineages was not

dependent on CD34 expression (Ito et al., 2002; Matsumura et al.,

2003; Kametani et al., 2006; Ito et al., 2008a). Whilst the specific

biological function of CD34 is unclear in humans, in the marmoset

it may enhance engraftment following HSC transplantation, like the

situation in humans (Kametani et al., 2018). When human HSCs

were transplanted into NOG immunodeficient mice, B-cell

development preceded T-cell development and CD4 and CD8 T-

cells developed simultaneously (Ito et al., 2002; Yahata et al., 2002;

Matsumura et al., 2003; Kametani et al., 2006). In contrast,

following transplantation of marmoset HSCs into NOG mice,

CD8 T-cell development occurred predominantly, with no B-cell

or CD4 T-cell development (Kametani et al., 2018). These findings

illustrate a key species difference in the hematopoietic system

between human and marmoset. Efforts should be taken to

understand how this difference might influence the function of

the immune system.

A significant hurdle in the study of marmoset immunology is

the lack of specific reagents and analytical tools. The limited

availability of marmoset-specific monoclonal antibodies is

particularly problematic and limits our ability to survey the

immunological landscape of the marmoset. Unsurprisingly,

increased interest in the marmoset in biomedicine has led to a
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number of groups developing and evaluating reagents (including

monoclonal antibodies) designed specifically for the marmoset,

leading to the commercial availability of marmoset reagents.

Nevertheless, whilst progress has been made, there remains a

pressing (and as of yet unmet) need for the wider availability of

validated anti-marmoset antibodies. A comprehensive discussion of

these reagents is beyond the scope of this review. However, a

number of marmoset-specific antibodies against common surface

antigens are reported in the literature, including anti-marmoset

CD45, CD3, CD4, CD8 and CD25 (Brok et al., 2001; Ito et al.,
TABLE 2 ELISA and CBA kits for analysis of serum cytokines and
chemokines in the common marmoset.

Cytokine/
Chemokine

Provider Reference

IL-1b BD
Biosciences

(Ireland et al., 2022)

IL-2 U-
CyTech,
Invitrogen

(Jagessar et al., 2013; Peters et al., 2023)

IL-4 Invitrogen (Peters et al., 2023)

IL-6 U-CyTech,
BD

Biosciences

(Nelson and Loveday, 2014; Ireland
et al., 2022)

IL-8 Invitrogen (Peters et al., 2023)

IL-10 U-CyTech (Jagessar et al., 2013)

IL-13 U-CyTech (Jagessar et al., 2013)

IL-12/23p40 U-CyTech,
Pharmingen,
Invitrogen

(Laman et al., 1998; Jagessar et al., 2013;
Peters et al., 2023)

IL-17A U-CyTech (Jagessar et al., 2013; Jagessar et al., 2015;
Kap et al., 2015)

IFN-g U-CyTech,
Mabtech,
Invitrogen

(Jagessar et al., 2013; Jagessar et al., 2015;
Ireland et al., 2022; Peters et al., 2023)

TNF-a U-CyTech,
Mabtech,
Invitrogen

(Seehase et al., 2012; Jagessar et al., 2013;
Nelson and Loveday, 2014; Jagessar et al.,
2015; Ireland et al., 2022; Ngugi et al.,

2022; Peters et al., 2023)

MIP-1a BD
Biosciences

(Nelson and Loveday, 2014)

MIP-1b BD
Biosciences,
Invitrogen

(Seehase et al., 2012; Nelson and Loveday,
2014; Peters et al., 2023)

MCP-1 BD
Biosciences,
Invitrogen

(Nelson and Loveday, 2014; Ireland et al.,
2022; Peters et al., 2023)

RANTES BD
Biosciences

(Ireland et al., 2022)

ICAM Invitrogen (Peters et al., 2023)

GM-CSF Invitrogen (Peters et al., 2023)
CBA, cytometric bead array; CM, commonmarmoset; ELISA, enzyme-linked immunosorbent
assay; GM-CSF, granulocyte-macrophage colony stimulating factor; ICAM, intracellular
adhesion molecule; IFN, interferon; IL, interleukin; MCP, monocyte chemoattractant
protein; MIP, macrophage inflammatory protein; RANTES, regulated upon activation,
normal T cell expressed and presumably secreted.
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2008b; Kametani et al., 2009; Jagessar et al., 2013; Neumann et al.,

2016; Gordeychuk et al., 2018). Marmoset-specific anti-CD34 and

anti-CD117 antibodies were also developed as described earlier

(Izawa et al., 2004; Kametani et al., 2009; Shimada et al., 2015).

Whilst this list is by no means exhaustive, it is worth pointing out

that, to the best of our knowledge, the only marmoset-specific

monoclonal antibodies currently available commercially recognize

and bind CD45 and CD8. Unfortunately, the availability of

fluorochromes for conjugation is limited. Numerous studies have

evaluated anti-human monoclonal antibodies for cross-reactivity

with marmoset antigens. Indeed, one report showed that 126 out of

331 monoclonal antibodies tested cross-reacted with peripheral

blood mononuclear cells (PBMCs) from the marmoset (Brok

et al., 2001). More recently, Neumann and colleagues evaluated a

panel of 120 monoclonal antibodies for cross-reactivity against the

marmoset, including testing of 97 different antibody clones (49 of

which were not tested previously) against cell-surface markers,

intracellular markers, chemokine receptors and cytokines

(Neumann et al., 2016). Finally, it should be noted here that,

despite the similarities between the human and the marmoset in

terms of immune molecules, not all anti-human antibodies will

cross-react with the marmoset; likewise, anti-marmoset CD4 and

CD8 antibodies failed to cross-react with the corresponding antigen

in humans (Gordeychuk et al., 2018). It is pivotal that care is taken

to properly design, test and validate immunophenotyping panels,

giving researchers the assurance and confidence in the data

they generate.

An in-depth, comprehensive picture of the marmoset immune

system is still lacking, though a snapshot of fundamental cellular

immune components in healthy animals has begun to emerge

(Nelson and Loveday, 2014; Neumann et al., 2016; Gordeychuk

et al., 2018; Mietsch et al., 2020; Ngugi et al., 2022). All data

discussed here relate to marmoset whole blood since data from

other tissues is limited. Briefly, the constitution of the marmoset

immune system is remarkably similar to our own: in blood, the

majority (over 80%) of cells express CD45, the common leukocyte

antigen; monocytes represent a minor proportion of CD45+ cells

(<5%), whilst over 40% of cells were lymphocytes (Ross et al., 2012;

Nelson and Loveday, 2014; Neumann et al., 2016; Gordeychuk et al.,

2018; Mietsch et al., 2020; Ngugi et al., 2022). In terms of the

distribution of immune cell subsets, reports from numerous

research groups, including two from our own, are largely

agreeable: total T-cells (CD3+) represent between 50 and 70% of

lymphocytes, with between 20 and 30% of cells being B-cells (CD20

+); the frequency of natural killer (NK) cells and gd T-cells is low

(<5%); within the CD3 T-cell compartment, 50 to 60% and 30 to

40% of cells express either the CD4 or CD8 co-receptors,

respectively; and a small proportion of cells (<3%) express both

CD4 and CD8 (Nelson and Loveday, 2014; Neumann et al., 2016;

Gordeychuk et al., 2018; Mietsch et al., 2020; Ngugi et al., 2022). In

one report, the frequency of cytotoxic T-cells (CD8+) was reported

to be significantly higher in the marmoset than that seen in humans

(Fujii et al., 2013), possibly due to the small number of animals and/

or the CD8 antibody clone. Finally, neutrophils comprised

approximately 35% of circulating cells (Nelson and Loveday,

2014; Neumann et al., 2016; Gordeychuk et al., 2018; Mietsch
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et al., 2020; Ngugi et al., 2022). Taken together, the frequency of

immune cells in the marmoset mirrors humans better than how

mice mirror humans.
3 Modelling infectious diseases in the
marmoset: tularemia, melioidosis and
hepatitis C virus

The marmoset has been used as an experimental model of

several infectious diseases; this information, along with a summary

of both the number of studies utilizing a marmoset disease model

and alternative animal models, is provided in Table 3. A

comprehensive discussion of each of these models is beyond the

scope of this manuscript, thus the final section of this review will

examine two experimental models of bacterial infection and one of

viral infection that have been successfully developed in the

marmoset: Francisella tularensis and Burkholderia pseudomallei,

the etiological agents of tularemia and melioidosis, respectively, and

hepatitis C virus (HCV) and the related GB virus B (GBV-B).

Tularemia and melioidosis (and their respective causative agents)

were selected for discussion given their potential for use as

biological warfare agents; hepatitis C was selected since the

marmoset has been shown to be susceptible to infection and

therefore represents an important surrogate model. Whilst a

discussion of the marmoset models of Ebola, Zika and influenza

viruses would have been extremely interesting, these agents were

not selected for further discussion in this review.
3.1 Animal models of infectious disease:
introducing the 3 R’s and the animal
efficacy rule

For many infectious diseases, disease incidence is too low to

model in human populations. Studies involving humans are

obviously subject to significant ethical concerns and, where

diseases are fatal, human challenge studies are impossible.

Nevertheless, modelling the efficacy of a potential medical

countermeasure is a crucial step towards drug/therapy licensure

(Gronvall et al., 2007; Dicarlo et al., 2011; Aebersold, 2012). Animal

models are frequently used in an attempt to better understand

disease pathogenesis in humans and to support both the

identification of diagnostic correlates and effective treatment

regimens (Gronvall et al., 2007). The use of animals in scientific

research is tightly regulated and animals are used for research

within an ethical framework. In the United Kingdom (UK), the

Animals (Scientific Procedures) Act 1986 extends this ethical

framework by imposing a set of comprehensive legal

requirements for any institution wishing to undertake research

involving animals (Hollands, 1986). In essence, research proposals

involving animals are carefully reviewed to assess factors such as

any harm animals might incur, the protocols and procedures

involved, the number and types of animal used and the value of

the study in terms of the potential benefits. Additionally, UK
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TABLE 3 Marmoset models of infectious disease.

Infectious
Agent/Disease

Studies reporting
marmoset model

Alternative
animal models

References

Lassa Three studies (model
development and

characterization and
vaccine efficacy)

Mouse, Squirrel monkey,
Cynomolgus macaque,

Rhesus macaque,
Guinea pig

(Carrion et al., 2007; Lukashevich et al., 2008; Zapata et al., 2014;
Sattler et al., 2020)

Hepatitis C virus (type species
within the genus Hepacivirus)
and the closely related species

GB virus B

Many studies
GB virus B infects small New

World primates only;
marmoset model is a surrogate

model for human HCV

Chimpanzee, Tree
shrew, Mouse

(Bukh et al., 2001; Lanford et al., 2003; Bright et al., 2004; Guha
et al., 2005; Kyuregyan et al., 2005; Brass et al., 2007; Haqshenas
et al., 2007; Weatherford et al., 2009)

Dengue virus Many studies (model
development and

characterization and
vaccine efficacy)

Mouse, Swine, Rhesus
macaque, Chimpanzee,

Tree Shrew

(Omatsu et al., 2011; Omatsu et al., 2012; Yoshida et al., 2013; Moi
et al., 2014; Moi et al., 2017; Na et al., 2017; Muhammad Azami
et al., 2020; Jiang et al., 2021)

Herpesviruses One study
(model characterization)

Mouse, Pig-tailed macaque (Lusso et al., 1994; Lusso et al., 2007; Leibovitch et al., 2013; Horvat
et al., 2014; Reynaud et al., 2014)

Junin virus (Argentine
hemorrhagic fever)

Many historical publications
from 1980s (model
development and

characterization and
vaccine efficacy)

Guinea pigs (Weissenbacher et al., 1979; Weissenbacher et al., 1982; González
et al., 1983; Molinas et al., 1983; Avila et al., 1985; Weissenbacher
et al., 1986; Avila et al., 1987)

Rift valley fever Four studies (model
development and

characterization and
vaccine efficacy)

Rodents, Sheep, Goats,
Cattle, Rhesus macaque

(Peters et al., 1988; Morrill et al., 1990; Smith et al., 2012; Hartman
et al., 2014; Smith et al., 2018; Wichgers Schreur et al., 2022)

Severe acute respiratory
syndrome (SARS) (including
SARS-coronavirus (CoV)2

(COVID-19))

Many studies (model
development, characterization

and vaccine/
therapeutic efficacy)

Mouse, Golden hamster,
Ferret, Rhesus monkey,
African green monkey,

Baboon, Pig

(Greenough et al., 2005; Lu et al., 2020; Albrecht et al., 2021; Renn
et al., 2021; Singh et al., 2021; Trichel, 2021; Da Costa et al., 2022;
Fan et al., 2022; Ireland et al., 2022; Lin et al., 2022)

Middle East respiratory
syndrome (MERS)

Many studies (model
development, characterization

and vaccine/
therapeutic efficacy)

Mice, Syrian hamsters,
Ferrets, Rabbits,
Rhesus monkey

(Raj et al., 2013; Falzarano et al., 2014; Chan et al., 2015; Johnson
et al., 2015; Van Doremalen and Munster, 2015; Chen et al., 2017;
Van Doremalen et al., 2017; Yu et al., 2017; De Wit et al., 2018;
Nelson et al., 2022b)

Eastern equine encephalitis
virus (EEEV)

Two studies (model
development

and characterization)

Mouse, Hamsters,
Cynomolgus macaque

(Jackson et al., 1991; Adams et al., 2008; Steele and Twenhafel, 2010;
Porter et al., 2017; Phelps et al., 2019; Burke et al., 2022)

Bacillus anthracis (anthrax) Two studies (model
development and

characterization and
therapeutic efficacy)

Mouse, Guinea pigs,
Rabbits,

Cynomolgus monkey

(Lever et al., 2008; Nelson et al., 2011b; Ben-Shmuel et al., 2018;
Perry et al., 2020; Stratilo et al., 2020; Gates-Hollingsworth
et al., 2022)

Francisella
tularensis (tularemia)

Three studies (model
development, characterization

and therapeutic/
vaccine efficacy)

Humans, Mice, Rats,
Rabbits, Guinea pigs,
Cynomolgus monkey,

Grivet monkey,
Rhesus monkey

(Rick Lyons and Wu, 2007; Nelson et al., 2009; Nelson et al., 2010a;
Nelson et al., 2010b)

Burkholderia pseudomallei
(melioidosis) and

Burkholderia mallei (glanders)

Eight studies (model
development, characterization

and therapeutic efficacy)

Mouse, Goats, African green
monkey, Rhesus

monkey, Invertebrates

(Woods, 2002; Nelson et al., 2011a; Rowland et al., 2012a; Soffler
et al., 2012; Laws et al., 2013; Nelson et al., 2014; Nelson et al., 2015;
Ganesan et al., 2020; Nelson et al., 2021; Trevino et al., 2021; Nelson
et al., 2022a; Ngugi et al., 2022)

Marburg virus Two studies (model
development

and characterization)

Cynomolgus monkey,
Rhesus monkey, Mouse,
Hamster, Guinea pig

(Carrion et al., 2011; Smither et al., 2013; Glaze et al., 2015; Shifflett
and Marzi, 2019)

Ebola virus Two studies (model
development

and characterization)

Mouse, Hamsters, Guinea
pigs, Ferrets, Macaque
monkey, African green

monkey, Baboon

(Carrion et al., 2011; Nakayama and Saijo, 2013; Willyard, 2014;
Shurtleff and Bavari, 2015; Smither et al., 2015; St Claire et al., 2017;
Longet et al., 2020)

(Continued)
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government introduced additional controls in 1998, namely the

Ethical Review Process, with the aims of providing independent

ethical advice for projects (Pietrzykowski, 2021). This move to

promote an ethical analysis of a project and to enhance awareness

of animal welfare issues is a fundamental part of engaging with the

concept of the 3R’s (replacement, reduction and refinement) (Russell

and Burch, 1959; Fenwick et al., 2009; Hubrecht and Carter, 2019).

In a recent monography, ‘t Hart proposed a fourth R: relevance and

particularly the clinical relevance of an animal model (‘T Hart,

2019). It is perhaps the relevance where the marmoset excels over

murine models of infection. The FDA established the animal

efficacy rule (or simply the animal rule) in 2002; this was later

authorized by the United States Congress (Allio, 2018). The animal

efficacy rule applies to all studies that aim to develop and/or test the

efficacy of a given therapy against a life-threatening or life-changing

biological, chemical, radiological or nuclear agent and where

human efficacy trials are either unethical or not feasible.
3.2 Francisella tularensis

Francisella tularensis is a small, gram-negative, facultative

intracellular coccobacillus and the causative agent of tularemia in

humans (Wayne Conlan and Oyston, 2007). The bacterium was

first isolated in 1911 from ground squirrels in Tulare County,

California, and later in 1914 from a human in Ohio (Mccoy and

Chapin, 1912; Wherry and Lamb, 1914). Three subspecies have

been described: i) subsp. tularensis (type A strains), ii) subsp.

holarctica (type B strains), and iii) subsp. mediasiatica; a fourth

strain, generally considered a separate species given its aquatic

reservoir and low virulence in humans, is F. novicida (Caspar and

Maurin, 2017). Type A and B strains are responsible for the vast

majority of tularemia cases in humans, with the type A strain being

most virulent (Maurin, 2015). F. tularensis is a highly pathogenic

organism that can cause severe and sometimes fatal disease in

humans. An important aspect to F. tularensis virulence is its ability
Frontiers in Cellular and Infection Microbiology 07
to replicate within eukaryotic cells, such as in the cytosol of

macrophages (Steiner et al., 2014). Tularemia is a zoonotic

disease; cases of the disease are typically sporadic or occur in

small familial groups (Tärnvik and Berglund, 2003; Janse et al.,

2018). Infection occurs via direct contact with infected animals,

consumption of contaminated food or water, exposure to

contaminated environments or via arthropod bites (e.g.,

mosquitoes and tics) (Keim et al., 2007; Carvalho et al., 2014).

Lagomorphs and small rodents are the primary hosts of the

pathogen (Maurin and Gyuranecz, 2016).

Tularemia symptoms vary depending on the route of exposure;

six clinical forms of the disease have been described, namely: i)

ulceroglandular, ii) glandular, iii) oropharyngeal, iv) oculoglandular,

v) pneumonic, and vi) typhoidal (Yeni et al., 2021). Ulceroglandular

and glandular forms (with or without skin ulcers at the inoculation

site, respectively) result from skin exposure (e.g., via arthropods) and

patients present with regional lymphadenopathy (Caspar and

Maurin, 2017; Balestra et al., 2018). Oculoglandular tularemia

results from exposure via the ocular conjunctiva and patients

typically present with painful conjunctivitis and regional

lymphadenopathy (Kantardjiev et al., 2007). Oropharyngeal

tularemia usually results from ingestion of contaminated meat or

water, leading to pharyngitis and regional lymphadenopathy

(Steinrücken and Graber, 2014). Patients presenting with the

pneumonic form of disease, caused by inhalation of airborne

particles, experience cough, fever and dyspnea; mediastinal or hilar

lymphadenopathy is sometimes observed (Gill and Cunha, 1997;

Williams et al., 2019). Finally, typhoidal disease is characterized by

systemic disease with neurological manifestations that mimic the

symptoms of typhoid. Frequently, no symptoms of localized infection

are observed, nor is the site of bacterial entry (Faucher et al., 2012).

Complications of infection with F. tularensis include skin eruptions,

abscess formation, suppuration of lymph nodes and the emergence of

secondary infectious locations.

The potential of airborne transmission of F. tularensis infection,

its ability to cause severe human disease and low infectious dose has
TABLE 3 Continued

Infectious
Agent/Disease

Studies reporting
marmoset model

Alternative
animal models

References

Orthopoxviruses, e.g., variola
virus (smallpox) and
monkeypox virus

Five studies (model
development

and characterization)

Mouse, Rabbit, Cynomolgus
monkey, African dormouse,

Ground squirrel

(Smee, 2008; Kramski et al., 2010; Goff et al., 2011; Mätz-Rensing
et al., 2012; Mucker et al., 2015; Schmitt et al., 2017; Mucker
et al., 2018)

Coxiella burnetii (Q fever) One study (model development
and characterization)

Mouse, Guinea pigs,
Cynomolgus monkey,

Rhesus monkey

(Bewley, 2013; Gregory et al., 2019; Nelson et al., 2020)

Zika virus Six studies (model
development, characterization

and vaccine efficacy)

Mouse, Rhesus monkey,
Cynomolgus monkey

(Bradley and Nagamine, 2017; Chiu et al., 2017; Kublin and
Whitney, 2018; Lum et al., 2018; Seferovic et al., 2018; Terzian et al.,
2018; Berry et al., 2019; Luo et al., 2020; Kim et al., 2022)

West Nile virus One study (model development
and characterization)

Mouse, Baboon, Goose,
America singer canaries,
Rabbits, Zebra finch

(Wolf et al., 2006; Bowen and Nemeth, 2007; M, S. E. S et al., 2013;
Verstrepen et al., 2014; Suen et al., 2015; Graham et al., 2017;
Hofmeister et al., 2017; Hofmeister et al., 2018)

Bovine spongiform
encephalopathy (BSE)

Five historical publications
details (model development

and characterization)

Sheep (Done, 1992; Morris, 1992; Whitaker, 1992; Baker et al., 1993;
Bradley, 1993; Hunter, 2003)
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led to the bacterium’s classification as a potential bioterrorism agent

(Dennis et al., 2001). Diagnosis is challenging and is based on

clinical and epidemiological features, serological tests and detection

of microbial DNA by PCR. Since the isolation of the bacterium from

blood and tissues of infected individuals occurs in less than 20% of

cases, antibiotic susceptibility testing is difficult (Maurin et al.,

2011). Treatment of tularemia is with antibiotics; the

aminoglycosides, fluoroquinolones or tetracycline classes of

antibiotic are recommended (Dennis et al., 2001; Ellis et al.,

2002). No licensed tularemia vaccine is currently available,

although a live attenuated vaccine is still in use in certain parts of

the world where it is reserved to treat the most at-risk persons.

3.2.1 Common marmoset model of tularemia
A number of animal models of F. tularensis infection have been

developed, including mice, rats, rabbits, guinea pigs and non-

human primates (e.g., cynomolgus and rhesus monkeys). The

advantages and disadvantages of these various animal models

(and how they compare with the marmoset model) are presented

in Table 4. To the best of our knowledge, we are the only group to
Frontiers in Cellular and Infection Microbiology 08
report on a marmoset model of F. tularensis infection to-date

(Nelson et al., 2009; Nelson et al., 2010a; Nelson et al., 2010b). In

this section, the marmoset model of inhalational tularemia will be

discussed with a particular emphasis on the immunological

features. The reader is directed to the above publications for full

details of the model.

The marmoset as an NHP model of tularemia has a number of

advantages (see Table 4); importantly, the course and progression of

disease accurately recapitulated human disease – including the

development of ulcers, a feature not observed in any other animal

model (Nelson et al., 2010b; Roberts et al., 2018). Evidence of an

immune response was demonstrated by the production of pro-

inflammatory cytokines with disease progression. For example, at

72 hrs post-challenge, monocyte chemoattractant protein (MCP)-1

(CCL2) was detectable in the spleen, lungs and blood and the level

increased until death (Nelson et al., 2010b). Additional cytokines,

including macrophage inflammatory protein (MIP-1a; CCL3),
MIP-1b (CCL4), interleukin (IL-6), IL-1b and regulated on

activation, normal T-cell expressed and secreted (RANTES;

CCL5), were upregulated in all organs at 96 hrs post-challenge
TABLE 4 Marmoset and alternative models of Francisella tularensis infection (tularemia).

Marmoset model of Francisella tularensis infection

Advantages Disadvantages Reference

Similar disease course and pattern
of organ involvement to human
disease and to disease in other

non-human primates
Natural susceptibility of captive

marmosets to infection
Low infectious dose

Highly susceptible to infection by
airborne route
Reproducibility

Limited numbers of animals per study
More compressed disease course compared

to humans
Need for more studies utilizing marmoset

model of infection – with particular
emphasis on the host immune response

and how this compares to humans
Lack of studies assessing efficacy of
therapeutics and candidate vaccines

(Posthaus et al., 1998; Splettstoesser et al., 2007; Nelson et al., 2009; Nelson et al.,
2010a; Nelson et al., 2010b; Antwerpen et al., 2013)

Alternative animal models of Francisella tularensis infection

Model Advantages Disadvantages Reference

Humans Safe to perform in several hundred
volunteers

Low dose of pathogen to induce infection
Reproducible incubation period and clinical

course
Translatable model for assessment of

antibiotic and vaccine efficacy

Public perceptions of human
trials, particularly with

biowarfare agents
Ethical concerns of using
humans; such studies not

possible today

(Stuart and Pullen, 1945; Rick Lyons and Wu, 2007;
Hepburn and Simpson, 2008; Oyston and
Griffiths, 2009)

Non-human primates Best recapitulates human disease,
particularly in terms of LVS-induced

protection against type A strains and the
development of skin ulcers

Pattern of organ involvement similar to
that in humans

Infection with certain type B strains often
self-limiting as in humans

More technically challenging
and expensive

Enhanced sensitivity and
limited resistance to type B
strains compared to humans

(Sawyer et al., 1966; Day and Berendt, 1972;
Baskerville et al., 1978; Hambleton et al., 1978; Rick
Lyons and Wu, 2007; Twenhafel et al., 2009;
Stundick et al., 2013; Roberts et al., 2018)

Mice Cheap and readily available
Well-characterized genetics

Genetically manipulated (e.g., gene knock-
out) mice available

Wide availability of immunological reagents
and tools

Conflicting reports
concerning how mouse

pathology relates to human
disease

Sensitive to LVS
LVS-induced protection is

(Twine et al., 2006; Rick Lyons and Wu, 2007;
Conlan et al., 2008; Conlan et al., 2010; Rozak et al.,
2010; Shen et al., 2010; Twine et al., 2012)

(Continued)
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(Nelson et al., 2010b). Interestingly, MIP-1a and IL-6 were first

observed shortly prior to death, akin to the murine model of

inhalational tularemia (Conlan et al., 2008; Nelson et al., 2010b).

Neutrophils and natural killer (NK) cells were the first cells to arrive

at the site of infection (24 hrs post-challenge), followed by

macrophages, T-cells and additional influx of NK cells (48 hrs

post-challenge) (Nelson et al., 2010b). A decline in the percentage of

neutrophils in the lung and blood at 72 hrs post-challenge was

observed, raising important questions concerning the role of

neutrophils in response to F. tularensis infection. Indeed, studies

assessing the importance of neutrophils in the response to F.

tularensis infection are conflicting. Using the neutrophil-depleting

antibody RB6-8C5, Sjöstedt and colleagues found that mice

depleted of neutrophils were vulnerable to otherwise sublethal

doses of F. tularensis, delivered either intraveneously or

intradermally, suggesting a key role for neutrophils in controlling

bacterial replication (Sjöstedt et al., 1994). Meanwhile, KuoLee and

colleagues demonstrated that depleting the number of neutrophils

had no effect on the bacterial burden or time to death (Kuolee et al.,

2011). It has been suggested that the role of neutrophils in response

to infection with F. tularensis may be dependent on the site of

infection and that, in some cases, excessive neutrophil recruitment

may contribute to the over-production of pro-inflammatory

cytokines that ultimately lead to sepsis (Malik et al., 2007;

Metzger et al., 2013; Steiner et al., 2014). Notably, whilst infection

with the type A strain rapidly induced neutrophil recruitment in the

marmoset, the type B (but not type A) strain led to neutrophil influx

in the mouse, highlighting an important difference between the two
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species (Hall et al., 2008; Nelson et al., 2010b). By 72 hrs post-

challenge, the number of B-cells and T-cells in the spleen and blood

increased (Nelson et al., 2010b). By 96 hrs post-challenge, the

number of neutrophils in the blood and organs returned to

normal levels; a concomitant decline in the number of NK cells,

both B- and (CD4+) T-lymphocytes and macrophages in the lungs

was also observed (Nelson et al., 2010b). The proportion of CD8+

T-cells and gd T-cells in the spleen and lung were increased 96 hrs

post-challenge (Sumida et al., 1992; Poquet et al., 1998; Kroca et al.,

2000; Nelson et al., 2010b). gd T-cells are thought to play a role in

the innate immune response and thought to be important in human

infections with F. tularensis (Rowland et al., 2012a; Rowland et al.,

2012b). An increase of gd T-cells in the blood was not observed,

consistent with reports in humans, where cells were discerned

approximately one week post-infection (Kroca et al., 2000).

Having shown the marmoset model of tularemia effectively

recapitulates human disease, a follow-up study by our research

group evaluated the efficacy of levofloxacin, a fluoroquinolone

shown to be effective against F. tularensis (Hepburn and Simpson,

2008). Fluoroquinolones have a number of advantages over current

treatment protocols, including their broad-spectrum activity

(important when diagnosis is difficult), bactericidal effects,

tolerability and oral administration (Fish, 2003; Hepburn and

Simpson, 2008). Further, levofloxacin is effective as a single daily

dose which will likely increase compliance (Nelson et al., 2010a).

Indeed, levofloxacin is approved for the treatment of inhalational

anthrax in both children and adults (Deziel et al., 2005; Li et al.,

2010). To achieve licensure of any therapeutic agent for a given
TABLE 4 Continued

Alternative animal models of Francisella tularensis infection

Model Advantages Disadvantages Reference

Protection afforded by RML LVS
vaccine strain

temporary; little-to-no
protection afforded by LVS
against SCHU S4 strain

Rats Intradermal and aerogenic inoculation with
LVS confers protection
Low infectious dose

Similar pathology and organ involvement

Limited number of studies
Animals susceptible to
infection but typically

recover
Natural resistance to LVS
and SCHU S4 strains

(Dennis et al., 2001; Lamps et al., 2004; Rick Lyons
and Wu, 2007; Wu et al., 2009; Ray et al., 2010;
Signarovitz et al., 2012; Chu et al., 2014; Hutt
et al., 2017)

Rabbits Natural host of bacterium
Similar susceptibility to humans

Pathology recapitulates human disease
Resistance to type B strains

Limited number of studies
and data although increasing

Limited availability of
immunological reagents and

tools
Conflicting reports of LVS

vaccine efficacy

(Baskerville and Hambleton, 1976; Rick Lyons and
Wu, 2007; Pasetti et al., 2008; Reed et al., 2011;
Reed et al., 2014; Brown et al., 2015; Stinson
et al., 2016)

Guinea pigs Sensitive to SCHU S4 (type A) strain Limited number of studies
and data

Limited model
characterization

Conflicting reports of LVS
vaccine efficacy

Limited availability of
immunological reagents

and tools

(Eigelsbach and Downs, 1961; Eigelsbach et al.,
1961; Rick Lyons and Wu, 2007)
LVS, Live vaccine strain.
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disease under the animal rule (discussed earlier), the efficacy and

safety profile must first be assessed in a NHP. In our study, all

animals that received levofloxacin for ten days post-exposure

survived and showed no clinical signs of disease, indicating the

efficacy of oral levofloxacin against inhalational tularemia (Nelson

et al., 2010a).

In summary, the common marmoset model of tularemia

effectively and accurately recapitulates human disease and has

numerous advantages over alternative animal models. It will be

useful for the evaluation and licensure of medical countermeasures

by the FDA.
3.3 Burkholderia pseudomallei

Burkholderia pseudomallei is a gram-negative, intracellular

pathogens and the agent responsible for melioidosis (Whitlock

et al., 2007; Wiersinga et al., 2018). B. pseudomallei is classified as

Tier 1 Select Agents by the Centers for Disease Control and

Prevention (CDC) given its potential use in bioterrorism (Peacock

et al., 2008). Melioidosis was first described as a ‘glanders-like disease’

in 1913 by AlfredWhitmore (Whitmore, 1913). As an environmental

saprophyte, B. pseudomallei is found in wet soils and contaminated

water in endemic areas; B. pseudomallei is endemic in northern

Australia and north east Thailand, and an emerging disease in India,

China and potentially the United States (Ashdown and Clarke, 1992;

Dance, 2000; Cheng and Currie, 2005; Limmathurotsakul et al.,

2016). Most cases of infection occur through contact of broken

skin with contaminated soil and water, although numerous other

routes of exposure have been documented including ingestion and

inhalation of bacteria (Webling, 1980; White et al., 1989; Abbink

et al., 2001; Holland et al., 2002; Ralph et al., 2004; Baker et al., 2011;

Limmathurotsakul and Peacock, 2011; Bzdyl et al., 2022). Melioidosis

presents as a systemic disease; symptoms are frequently non-specific,

vary from person-to-person, and can mimic several other clinical

scenarios making diagnosis challenging (Yee et al., 1988; White, 2003;

Cheng and Currie, 2005). The immunocompromised are particularly

vulnerable to infection; risk factors for more severe disease include

diabetes and lung and kidney disease (Ip et al., 1995; Northfield et al.,

2002; Kronsteiner et al., 2019; Bzdyl et al., 2022). Treatment

paradigms are complex and slow: an initial intensive phase

requiring intravenous antibiotics (ceftazidime or meropenem) for

14 days is followed by an eradication phase, where antimicrobials (co-

trimoxazole and doxycycline as combination therapy or equally

efficacious co-trimoxazole monotherapy) are taken orally for a

prolonged period to kill residual bacteria (Cheng et al., 2004;

Chusri et al., 2012; Lipsitz et al., 2012; Chetchotisakd et al., 2014;

Dance, 2014; Fisher and Harris, 2014). Disease relapse is common

given the nature of the microorganism (i.e., it is intracellular and can

evade the host immune response) despite prolonged antimicrobial

therapy (Limmathurotsakul et al., 2008; Dance, 2014; Mariappan

et al., 2021). No licensed vaccine is currently available.

3.3.1 Common marmoset model of melioidosis
Despite early studies of experimental melioidosis in rhesus

macaques, much of our understanding of the pathogenesis and
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the effectiveness of therapies against melioidosis and glanders has

emerged from small animal models, specifically mice and hamsters

(Warawa, 2010; Amemiya et al., 2017). Reports from the 1990s

described experimental infections of baboons with B. pseudomallei

and B. mallei (Manzeniuk et al., 1999). More recently, our group

established and characterized a common marmoset model of B.

pseudomallei infection following inhalational challenge (Nelson

et al., 2011a). An African green monkey and rhesus macaque

model of experimental infection has also been described (Miller

et al., 1948; Yeager et al., 2012). The advantages and disadvantages

of these various animal models, and how they compare with the

marmoset model, are presented in Table 5. In this section, the

marmoset model of melioidosis is discussed with particular

emphasis on the immunological features. The reader is directed to

the above publications for full details of the model.

Work from our research group has led to the development of a

marmoset model of experimental melioidosis caused by three

natural routes of exposure to B. pseudomallei, i.e., through broken

skin, inhalation and ingestion (Nelson et al., 2011a; Nelson et al.,

2014; Nelson et al., 2015; Nelson et al., 2021; Nelson et al., 2022a;

Ngugi et al., 2022). Clinically, this is important as the route of

exposure, whilst often difficult to determine at disease presentation,

is likely to impact on the efficacy of medical countermeasures.

Whilst early studies of experimental melioidosis in the marmoset

reported limited immunological findings, a recent study by Ngugi

and colleagues provided the most complete and comprehensive

analysis of the immunological features of acute pneumonic disease

resulting from B. pseudomallei exposure to-date (Ngugi et al., 2022).

Significantly, features of the marmoset immune response to

infection (e.g., neutrophil and macrophage migration and

activation, T-cell activation and the production of pro-

inflammatory mediators) mimicked acute disease in humans and

was associated with disease prognosis, providing additional

evidence as to the validity of the model. The proceeding section

will focus predominantly on neutrophils, though other

immunological components will be noted.

Notably, naïve marmoset neutrophils exhibited a rather

different phenotype compared to the human counterpart.

Specifically, HLA-DR (MHC II) was constitutively expressed on

naïve marmoset neutrophils whereas in humans HLA-DR

expression is not typically observed on resting neutrophils

(Meinderts et al., 2019; Ngugi et al., 2022). Additionally,

expression of the classical marker used to identify human

neutrophils, CD16 (the Fc receptor gamma III), was lower on

marmoset neutrophils (Silvestre-Roig et al., 2019; Ngugi et al.,

2022). Considering that the proportion of circulating cells (and

particularly neutrophils) in the marmoset more closely resembles

that in humans, the significance of these phenotypic variations is

unclear and the marmoset remains a viable model of human

disease. Most importantly, both the proportions and cellular

phenotypes changed during the course of the disease providing an

objective, quantitative metric of disease progress and thus the

opportunity to assess the efficacy of therapeutic interventions. In

this study, the proportion of circulating neutrophils increased

during the first 48 hrs post-challenge, after which the number

declined significantly (and below baseline levels) in terminal
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TABLE 5 Marmoset and alternative animal models of Burkholderia pseudomallei infection (melioidosis).

Marmoset model of Burkholderia pseudomallei infection

Advantages Disadvantages Reference

Similar disease course
and pattern of organ
involvement to human

disease
Highly susceptible to
infection, particularly
via aerosol route

Vulnerable to challenge
via the subcutaneous

route
Severe and acute
disease; animals
experience fever,

bacteremia and have
lesions in the lung, liver

and spleen
Association between
challenge dose and
disease outcome and

time to death
Useful to assess efficacy
of antimicrobials and

vaccines
Have Vg9Vd2 T cells, a
cell type present in

human
melioidosis survivors

Limited reports detailing natural
susceptibility of the marmoset to

infection
Low lethal dose and rapid time to
death makes study of chronic

disease impossible
Primary cutaneous melioidosis in
the marmoset produces severe,
rapidly fatal disease (even with
low doses) whereas in humans

disease is rarely severe

(Warawa, 2010; Nelson et al., 2011a; Laws et al., 2013; Nelson et al., 2014; Nelson et al., 2015; Amemiya
et al., 2017; Nelson et al., 2021; Ngugi et al., 2022)

Alternative animal models of Burkholderia pseudomallei infection

Model Advantages Disadvantages Reference

Non-human primates Susceptible to infection, including
via the respiratory route

Best recapitulate human disease,
including incubation period and
pattern of organ involvement

Susceptibility of infection depends on
species, e.g., gorillas are highly susceptible

to infection
Reduced susceptibility to natural disease

High cost
Ethical concerns and public perception
Limited availability of immunological

reagents and tools

(Miller et al., 1948; Kaufmann et al., 1970; Fritz et al.,
1986; Dance et al., 1992; Yap et al., 1995; Manzeniuk

et al., 1999; Yeager et al., 2012; Ritter et al., 2013; Yingst
et al., 2014; Amemiya et al., 2017; Waag et al., 2021)

Mice Cheap and readily available
Well-characterized genetics

Genetically-manipulated mice
available

Wide availability of
immunological reagents and tools
Highly susceptible to infection via

intravenous, intraperitoneal,
subcutaneous and aerosol

challenge
Low infectious dose

Similar pattern of organ
involvement to humans

‘Gold-standard’ for study of
disease pathogenesis and efficacy

of therapies

Susceptibility to infection varies depending
on mouse strain used, i.e., BALB/c mice
are highly susceptible whereas C57BL/6
mice are resistant (but the latter permits

study of chronic disease)
Differences in physiology between mouse

and humans, particularly in
respiratory tract

(Dannenberg and Scott, 1958; Leakey et al., 1998; Mestas
and Hughes, 2004; Tan et al., 2008; Warawa, 2010;

Massey et al., 2014; Welkos et al., 2015; Amemiya et al.,
2017; Bearss et al., 2017)

Hamsters Highly susceptible to infection via
intravenous, intraperitoneal,
subcutaneous and aerosol

challenge
Identification of genetic loci

associated with disease
susceptibility

‘Gold-standard’ for study of

Rapidly fatal, acute disease limits uses of
model

Inability to determine how route of
infection impacts on disease susceptibility

Reduced susceptibility to
respiratory disease?

(Miller et al., 1948; Dannenberg and Scott, 1958; Ellison
et al., 1969; Brett et al., 1997; Gutierrez and

Warawa, 2016)

(Continued)
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animals. Meanwhile, the proportion of neutrophils in the lung

declined 12 hrs post-challenge which is contrary to the scenario

in the mouse, whereby neutrophil influx into the lung is observed

post-challenge (Laws et al., 2011). At 36 hrs post-challenge,

neutrophil proportion began to recover, returning to near-

baseline levels by 48 hrs post-challenge. The authors noted,

however, that since cell typing was proportional, it was not clear

whether the apparent decline in the number of neutrophils in the

lung was the result of neutrophil death [as a result of bactericidal

processes (Kaplan and Radic, 2012)] or merely indicative of

enhanced lymphocyte infiltration. Concomitantly, the proportion

of circulating T (but not B) lymphocytes declined as the disease

progressed. As noted, lymphocyte proportions were increased in the

lung at 12 hrs post-challenge and continued to increase until 36 hrs

post-challenge, after which levels declined. Changes to the

proportions of cells in the spleen were similar to those observed

in blood. In addition to changes to the proportion of cells in the

various tissues, phenotypic changes were observed in neutrophils

immediately following challenge. Significantly, expression of HLA-

DR (which is constitutively expressed on marmoset neutrophils)
Frontiers in Cellular and Infection Microbiology 12
dropped as disease progressed in the blood, lung and spleen. In

blood, significantly reduced expression of HLA-DR was observed at

all-time points post-challenge; in the lung and spleen, a significant

decline in the proportion of neutrophil HLA-DR expression was

observed by 12 hrs post-challenge and before the onset of clinical

signs of disease, e.g., fever. Taken together, these findings provide

additional evidence to support the use of the marmoset model of

melioidosis for assessing medical countermeasures. Encouragingly,

these findings regarding HLA-DR, CD54 and CD16 were also

observed in a more recent, related study with B. pseudomallei

(Nelson et al., 2022a).

Considering the role of neutrophils as first-responders to injury

and insult, and their documented significance in early melioidosis

(Easton et al., 2007; Laws et al., 2011),the fact that neutrophils

showed the most significant variation of all cellular parameters

assessed is not surprising. In the mouse, neutrophils play a central

role in the acute response to aerosol infection (Easton et al., 2007).

Though susceptibility to infection is largely pre-determined

depending on the specific mouse strain (Warawa, 2010),

marmosets are considered to demonstrate enhanced sensitivity to
TABLE 5 Continued

Alternative animal models of Burkholderia pseudomallei infection

Model Advantages Disadvantages Reference

disease pathogenesis and efficacy
of therapies

Rats Models of septicemic and
respiratory disease

Streptozotocin-induced diabetes
rat model is susceptible to disease
Non-diabetic Sprague-Dawley rats

are susceptible to respiratory
infection

Chronic pulmonary melioidosis
model exists

Sprague-Dawley rats resistant to disease via
the intraperitoneal route

More resistant than mice to infection via
respiratory route

Somewhat limited availability of
immunological reagents and tools

compared to mice

(Woods et al., 1993; Van Schaik et al., 2008;
Warawa, 2010)

Ferrets Highly susceptible to infection via
intravenous, intraperitoneal,

subcutaneous and
aerosol challenge

Lack of experimental data and well-
characterized models

Limited availability of immunological
reagents and tools

(Miller et al., 1948)

Guinea pigs Moderately susceptible
to infection

Lack of experimental data and well-
characterized models

Conflicting reports of susceptibility to
disease

Limited availability of immunological
reagents and tools

(Miller et al., 1948; Chambon, 1955; Mccormick et al.,
1977; Manzeniuk et al., 1999)

Rabbits Moderately susceptible
to infection

Lack of experimental data and well-
characterized models

Limited availability of immunological
reagents and tools

(Miller et al., 1948; Miller and Clinger, 1961)

Livestock Natural host model
Enhanced susceptibility to

respiratory as opposed to systemic
disease

Similar to human disease

Highly resistant to natural infection; failure
to establish symptomatic infection

Not useful for study of chronic disease?
Biocontainment concerns

Tendency to develop chronic disease with
granulomatous lesions

(Nicholls, 1930; Stanton and Fletcher, 1932; Cottew
et al., 1952; Laws and Hall, 1963; Narita et al., 1982;

Thomas et al., 1990; Vesselinova et al., 1996; Najdenski
et al., 2004; Warawa, 2010; Soffler et al., 2012; Soffler

et al., 2014; Amemiya et al., 2017)

Invertebrates Likely natural disease vectors
Susceptible to infection; can infect

naïve guinea pigs

Limited number of studies
High prevalence of B. pseudomallei in the
environment makes it difficult to prove
role of invertebrates as disease vectors

(Kharbov et al., 1981; Sulaiman et al., 2000; O’quinn
et al., 2001; Schell et al., 2008; Hasselbring et al., 2011;

Fisher et al., 2012; Amemiya et al., 2017)
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(particularly) aerosol challenge and this may be due to the tendency

for a decline in the proportion of neutrophils in the lung during the

early stages of infection (Nelson et al., 2022a; Ngugi et al., 2022).

Alternative explanations should not be disregarded. These include

the possibility that early neutrophil influx into the lung does occur,

yet neutrophils are not detectable by flow cytometry because they

are infected and degraded. In this scenario, subsequent neutrophil

recruitment and activation occurs too late to counteract an already

rapidly escalating bacterial burden. Encouragingly, the pattern of

neutrophil recruitment in the marmoset mirrors that observed in

other NHP models in the rhesus macaque and African green

monkey (Yeager et al., 2012). Additional evidence implicating

neutrophils as key players in early melioidosis include the

association between excessively high or low neutrophil counts and

poorer outcomes in humans, and the increased susceptibility of

individuals with certain conditions (e.g., diabetes) associated with

suboptimal neutrophil function (Chanchamroen et al., 2009;

Saengmuang et al., 2014; Jenjaroen et al., 2015).

With a marmoset-specific candidate biomarker indicative of

infection (a reduction in neutrophil HLA-DR expression), our

research group recently evaluated the efficacy of co-trimoxazole

using the marmoset model of experimental melioidosis (Nelson

et al., 2022a). In this study, animals were challenged by one of three

exposure routes: inhalational, ingestion or subcutaneous. Once

fever had developed, a proportion of the animals were

administered oral co-trimoxazole; all remaining animals received

a placebo. A second-dose was administered 12 hrs after the first,

followed by one dose every 12 hrs up until a total of 28 doses was

delivered. With respect to the immunological perturbations, the

proportion of neutrophils increased at the onset of fever, yet there

was a drop in the level of HLA-DR expression that continued until

animals succumbed to disease. HLA-DR expression was at a normal

level by day 15 post-challenge in those animals that received oral co-

trimoxazole. In addition to validating the observation of decreased

HLA-DR expression with the onset of fever in an independent

study, the immunophenotyping panel was also expanded and

incorporated markers for CD16 (Fc gamma receptor III,

expressed on NK cells, macrophages and neutrophils, plays a role

in the internalization of exogenous antigens by binding the Fc

portion of IgG immune complexes),CD66b (an activation marker

on granulocytes), CD80 (a co-stimulation marker used by

professional phagocytes to aid in MHC to T-cell receptor

interactions) and CD54 (intracellular adhesion molecule-1

(ICAM-1), an adhesion molecule involved in lymphocyte homing

and activation). Expression of all these markers decreased in the

placebo group; meanwhile, neutrophil CD16 expression returned to

normal levels in the co-trimoxazole treatment group. Upon

treatment cessation, animals either survived, relapsed and

succumbed to disease or exhibited abnormal immunological

perturbations indicative of subclinical disease. Importantly, those

animals that survived without relapse maintained normal levels of

HLA-DR expression on neutrophils. A decline in neutrophil HLA-

DR expression was observed in those animals that would later

relapse and succumb to disease; likewise, elevated circulating IFN-g
was detectable and indicative of relapse up to three days prior to

death. At post-mortem, a reduced proportion of neutrophils in the
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blood was the only indicator of fatal disease. Minor immunological

changes were observed between those animals that succumbed,

recovered and later relapsed and those that survived. For example,

there was a somewhat increased proportion of CD69+ CD8+ T-cells

and decreased expression of CD40, CD16 and CD64 on

macrophages. Interestingly, whereas neutrophil influx into the

lung was a feature of those animals that received the placebo,

there was no evidence for this in animals that received treatment

and later relapsed. Akin to the situation in humans (Jenjaroen et al.,

2015; Nithichanon et al., 2018), there was evidence of T-cell

activation (indicated by expansion of the cytotoxic T-cell

proportion and expression of CD16 and CD69) in animals that

survived until the study end. The population of gd T-cells was also

expanded in survivors, providing additional evidence to support an

important role for this cell type in the response to infection (Haque

et al., 2006; Andreu-Ballester et al., 2013; Laws et al., 2013;

Kronsteiner et al., 2019). Notably, a re-stimulation assay of

splenic T-cells taken from those animals that survived revealed

enhanced IFN-g production compared with the negative control

(Nelson et al., 2022a). In those animals that survived to the study

end, high antibody titers were observed. Yet the relative protective

value of the humoral response in humans is limited, despite the

importance of vaccine-induced humoral immunity having been

demonstrated in animal studies (Burtnick et al., 2018; Khakhum

et al., 2019; Chaichana et al., 2020; Chaichana et al., 2021).

In summary, the common marmoset model of melioidosis has

been well characterized and shown to recapitulate human disease

and exhibit a higher degree of similarity to human disease

compared with other animal models. It will no doubt have value

in the evaluation and licensure of medical countermeasures.
3.4 Hepatitis C virus

Viral hepatitis, broadly defined as inflammation of the liver

caused by a virus, represents a major health care burden worldwide

(Estes et al., 2018; Jefferies et al., 2018). The hepatotropic viruses

(types A to E) are the most important and common cause of

hepatitis, with types B and C being most prevalent globally (Lim

et al., 2020; Castaneda et al., 2021). Infection occurs either via

ingestion of contaminated food or water (types A and E) or by

contact with infected bodily fluids, i.e., blood (types B, C and D)

(Loader et al., 2019). Hepatitis B can be transmitted from mother to

baby at birth (Loader et al., 2019). Hepatitis A and D is typically

acute and self-limiting, whereas types B, C and E can establish

chronic disease (Loader et al., 2019; Castaneda et al., 2021). Chronic

viral hepatitis is the leading cause of liver cirrhosis and

hepatocellular carcinoma (Lin et al., 2014).

Tissue tropism of the phylogenetically unrelated hepatitis

viruses for differentiated hepatocytes may explain the narrow

range of susceptible hosts, namely humans and NHPs (Pfaender

et al., 2014). Consequently, much of our knowledge of human viral

hepatitis has stemmed from NHP models of infection. The

proceeding discussion will focus on animal models of hepatitis C

virus (and the closely related species GB virus B; the advantages and

disadvantages of which are presented in Table 6) specifically. For
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reviews of animal models of the other hepatitis viruses, see (Purcell

and Emerson, 2001; Manickam and Reeves, 2014; Protzer, 2017;

Guo et al., 2018; Burwitz et al., 2020; Liu et al., 2021; Zhang

et al., 2021).

Of all hepatitis viruses, hepatitis C virus (HCV) has the most

restricted host range, capable of producing infection in humans and

chimpanzees only (Folgori et al., 2006; Puig et al., 2006). As such,

the majority of early studies of hepatitis C relied almost exclusively

on chimpanzees, giving rise to first generation vaccines and a

number of novel therapeutics. However, the search for alternative

animal models of hepatitis C was fueled by increasing costs and

ethical concerns surrounding the use of chimpanzees in biomedical

research. Studies of the closely related GB virus B (Deinhardt et al.,

1967), which infects new-world primates and produces disease

similar to that caused by HCV in humans, were fundamental in

expanding both the number and availability of alternative

animal models.

3.4.1 Common marmoset model of viral
hepatitis C

The search for a more robust animal model of human HCV

infection, particularly one permitting testing of vaccine efficacy, is
Frontiers in Cellular and Infection Microbiology 14
important and remains a pressing unmet need in hepatitis C

research. Whilst highly effective treatments for HCV infection

exist, these are often prohibitively expensive and, consequently,

are unavailable to those most at-risk individuals (Etzion and Ghany,

2015; Chahal et al., 2016). The development of preventative

measures (like vaccines) is therefore key.

Development of a surrogate common marmoset model (Parks

et al., 1969; Lanford et al., 2003; Bright et al., 2004; Kyuregyan et al.,

2005; Haqshenas et al., 2007) of human HCV infection (with the

NHP-specific GBV-B and, later, HCV chimera) followed earlier

studies performed in tamarins (Deinhardt et al., 1967; Beames et al.,

2000; Beames et al., 2001) which, compared to marmosets, are

difficult and costly to breed in captivity. Though tamarins are

susceptible to GBV-B infection, the utility of the tamarin model

(and indeed monkey models more generally) of HCV infection was

highly debated given the inability to establish chronic infection, a

hallmark of human HCV infection (Lanford et al., 2003;

Weatherford et al., 2009). The usefulness of the tamarin model

was also limited by the availability of animals (Weatherford et al.,

2009). Early studies in the marmoset revealed the susceptibility of

the species to GBV-B infection, with animals developing acute

viraemia (albeit to a lower level compared with that seen in
TABLE 6 Marmoset and alternative animal models of hepatitis C virus (HCV) infection.

Marmoset model of hepatitis C virus infection

Advantages Disadvantages Reference

Cheaper and easier to breed
in captivity

Susceptible to GBV-B
Infection rate and severity of
acute infection similar to that

in humans
Acute viremia similar to that

in chimpanzee
Chronic, progressive disease
similar to human HCV

Acute disease exacerbation
associated with chronic

hepatitis
Persistent infection

established using HCV
chimera

Production of interferon-g
coincides with reduction of

viral load
Virus-specific T cells found
predominately in the liver

Not susceptible to infection
with HCV; studies rely on

use of monkey-tropic viruses
Infection may be acute or
chronic depending on host
Little characterization of
immune response to
infection, particularly

between acute and chronic
infection

Humoral response to HCV
infection requires further

investigation
Existence of mechanisms of

T cell memory require
further investigation

(Lanford et al., 2003; Bright et al., 2004; Jacob et al., 2004; Woollard et al., 2008; Weatherford et al.,
2009; Iwasaki et al., 2011; Manickam et al., 2016)

Alternative animal models of hepatitis C virus infection

Model Advantages Disadvantages Reference

Chimpanzee First animal model for HCV
infection

Best characterized model of
HCV infection

In vivo virus replication
Viremia

Development of anti-HCV
antibodies

Elevated serum liver

Natural course of infection different
from that in humans

Low availability of animals
High costs

Ethical concerns
Disease course is significantly

attenuated compared with human
disease

(Alter et al., 1978; Fernandez et al., 2004; Folgori et al., 2006;
Puig et al., 2006; Bukh et al., 2008; Houghton, 2009; Manickam

and Reeves, 2014; Pfaender et al., 2014)

(Continued)
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tamarins) (Parks et al., 1969; Lanford et al., 2003; Bright et al.,

2004). Interestingly, the level of viraemia in the marmoset was

similar to that seen in chimpanzees (107 copies/mL or less) which

have been shown to develop persistent infections (Fernandez et al.,

2004; Bukh et al., 2008). Thus, it has been suggested that lower viral

loads in the acute phase of the infection may actually support viral

persistence and the development of chronic inflammation (Iwasaki

et al., 2011). Indeed, Iwasaki and colleagues were the first to show

that infection of the marmoset with GBV-B produced a chronic and

progressive disease similar to human hepatitis C, as indicated by

fibrosis and recurrent increases of the liver enzyme alanine

transaminase (ALT) (Iwasaki et al., 2011). Further, one marmoset

experienced piecemeal necrosis and elevated ALT levels four years

post-infection, indicative of an acute exacerbation associated with

chronic hepatitis (Iwasaki et al., 2011), itself a feature of human viral

hepatitis (Perrillo, 1997). Notably, marmosets infected with GBV-B

were shown to exhibit two distinct phenotypes: susceptible and
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partially resistant (Weatherford et al., 2009). In contrast, HCV

chimera (carrying core, E1, E2 and p7 structural proteins of HCV)

causes persistent infection in marmosets (Li et al., 2014b). Since

long-term viral persistence was established in animals with lower

viral loads during the acute phase on infection (i.e., within the first 2

weeks post-infection), it seems reasonable to conclude that animals

with the partially-resistant phenotype (where viral growth is

restricted) will support the development of chronic infection.

Viral persistence in those animals with lower viral loads may be

the result of diminished early antiviral immune responses (Iwasaki

et al., 2011). Data concerning the innate and adaptive immune

response to infection in animals exhibiting acute disease compared

with those that progress to develop chronic disease are still lacking

and will prove critical in deciphering the mechanisms responsible

for the establishment of chronic infection.

The induction of type I interferons represents one of the first

responses to infection with HCV. HCV utilizes a NS3/4A protease
TABLE 6 Continued

Alternative animal models of hepatitis C virus infection

Model Advantages Disadvantages Reference

enzymes and necro-
inflammatory changes in

liver
60% of animals develop

chronic disease

Limited availability of
immunological reagents and tools

Tamarins Surrogate model of HCV
infection

Susceptible to experimental
infection with GBV-B
Persistent viremia

Appearance of antiviral
antibodies

Induction of hepatitis
Produces HCV-like disease
Study of immune response

associated with acute
viral clearance

Surrogate model of HCV infection
Disease is typically acute and self-

resolving
Failure to establish long-term or

chronic viral persistence
Not useful for vaccine development

Difficult and costly to breed
Limited availability of

immunological reagents and tools

(Deinhardt et al., 1967; Beames et al., 2000; Beames et al., 2001;
Lanford et al., 2003; Martin et al., 2003; Nam et al., 2004; Ishii
et al., 2007; Takikawa et al., 2010; Iwasaki et al., 2011; Dale

et al., 2020)

Tree Shrew Susceptible to infection with
HCV

Persistent liver infection with
some histological indications

of liver disease
Used in metabolomics
studies to identify

biomarkers of HCV infection
Intermittent viremia and

serum antibodies

Transient, self-resolving infection
Intermittent viremia only if

immunosuppressed
Limited viral replication
Limited availability of

immunological reagents and tools

(Xie et al., 1998; Amako et al., 2010; Sun et al., 2013;
Manickam and Reeves, 2014; Feng et al., 2017)

Mice Can be manipulated to
transgenically express

individual or combinations
of HCV gene products

Transgenic mice useful for
study of intrahepatic

adaptive immune response
Lots of well characterized
strains, each with their own

pros and cons
Useful for antiviral drug

evaluation
Useful for immunization and

challenge studies

Naturally resistant to HCV infection
Disease severity is strain-specific
Caveats associated with use of

transgenic animals, e.g., failure to
establish inflammatory milieu that
is established during infection

Chimeric mice are immunodeficient
and thus are not useful for studies

of HCV pathogenesis
Lack of progressive liver pathology

(Galun et al., 1995; Mercer et al., 2001; Meuleman et al., 2005;
Flint et al., 2006; Yang et al., 2008; Ploss et al., 2009; Bissig
et al., 2010; Bitzegeio et al., 2010; Washburn et al., 2011;

Anggakusuma et al., 2014; Hartlage et al., 2019)
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to inactivate these early antiviral responses, possibly leading to viral

persistence (Kaukinen et al., 2006). An interferon-inactivating NS3/

4A protease is also present in GBV-B (Li et al., 2014b). In humans

and chimpanzees, both CD4+ and CD8+ T cells play an important

role in the response to HCV infection (Cooper et al., 1999; Lechner

et al., 2000; Day et al., 2002; Woollard et al., 2003). The generation

of virus-specific T cells that recognize multiple viral epitopes is

crucial for viral clearance. Indeed, the accumulation of HCV-

specific CD4+ and CD8+ T cells (recognizing multiple viral

epitopes) in the liver is associated with acute resolving infection

(He et al., 1999; Grabowska et al., 2001; Woollard et al., 2008).

Conversely, a weaker T cell response against a limited number of

viral epitopes is associated with viral persistence and chronic disease

(Woollard et al., 2008). In the marmoset, IFN-g production was first

detectable five weeks post-infection, coinciding with a 1000-fold

reduction in viral load (Woollard et al., 2008). A T cell response

against NS3/N54A epitope (but no other viral epitope) was

observed predominantly in the liver at week seven post-infection,

coinciding with the clearance of viraemia (Woollard et al., 2008). At

this point, virus-specific T cells appear in peripheral blood

(Woollard et al., 2008). Akin to the situation in humans and

chimpanzees, virus-specific T cells are present in higher

frequencies in the liver than in the blood, suggesting the

accumulation of T cells in the liver at the site of viral replication

(He et al., 1999; Grabowska et al., 2001; Woollard et al., 2008). It is

currently unclear whether the anti-HCV adaptive immune response

is mediated by CD4+ or CD8+ T cells. Recently, the role of

regulatory T cells (Tregs) in the response to HCV infection has

gained increasing attention. Tregs, a unique type of CD4+ T cell

with suppressor functions, are important in maintaining immune

tolerance (Sakaguchi et al., 2008). In the context of an infection,

Tregs can modulate effector T cell responses and, by inhibiting the

anti-viral functions of specific T cells, may permit viral persistence

(Boer et al., 2015; Liu et al., 2023). In chronically infected

individuals, Treg populations are maintained, whereas the

suppressor function of Tregs was diminished in individuals with

acute resolving infection (Liu et al., 2023). The phenotype and role

of Tregs in the marmoset is yet to be determined.

Another important aspect of the immune response against

HCV is memory. In chimpanzees, virus-specific memory cells are

essential for protection against reinfection (Grakoui et al., 2003;

Shoukry et al., 2003). Marmosets were also protected from

reinfection for several months after clearance of primary

infection, pointing to the existence of virus-specific memory cells

(Woollard et al., 2008). Consistently, T cell responses were both

greater in magnitude and occurred faster following secondary

infection, indicating recall of memory T cells (Bright et al., 2004;

Woollard et al., 2008). In comparison to cell-mediated mechanisms

of immunity, the humoral response to HCV infection is less well

defined and requires further investigation.

In summary, the marmoset is susceptible to infection with both

GBV-B and HCV chimeras and develops a hepatitis C-like disease,

the pathology of which mirrors that of human HCV infection.

Varying susceptibility phenotypes are likely genetically-determined,
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with some animals more likely to exhibit viral persistence and

therefore chronic infection. In this sense, the marmoset may

represent a valuable surrogate model of human hepatitis C.
4 Discussion

The common marmoset, a new-world primate, offers a number

of advantages over the more traditional old-world primates; their

small size, compact life-span and reduced husbandry costs are

particularly notable, especially in the context of high containment

research where their small size makes them both easier and safer to

house. Their evolutionary proximity to humans makes them a more

accurate and representative model of human disease compared to

the more frequently used murine models. Critically, demonstration

of the efficacy of medical countermeasures in a representative

animal model is central to obtaining licensure under the FDA

animal rule. Taken together, the marmoset represents an attractive

alternative animal model. Further research in this area with

increased focus on the development of marmoset-specific

immunological reagents and tools will undoubtedly increase the

utility of the marmoset in all areas of biomedical research.
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