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Background: Engaging in anal sexual intercourse markedly increases the risk of

developing HIV among men who have sex with men (MSM); oral sexual activities

tend to uniquely introduce gut-derived microbes to salivary microbiota, which,

combined with an individual’s positive HIV status, may greatly perturb oral

microecology. However, till date, only a few published studies have addressed

this aspect.

Methods: Based on 16S rRNA sequencing data of bacterial taxa, MicroPITA picks

representative samples for metagenomic analysis, effectively revealing how the

development and progression of the HIV disease influences oral microbiota in

MSM. Therefore, we collected samples from 11 HIV-negative and 44 HIV-positive

MSM subjects (stage 0 was defined by HIV RNA positivity, but negative or

indeterminate antibody status; stages 1, 2, and 3 were defined by CD4+ T

lymphocyte counts ≥ 500, 200–499, and ≤ 200 or opportunistic infection) and

selected 25 representative saliva samples (5 cases/stage) using MicroPITA.

Metagenomic sequencing analysis were performed to explore whether positive

HIV status changes salivary bacterial KEGG function and metabolic pathway

in MSM.

Results: The core functions of oral microbiota were maintained across each of

the five groups, including metabolism, genetic and environmental information

processing. All HIV-positive groups displayed KEGG functions of abnormal

proliferation, most prominently at stage 0, and others related to metabolism.

Clustering relationship analysis tentatively identified functional relationships

between groups, with bacterial function being more similar between stage 0-

control groups and stage 1-2 groups, whereas the stage 3 group exhibited large

functional changes. Although we identified most metabolic pathways as being
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common to all five groups, several unique pathways formed clusters for certain

groups; the stage 0 group had several, while the stage 2 and 3 groups had few,

such clusters. The abundance of K03046 was positively correlated with

CD4 counts.

Conclusion: As HIV progresses, salivary bacterial function and metabolic

pathways in MSM progressively changes, which may be related to HIV

promoting abnormal energy metabolism and exacerbate pathogen virulence.

Further, infection and drug resistance of acute stage and immune cell destruction

of AIDS stage were abnormally increased, predicting an increased risk for MSM

individuals to develop systemic and oral diseases.
KEYWORDS
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1 Introduction

Owing to exposures during anal intercourse, the prevalence of

human immunodeficiency virus (HIV) among men who have sex

with men (MSM) is significant (Assi et al., 2019; Tran and Welles,

2019). Indeed, a recent study on MSM in China showed that their

odds of HIV infection have trended upwards over time (Dong et al.,

2019). HIV can damage gut-associated lymphoid tissue by causing

breakdowns of mucosal barriers, which results in both bacterial

translocation and dysbiosis. This contributes to a state of persistent

inflammation and exacerbated disease progression (Estes et al.,

2010; Lozupone et al., 2013; Vázquez-Castellanos et al., 2018;

Vujkovic-Cvijin and Somsouk, 2019; Bai et al., 2021). In the case

of MSM who also happen to be HIV-positive, anal sex, which can

easily disrupt delicate rectal mucosal barriers, is not only a principal

viral communicative mechanism among MSM, but also causes

significant variation in gut microbiota composition (Noguera-

Julian et al., 2016; Li et al., 2019; Tuddenham et al., 2020).

Indeed, MSM-derived microbiota tend to be more diverse in

composition than non-MSM-derived microbiotas (Noguera-Julian

et al., 2016). To date, MSM-derived gut microbiota have no

commonly accepted biomarker that is sufficiently robust to

accurately predict those MSM with HIV-positive statuses (Nowak

et al., 2017; Li et al., 2019; Chen et al., 2021). Importantly, most

studies agree that pathogenic changes in gut microbiota could

contribute to HIV progression (Li et al., 2019; Vujkovic-Cvijin

and Somsouk, 2019; Coleman et al., 2020; Chen et al., 2021).

A previous study investigated the sexual behaviors of 1691

MSM, in which 67.0% of participants had performed oroanal sex or

rimming and 65.6% had used their partners’ saliva as an anal

lubricant to aid fingering or penis dipping (Cornelisse et al., 2018).

Furthermore, MSM with HIV-infected partners significantly favor

saliva as an anal sex lubricant (Butler et al., 2009); however,

lubricants may be an important factor contributing to MSM-

HIV-associated gut dysbiosis (Vujkovic-Cvijin et al., 2020). Saliva
02
remains an important vector of disease transmission during

intercourse in MSM (Chow et al., 2016; Cornelisse et al., 2018;

Mistry et al., 2022), even though oral sex has been identified to

confer a lower risk of HIV transmission (Robinson and Evans, 1999;

Scully and Porter, 2000; Campo et al., 2006). It follows that as

commensals of HIV hosts with oroanal sex behavior, the salivary

and gut microbiota are closely related.

Therefore, considering this background information, we

hypothesize that unique features of sexual intercourse among

MSM change salivary microbiota composition and we speculate

that these compositional changes could profoundly influence the

development of oral lesions in HIV-positive MSM. However,

relevant studies on the salivary microbiota of HIV-positive MSM

are currently limited. A recent study examining salivary bacterial

diversity via 16S rRNA gene MiSeq sequencing revealed no

differences in alpha diversity irrespective of HIV status, in which

the controls were non-HIV-MSM, and antiretroviral therapy (ART)

groups. ART decreased salivary diversity (Li et al., 2020). Our

previous preliminary study focused solely upon MSM for analysis

and examined the effect of HIV status by stratifying subjects into

groups by disease state, as measured by the CD4 counts of the

individuals. Interestingly, we came to a different conclusion than

other published studies; we found that HIV infection resulted in

greater salivary diversity, but AIDS did not. We also found that

acute HIV infection resulted in a significant increase in salivary

bacterial abundance (Guo et al., 2021a). We believe that it is

precisely because of the oroanal sex behavior of MSM that a

small number of seemingly contradictory studies have also

initially examined the saliva microbial status of HIV-MSM,

providing interesting perspectives for microbiome research.

16S rRNA gene sequencing is an approach most well-suited to

exploring bacterial population taxonomy. Deeper analysis of the

impacts of bacteria upon salivary functioning needs to be

ascertained through other approaches, including metagenomics

(Bienenstock et al., 2013). To date, we have retrieved only one
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1341545
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Guo et al. 10.3389/fcimb.2024.1341545
metagenomics-based HIV periodontitis study that focused on oral

bacterial changes rather than function and targeted the HIV

population rather than HIV-MSM (Noguera-Julian et al., 2017).

Therefore, it is necessary to deeply investigate the functional

changes in oral microbiota in HIV-MSM through genetic analysis

to reveal the subtle effects of oral microbiota on the occurrence and

development of oral and related diseases under different immune

states after HIV infection.
2 Materials and methods

2.1 Subject recruitment

The protocol was approved by the Institutional Review Board of

Beijing Youan Hospital, Capital Medical University, and was registered

at clinical trials.gov (ChiCTR2000030301). All participants signed

written informed consent forms. Protocol-based inclusion criteria

stipulated that only Chinese MSM greater than 18 years old who had

anal or oral sex more than once in nearly 3 months could participate in

the study. Exclusionary criteria included use of antibiotics, ART or

immunomodulatory drugs within the past 3 months, history of any

systemic disease, serious oral problems (not including non-cavitated

caries, nonpurulent periodontal disease, or oral candidiasis), or

possessing fewer than 20 teeth. Among the 106 MSM randomly

selected from the Infectious Diseases Center of Beijing Youan

Hospital, 55 MSM subjects were strictly screened according to the

above criteria and subdivided into five groups based upon staging

criteria for disease control and prevention of monitoring cases (Centers

for Disease Control and Prevention (CDC), 2014). The five MSM

groups consisted of an HIV-negative control group [n=11] and four

HIV-positive subgroups [n=44]. The four HIV-positive subgroups

were divided as follows: stage 0 possessed a positive result for HIV

RNA but screened negatively (or indeterminately) for HIV antibody

[n=11]; stage 1 (CD4 > 500) [n=10]; stage 2 (CD4: 200–500) [n=13];

stage 3 (either CD4 < 200 or opportunistic infection) [n=10].
2.2 Sample collection

Brief medical history inquiries, comprehensive oral

examinations, and confirmation of MSM subject enrollment and

HIV serostatus were conducted at the Department of Stomatology

of Beijing Youan Hospital for all the enrolled subjects. The subjects

were required to not eat, drink, or perform oral hygiene procedures

2 h before sampling, and spit 5 ml of saliva into sterile tubes that

would be placed on ice in polystyrene plastic boxes and transferred

to a -80°C refrigerator within 2 h.
2.3 16S rRNA gene sequencing and analysis

To reduce costs, we chose a two-stage microbial community

experimental design (Tickle et al., 2013). Our previous article (Guo
Frontiers in Cellular and Infection Microbiology 03
et al., 2021a) detailed our protocols for DNA extraction, PCR

amplification, and Illumina MiSeq sequencing of 16S rRNA gene

sequences and obtained salivary bacterial diversity data, which we

used to perform MicroPITA (Microbiomes: Picking Interesting

Taxonomic Abundance) analysis. We then selected 25 salivary

samples (5 samples per group) for subsequent metagenomics studies

in accordance with the most representative (i.e., reflecting overall

species composition) and multiple selections (i.e., selecting samples

by two or more methods including most dissimilar or maximum

diversity, and most representative). Gene amplicon sequencing data

have been published in the NCBI Sequence Read Archive

database (SRP251412).
2.4 Metagenomic sequencing and analysis

Total genomic DNA was extracted from 25 salivary samples

using the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross, GA,

U.S.). DNA concentration and purity were determined using TBS-

380 and NanoDrop2000 instruments. A sequencing library of 400

bp DNA fragments was constructed using a NEXTFLEX® Rapid

DNA-Seq (Bioo Scientific, Austin, TX, USA), and sequencing was

performed on Illumina NovaSeq PE150 platform (Illumina Inc., San

Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd.

(Shanghai, China). Metagenomic sequencing data have been

published within the NCBI Sequence Read Archive database

(SRP327008). After performing sequence quality control and

removing any reads from the human genome, we assembled

metagenomic data using MEGAHIT (https://github.com/voutcn/

megahit, version 1.1.2) and selected contigs with lengths ≥ 300 bp

for further gene prediction and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) annotation analyses using Diamond (http://

www.diamondsearch.org/index.php, version 0.8.35) alongside

KEGG database (http://www.genome.jp/keeg/) with an e-value

cutoff of 1e-5.
2.5 Statistical analysis

Statistical analyses were performed using SAS 9.4 (SAS Institute

Inc., Cary, NC, USA). Nonparametric Kruskal-Wallis rank-sum

tests and LDA linear discriminant analyses (LDA > 2) in LEfSe

differential discriminant analyses between groups were used to

assess differences in the functional abundances and effects of

differentially represented KEGG functions, respectively. Among

them, multi-group comparisons used an all-reverse-all strategy;

that is, only differences observed in multiple groups may be

properly considered as differential functions. Comparative

metabolic pathway analysis between groups was applied using

iPath 2.0 (http://pathways.embl.de).The correlation between CD4

counts, blood viral load (BVL), and salivary microbiota functions

was assessed by calculating Spearman’s correlation coefficients. We

considered P < 0.05 as our cutoff for statistical significance across

all assays.
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3 Results

3.1 MicroPITA analysis of 16S rRNA
gene sequencing

After 16S rRNA gene sequencing, we obtained salivary

microbiota diversity data and visualized lineages by performing

cluster analyses (Guo et al., 2021a). Applying MicroPITA to these

sequences, a total of 55 samples were identified, of which we

selected the representative 25 for further metagenomic sequence

analysis to allow differences between samples to be discerned.
3.2 KEGG functional composition of
salivary bacterial microbiota

A total of 6, 45, and 325 functions at Pathway Level 1, 2, and 3,

respectively, were identified according to KEGG PATHWAY

analysis of higher-order functions (Kanehisa et al., 2006) and

were annotated in MSM salivary samples using KOBAS 2.0

(KEGG Orthology Based Annotation System). Detailed

information regarding the three pathway levels is shown in

Supplementary Table S1. Subsequently, functional abundances

were visualized using Circos plot (Figure 1), which showed that

the most represented functions in each group, as well as the relative
Frontiers in Cellular and Infection Microbiology 04
proportions of different functions, were almost identical among

Pathway Level 1 functions. The main annotated functions are

as follows: metabolism, genetic information processing,

environmental information processing, cellular processes, human

diseases, and organismal systems. Further, the top 50 most

abundant functions at Pathway Level 3 were visualized

using heatmaps (Figure 2). According to the sample which

detailed information of three Pathway levels were shown in

Supplementary Table S1. According to the sample clustering

relationship analysis results plotted in the accompanying heatmap

(Figure 2), we could tentatively identify functional changes between

groups at Pathway Level 3, which were characterized by similar

bacterial functions between stage 0-control and stage 1-2 groups,

whereas the stage 3 group exhibited the greatest functional change.
3.3 KEGG functional differences among
salivary bacterial microbiota

The LEfSe Bar graph (Figure 3) depicts differentially annotated

functions of salivary bacteria groups at KEGG Pathway Level 3,

which is detailed in Table 1. We summarize the principal differences

in the functional characteristics of the samples in the following

description. (1) The stage 0 group had nine functions with

abnormally increased abundance and was much higher than any
FIGURE 1

Functional Circos plot of salivary bacterial microbiota at Pathway Level 1. The left semicircle (smaller circle) represents the functional abundance
composition of the five groups assayed: controls (black), stage 3 (orange), stage 2 (blue), stage 1 (red), and stage 0 (green). The right semicircle
represents the distribution ratio of functions in different samples at the clustering level: metabolism (light blue), genetic information processing (pale
pink), environmental information processing (blue), cellular processes (crimson), human diseases (purple) and organismal systems (green). From
outside to inside, the left circles represent the functional compositions of different samples and the abundance ratios of different functions,
respectively; as above, the right sides of the circles represent the distribution ratios of different samples with respect to their dominant functions.
Inside the circles, the widths of the colored bars connecting samples (left) and functions (right) represent the relative abundances of the function
within each sample and the distribution ratio of the sample in the corresponding function, respectively.
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of the other three HIV-positive groups assayed. Their abnormally

increased functions included: fatty acid biosynthesis, fatty acid

metabolism, pyruvate metabolism, biofilm formation, Escherichia

coli, Huntington’s disease, longevity regulatory pathway,
Frontiers in Cellular and Infection Microbiology 05
Alzheimer’s Disease, platinum resistance, and Salmonella

infection, therefore mainly related to metabolism and human

diseases. (2) Stage 1 had the fewest abundantly enriched

functions, only one in fact, which was glyceride metabolism.
FIGURE 3

LEfSe bar graph of salivary bacterial functional differences between HIV-positive and HIV-negative control groups. An LEfSe bar graph of the
functional differences between the salivary bacterial microbiota of HIV-positive and HIV-negative control groups (at KEGG Pathway Level 3) has
been shown. Stage 0 (green), stage 1 (red), stage 2 (blue), stage 3 (orange), and controls (black).
FIGURE 2

KEGG functional heatmap of salivary bacterial microbiota. Heatmap showing the top 50 most abundant functions, with shades of color representing
functional abundance levers in the five groups at Pathway Level 3, and the functional clustering tree (left) and sample clustering tree (top) are also
depicted along with a legend.
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Stages 2 and 3 had three (amino acid biosynthesis, benzoic acid

degradation, carbohydrate digestion, and absorption) and four

(lysine biosynthesis, ascorbic acid and aldonate metabolism,

ferroptosis, and regulation of the actin cytoskeleton) annotated

functions, respectively. (3) All four HIV-positive groups exhibited

abnormal enrichments for different functions but shared common

characteristic depletions in sphingolipid metabolism and longevity

regulation pathways including multispecies, peroxisome, and lipoic

acid metabolism.
3.4 Relationship between CD4 count, BVL,
and function of salivary bacteria in HIV-
positive subjects

We next prepared a correlation heatmap (Figure 4) to explore

the effects of CD4 counts and BVL upon the functions of HIV-

positive salivary microbiota. We found no significant correlation
Frontiers in Cellular and Infection Microbiology 06
between KEGG Orthology (KO) and BVL in the top 20 genes

related to salivary function; however, K03046 was positively

correlated with increasing CD4 counts (r = 0.5188, P = 0.01909).

K03046 (rpoC gene) is annotated as DNA-directed RNA

polymerase subunit beta.
3.5 Metabolic pathway differences among
salivary bacterial microbiota in MSM

The metabolic pathway map of MSM salivary microbiota

(Figure 5) visualizes the annotated enzymes and metabolic

pathways noted for each group. In general, most of the pathways

we identified were common to both the HIV-positive and -negative

control groups, but some KEGG metabolic pathways did uniquely

appear in certain groups. The stage 0 group was most abundant in

unique pathways, xylene degradation and [B] photosynthesis

proteins related pathways most prominent. In stage 1, enrichment
TABLE 1 Differential KEGG functions in salivary bacterial microbiota between experimental groups.

KEGG level Lever 3 Lever 2 Lever 1 LDA value P value

HIV_0

Fatty acid biosynthesis Lipid metabolism Metabolism 2.87025 0.00768

Fatty acid metabolism Global and overview maps Metabolism 2.78537 0.01056

Pyruvate metabolism Carbohydrate metabolism Metabolism 2.69462 0.01802

Biofilm formation -
Escherichia coli

Cellular community
- prokaryotes

Cellular Processes 2.62640 0.03466

Huntington's disease Neurodegenerative diseases Human Diseases 2.40849 0.00905

Longevity regulating pathway Aging Organismal Systems 2.25741 0.01097

Alzheimer's disease Neurodegenerative diseases Human Diseases 2.22721 0.03510

Platinum drug resistance
Drug

resistance: Antineoplastic
Human Diseases 2.16824 0.03959

Salmonella infection Infectious diseases: Bacterial Human Diseases 2.02329 0.02492

HIV_1 Glycerolipid metabolism Lipid metabolism Metabolism 2.39419 0.03015

HIV_2

Biosynthesis of amino acids Global and overview maps Metabolism 3.19791 0.04328

Benzoate degradation
Xenobiotics biodegradation

and metabolism
Metabolism 2.36292 0.02798

Carbohydrate digestion
and absorption

Digestive system Organismal Systems 2.07978 0.00464

HIV_3

Lysine biosynthesis Amino acid metabolism Metabolism 2.45905 0.01247

Ascorbate and
aldarate metabolism

Carbohydrate metabolism Metabolism 2.33079 0.01969

Ferroptosis Cell growth and death Cellular Processes 2.24746 0.04314

Regulation of
actin cytoskeleton

Cell motility Cellular Processes 2.17035 0.00775

HIV_neg

Sphingolipid metabolism Lipid metabolism Metabolism 2.50975 0.02806

Longevity regulating pathway
- multiple species

Aging Organismal Systems 2.37896 0.00697

Peroxisome Transport and catabolism Cellular Processes 2.34590 0.04032

Lipoic acid metabolism
Metabolism of cofactors

and vitamins
Metabolism 2.14090 0.00579
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in fatty acid elongation in the mitochondria was a particularly

striking feature. The number of characteristic pathways in stage 2

and 3 was considerably lower.
4 Discussion

It is generally believed that HIV infection is often comorbid

with a variety of oral diseases, which likely occur due to

perturbations to the close association between commensal oral

microbiota diversity, functional composition and the host (Kistler

et al., 2015; Noguera-Julian et al., 2017; Weinberg et al., 2020; Li

et al., 2021; Guo et al., 2021b). However, a comprehensive

exploration of these relationships has yet to be completed. To

further expand our inquiries and obtain a fuller panorama of

salivary microecology across HIV stages, here we have explored

the functions of salivary microbiota across multiple stages of disease

progression and performed comparisons between stages to glean

metagenomic insights into the specific perturbing effects of HIV

status on the salivary microbial communities of MSM.

Our previous study on salivary microbial diversity in HIV

infection described and analyzed the taxonomy, composition, and

characterization of salivary microbiota changes at different stages of

HIV-MSM infection, finding that HIV-positive saliva had
Frontiers in Cellular and Infection Microbiology 07
significantly greater diversity (excluding AIDS stage) and

abnormally proliferating bacteria increased in numbers

dramatically during the acute HIV infection (Guo et al., 2021a).

To extend our findings, here we have applied metagenomics to

analyze the genetic functional levels of 25 representative saliva

samples, screened by MicroPITA, to reveal latent “information”

by analyzing changes in salivary microecologies brought about by

MSM and HIV statuses, as these changes may induce changes that

drive oral diseases. Our study found that metabolism, genetic and

environmental information processing, and cellular processes were

the core salivary bacterial functions at KEGG Pathway Level 1, with

HIV-positive and -negative control MSM showing mostly the same

functional composition at this level. Further, we found that the top 5

most abundant functions at Pathway Level 3 were biosynthesis of

amino acids, ABC transporters, Ribosome, Purine metabolism and

Carbon metabolism. Moreover, salivary function enrichment at

different infection stages revealed interesting convergent and

divergent characteristics among assayed groups. Cluster analysis

of the accompanying heatmap showed that salivary bacterial

microbiota exhibit a slow, functional transition as the post-HIV

exposure time lengthens. That is, that MSM with acute infections

(stage 0) exhibited parameters close to the parameters we observed

for negative controls. However, as host immunosuppression

becomes progressively aggravated, functional differences between
FIGURE 4

Correlation between the top 20 abundant KOs of HIV-positive salivary bacteria and BVL, CD4 counts. A correlation heatmap of the relationship
between the top 20 abundant KOs of salivary bacteria and BVL, or CD4 counts, in the HIV-positive groups is shown. The colors represent different
calculated r values (Spearman correlation coefficient). Red and blue colors indicate positive and negative correlations, respectively. *0.01 < P ≤ 0.05.
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the stages begin to emerge. Salivary functions of the two groups in

the asymptomatic stage (stages 1 and 2) continued to be similar, but

for the AIDS stage (stage 3), apparent functional differences again

markedly increased compared to the other four groups and was the

most significantly different from the negative controls. Therefore,

we hypothesize that the functions of salivary bacterial microbiota in

untreated HIV-MSM slowly and progressively alter as the disease

progresses and eventually manifests markedly dysfunctional

imbalances at advanced stages.

The KEGG functions of salivary bacterial microbiota varied

along the course of the disease, and each stage had unique

functional characteristics. First, abnormal hyperfunction was most

prominent in the acute infection stage, mainly involving energy

metabolism, infection damage, and drug resistance. Enhanced

metabolism of lipids and carbohydrates could be associated with

energy expenditure due to the energetic costs of HIV invasion.

Abnormal hyperactivity of biofilm formation in Escherichia coli and

Salmonella infection, Huntington’s disease, and Alzheimer’s

Disease has targeted vulnerable target organs in the early stage of

HIV infection, such as the nervous system and the intestine, which

is also consistent with the clinical manifestations (Vanhems et al.,

1999; Valcour et al., 2012). The early tendency of nerve damage

occurring deserves attention, and the abnormally high

enhancement of intestinal function may be related to particular

intercourse endemic to MSM. Platinum drug resistance indicates

that antiviral and antitumor chemoresistance has emerged earlier,

and early depletion of longevity-regulating pathways indicates that

early intervention with ART is necessary. In short, the functional

expression of salivary microbiota during acute infection is of great
Frontiers in Cellular and Infection Microbiology 08
significance for understanding the early control of the disease.

Secondly, HIV-MSM in the mildly immunosuppressed stage had

the fewest functional abnormalities, and their overall status was

fairly stable, except for their augmented level of glycerolipid

metabolism we annotated. Thirdly, during the stage of moderate

immunosuppression, abnormally hyperactivated functions began

their increases and still manifest as changes in metabolism and

digestion functional enrichments, such as in biosynthesis of amino

acids, benzoate degradation, and carbohydrate digestion and

absorption pathways. Fourth, the abnormal functions at the

severely immunosuppressed stage increased further and was again

mainly reflected in changes to the levels of metabolism and cellular

processes. Hyperfunction of lysine biosynthesis can prevent herpes

labialis or oral ulcers and accelerate tissue repair (Spallotta et al.,

2013; Mailoo and Rampes, 2017). Induction of ferroptosis may

attenuate carcinogenesis (Zhu et al., 2019), whereas chronic

periodontitis and human papillomavirus infection are associated

with ascorbate and aldarate metabolism and regulation of the actin

cytoskeleton (Chowdhry et al., 2019). The above information

indicates that with the massive depletion of CD4+T lymphocytes,

oral microbiota may stabilize the balance of the oral ecological

environment by attempting to compensate for the host’s deficient

functions. Finally, vigorous energy metabolism, infection, and

changes in cellular immunity are the same as shown in the

metabolic research analysis of HIV-infected individuals (Sitole

et al., 2013), and are consistent with clinical characteristics of

high consumption and weight loss prevalent in clinical HIV-

positive individuals (Sharpstone et al., 1996), especially at the

acute stage. However, HIV-MSM saliva showed functional
FIGURE 5

The ipath metabolic pathway map of MSM salivary microbiota. Line segments with colors represent different enzymatic or metabolic pathways.
Shared and unique enzymatic and metabolic pathways are colored as follows: shared (green); HIV-negative control group unique (purple), stage 0
group unique (red), stage 1 group unique (blue), stage 2 group unique (brown), and stage 3 group unique (orange).
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attenuation as well in the following four aspects: sphingolipid

metabolism involved in cell growth regulation (Spiegel and

Merrill, 1996), longevity regulating pathway - multiple species,

cell-protecting peroxisome, and lipoic acid metabolism that

inhibits HIV replication and improves mitotic function of T

lymphocytes (Baur et al., 1991; Jariwalla et al., 2008). Therefore,

HIV may be closely related to the mechanism of apoptosis

induction and utilizing the host biosynthetic machinery for

survival, which deserves in-depth study and discussion.

We observed that the rpoC RNA polymerase gene that drives

bacterial transcription (Lee et al., 2013) was strongly positively

correlated with increasing CD4 counts. This may mean that the

expression of certain bacterial genes gradually weakened with the

decline in host immune status in HIV-MSM, which in turn impairs

the balance of the oral microecological environment. Among the

KEGG metabolic pathways of the five groups, salivary microbiota at

stage 0 showed a relatively high abundance of unique pathways,

which were identified in xylene degradation and [B] photosynthesis

proteins, indicating microbiota during the acute infection stage

increased their energy supply and degradation of toxic substances,

while enrichment of fatty acid elongation in mitochondria during

mild immunosuppression provided pathways for the enhanced

production of essential fatty acids that the body cannot synthesize.

The results once again demonstrate that HIV infection might

promote abnormal host energy metabolism and pathogen virulence.

Our study further obtained metagenomic profiles of salivary

microbiota from twenty different HIV-positive and five HIV-

negative MSM, based on 16S rRNA data. However, the study has

a few limitations. Our small sample size limited our ability to

representatively sample the overall HIV-positive MSM population

of China. We also lacked important covariate data, including

information on oral hygiene habits, smoking status, and sexual

intercourse habits. Cross-sectional analyses limited our analytical

perspective because of the ethics of necessarily providing immediate

standard treatment for HIV, which prevented us from conducting

cohort observational studies of different infectious stages in

untreated HIV-MSM.
5 Conclusion

In summary, the most abundant functions annotated in HIV-

positive salivary microbiota in untreated HIV-MSM appeared largely

the same as those in healthy controls, mainly regulated metabolism and

genetic or environmental information processing. With disease

progression, salivary functions exhibited slow and progressive

changes and showed significant dysfunction on reaching the AIDS

stage, which was functionally distinct from other stages we assayed. The

abnormally proliferating KEGG functions annotated to HIV-MSM

salivary microbiota were characterized by high-energy metabolism and

restricted cellular regulation. Infection and drug resistance of acute

stage and immune cell destruction of AIDS stage were abnormally

increased, predicting an increased risk for such individuals to develop

systemic and oral diseases. Preliminary discussion on metabolic

pathways and characteristic enzymes also supported our theory that

salivary microbiota participates in and maintains homeostasis of the
Frontiers in Cellular and Infection Microbiology 09
oral microenvironment, and that HIV infection might promote

abnormal energy metabolism and exacerbate pathogen virulence.
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