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Background: Observational studies have reported that Helicobacter pylori (H.

pylori) infection is associated with a series of pregnancy and neonatal outcomes.

However, the results have been inconsistent, and the causal effect is unknown.

Methods: A two-sample Mendelian randomization (MR) study was performed

using summary-level statistics for anti-H. pylori IgG levels from the Avon

Longitudinal Study of Parents and Children Cohort. Outcome data for

pregnancy (miscarriage, preeclampsia-eclampsia, gestational diabetes mellitus,

placental abruption, premature rupture of membranes, postpartum hemorrhage)

and neonates (birthweight, gestational age, and preterm birth) were sourced

from genome-wide association meta-analysis as well as the FinnGen and Early

Growth Genetics Consortium. Causal estimates were calculated by five methods

including inverse variance weighted (IVW). The heterogeneity of instrumental

variables was quantified by Cochran’s Q test, while sensitivity analyses were

performed via MR-Egger, MR-PRESSO, and leave-one-out tests.

Results: IVW estimates suggested that genetically predicted anti-H. pylori IgG

levels were significantly associated with increased risks of preeclampsia-

eclampsia (odds ratio [OR] = 1.12, 95% confidence interval [CI] 1.01–1.24, P =

0.026) and premature rupture of membranes (OR = 1.17, 95% CI 1.05–1.30, P =

0.004). Similar results were obtained for preeclampsia-eclampsia from the MR-

Egger method (OR = 1.32, 95% CI 1.06–1.64, P = 0.027) and for premature

rupture of membranes from the weighted median method (OR = 1.22, 95% CI

1.06–1.41, P = 0.006). No significant causal effects were found for other

outcomes. There was no obvious heterogeneity and horizontal pleiotropy

across the MR analysis.
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Conclusion: Our two-sample MR study demonstrated a causal relationship of H.

pylori infection with preeclampsia-eclampsia and premature rupture of

membranes. The findings confirm the epidemiological evidence on the adverse

impact of H. pylori in pregnancy. Further studies are needed to elucidate the

pathophysiological mechanisms and assess the effectiveness of pre-pregnancy

screening and preventive eradication.
KEYWORDS

Helicobacter pylori, pregnancy, Mendelian randomization, preeclampsia, premature
rupture of membranes
Introduction

Helicobacter pylori (H. pylori) is a gram-negative bacterium

with urease, catalase, and oxidase activity that colonizes the human

stomach (Zamani et al., 2018). It is one of the most common

pathogens in the world, infecting more than half of the whole

population (Kamboj et al., 2017). Therefore, the health impact of H.

pylori infection, such as peptic ulcer disease, chronic gastritis,

gastric adenocarcinoma, and gastric cancer, is crucial for public

health (Kusters et al., 2006; McColl, 2010). Among pregnant

women, the prevalence of H. pylori infection remains high in

many countries (Baingana et al., 2014; Mubarak et al., 2014) and

it has been suggested that increased susceptibility to H. pylori

infection may be due to pregnancy itself (Lanciers et al., 1999).

A systematic review of studies published up to November 17th,

2018, exploring associations of H. pylori infection with pregnancy

and neonatal complications, showed significantly increased risks of

preeclampsia, gestational diabetes mellitus, spontaneous

miscarriage, and low birthweight (Zhan et al., 2019). Consistently,

some other studies also reported an adverse effect in certain

outcomes (Wanyama et al., 2016; den Hollander et al., 2017; Li

et al., 2020; Tang et al., 2021). In particular, for adverse pregnancy

outcomes, H. pylori infection is associated with gestational diabetes

mellitus (Li et al., 2020; Tang et al., 2021) and preeclampsia (Tang

et al., 2021), while for adverse neonatal outcomes, H. pylori

infection is associated with low birthweight (den Hollander et al.,

2017; Wanyama et al., 2016) and small for gestational age (den

Hollander et al., 2017). However, most single studies examined only

one or few outcomes without a comprehensive evaluation. In

addition, these observational studies were vulnerable to residual
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confounding, and variations in confounder control could cause

heterogeneity between studies, thereby leading to controversial

results. Thus, reexamining the impact of infections on a range of

pregnancy and neonatal outcomes is essential to safeguard the

health of both pregnant women and fetus.

Mendelian randomization (MR) is an epidemiological approach

that reveals causality in an unbiased manner, relying on genetic

variation as the instrumental variable (IV) to assess whether an

exposure leads to a corresponding outcome (Lawlor et al., 2008).

Since alleles segregate according to Mendel’s second law of

inheritance and genotypes are randomly assigned from parent to

offspring without the influence of confounding, the causal sequence

is reasonable (Burgess and Thompson, 2021). Given the infeasible

conduction of randomized controlled trials, a number of MR

studies have assessed the correlation between gut microbiota

and pregnancy outcomes (Li C. et al., 2022; Li P. et al., 2022),

while H. pylori was underexplored as the most common

gastrointestinal pathogen.

In this study, we performed a two-sample MR analysis to

evaluate the causal associations between H. pylori infection and

nine pregnancy and neonatal outcomes, namely, miscarriage,

preeclampsia or eclampsia, gestational diabetes mellitus, placental

abruption, premature rupture of membranes, postpartum

haemorrhage, birthweight, gestational age, and preterm birth.
Methods and materials

Study design

A two-sample MR study was conducted using single nucleotide

polymorphisms (SNPs) as IVs (Lawlor et al., 2008). H. pylori

infection was defined on the basis of serum-specific IgG

antibodies to H. pylori. Three core assumptions were used to

ensure the accuracy of results (Davies et al., 2018): 1) each

selected IV must be directly associated with the exposure; 2) each

selected IV is not associated with any potential confounders that

impact exposure and outcome; and 3) each selected IV influences

the outcome only through the risk factor (Figure 1).
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Data sources

In this MR study, reliable genetic instruments were identified in

large genome-wide association studies (GWAS). Exposure data were

from the Avon Longitudinal Study of Parents and Children Cohort

(ALSPAC), containing 4,735 individuals with anti-H. pylori IgG levels

(Chong et al., 2021). Outcome data for miscarriage were obtained

from GWAS meta-analysis by Laisk et al. (Laisk et al., 2020),

including 49,996 sporadic cases and 174,109 controls. Other

summary statistics for preeclampsia or eclampsia (Ncase = 3,903,

Ncontrol = 114,735), gestational diabetes mellitus (Ncase = 5,687,

Ncontrol = 117,892), placental abruption (Ncase = 294, Ncontrol =

104,247), premature rupture of membranes (Ncase = 3,011, Ncontrol

= 104,247), postpartum haemorrhage (Ncase = 44,559, Ncontrol =

202,621), birthweight (N = 210,267), gestational age (N = 84,689),

and preterm birth (Ncase = 4,775, Ncontrol = 60,148) were from

FinnGen (https://www.finngen.fi/en) and Early Growth Genetics

Consortium (www.egg-consortium.org) (Liu et al., 2019). All

summary-level data used were harmonized and archived in the

Medical Research Council Integrative Epidemiology Unit (MRC-

IEU) OpenGWAS (https://gwas.mrcieu.ac.uk/). To reduce potential

bias from population stratification, all SNPs and associated data were

obtained from studies analyzed separately for those of European

ancestry only. The characteristics of each GWAS dataset are detailed

in Supplementary Table 1.
IV selection

To ensure adequate screening for IVs, SNPs with genome-wide

range significance levels less than the P-value (1×10-5) were selected

(Sanna et al., 2019). Then, to check the independence of these variables

and the effect of linkage disequilibrium, the SNP for the r2 was set to

0.001 and the clumping window size to 10,000 kb. In addition, IVs with
Frontiers in Cellular and Infection Microbiology 03
F-statistics <10 were excluded to ensure the strength of association

between IVs and exposure. The formula was F = r2×(N−1−K)/[(1−r2)

×K], where r2 represents the exposure variance explained by each IV, N

denotes the sample size of the GWAS, and K refers to the number of

instruments. Finally, we removed SNPs with minor allele frequency

(MAF) less than the threshold of 0.01. Palindromic SNPs were also

removed to ensure the effects of SNPs on exposure correspond to the

same allele as the effects of SNPs on the outcome.
MR analysis

A total of five methods, including inverse variance weighted

(IVW), MR-Egger regression, weighted median, simple mode, and

weighted mode, were used to evaluate whether there was a causal

association between H. pylori infection and pregnancy and neonatal

outcomes. In terms of algorithmic principles, the IVW method could

integrate the Wald ratio for each SNP causal effect through meta-

analysis. Without the horizontal pleiotropy, the IVW results would be

unbiased (Bowden et al., 2017). The MR-Egger method can detect

associations when the IV hypothesis does not apply but the weaker

hypothesis does. It can also be used to assess horizontal pleiotropy and

the results are consistent with IVW when an intercept term equals to

zero, indicating the absence of horizontal pleiotropy (Bowden et al.,

2015). The weighted median method can provide robust effect

estimates when at least fifty percent of the instrumental information

is valid, while the weighted mode is reliable if the largest subset of

instruments with similar causal effects is valid (Hartwig et al., 2017).
Heterogeneity and sensitivity analysis

Heterogeneity between IVs was analyzed using Cochran’s Q-

test. Horizontal pleiotropy was assessed by the intercept of the MR-
FIGURE 1

Study design. IV, instrumental variable; SNP, single nucleotide polymorphism.
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Egger method (Bowden et al., 2015) as well as the MR-pleiotropy

residual sum and outlier (MR-PRESSO) global test (Verbanck et al.,

2018). We also performed leave-one-out analyses to monitor

whether causal associations were dominated by single SNPs, in

which MR was performed iteratively to remove different SNPs using

the “mr_leaveoneout_plot” program. All of the above analyses were

performed in R version 4.2.1 (R Foundation for Statistical

Computing, Vienna, Austria) and R packages TwoSampleMR

(Hemani et al., 2017) and MR-PRESSO (Verbanck et al., 2018)

were used.
Results

According to the selection criteria of IVs, we identified a total of

20 SNPs for anti-H. pylori IgG levels. All F-statistics were above 10.

The detailed information is shown in Supplementary Table 2.

Under the IVW method, genetically predicted IgG levels were

significantly associated with increased risks of preeclampsia or

eclampsia (odds ratio [OR] = 1.12, 95% confidence interval [CI]

1.01–1.24, P = 0.026) and premature rupture of membranes (OR =
Frontiers in Cellular and Infection Microbiology 04
1.17, 95% CI 1.05–1.30, P = 0.004). For preeclampsia or eclampsia,

similar results were obtained via MR-Egger (OR = 1.32, 95% CI

1.06–1.64, P = 0.027). For premature rupture of membranes, the OR

estimates obtained from the weighted median (OR = 1.22, 95% CI

1.06–1.41, P = 0.006) were also consistent with those from IVW. No

significant associations were observed in sporadic miscarriage,

gestational diabetes mellitus, placental abruption, postpartum

haemorrhage, birthweight, gestational age, and preterm birth. The

results of the five MR analysis methods are displayed in Table 1.

Across the MR study, no evidence of directional pleiotropy and

heterogeneity was found in the MR-PRESSO global test, MR-Egger

intercept test, and Cochran’s IVW and MR-Egger Q tests, except for

analyzing the causal relationship between H. pylori infection and

birthweight (Table 2). The results of the leave-one-out permutation

analysis showed that the overall risk estimate was not driven by

certain SNPs (Figure 2). In addition, potential outliers and the

effects of SNPs, individually and jointly, from each MR method

were shown in scatter plots (Figure 3), which displayed a similar

trend toward a positive MR association of anti-H. pylori IgG levels

with preeclampsia or eclampsia and premature rupture

of membranes.
TABLE 1 MR estimates for the association between H. pylori infection and nine pregnancy and neonatal outcomes.

Outcome MR method No. of SNP OR 95% CI P-value

Miscarriage IVW 20 1.01 0.97–1.04 0.712

MR-Egger 20 1.10 1.03–1.18 0.009

Simple mode 20 1.05 0.96–1.15 0.304

Weighted median 20 1.03 0.99–1.08 0.122

Weighted mode 20 1.05 0.96–1.15 0.288

Preeclampsia or eclampsia IVW 18 1.12 1.01–1.24 0.026

MR-Egger 18 1.32 1.06–1.64 0.027

Simple mode 18 1.21 0.94–1.57 0.161

Weighted median 18 1.13 0.98–1.30 0.101

Weighted mode 18 1.25 0.99–1.57 0.074

Gestational diabetes mellitus IVW 20 0.98 0.90–1.06 0.568

MR-Egger 20 0.98 0.82–1.17 0.803

Simple mode 20 1.01 0.84–1.22 0.903

Weighted median 20 0.99 0.88–1.11 0.845

Weighted mode 20 1.00 0.83–1.22 0.963

Placental abruption IVW 20 1.18 0.82–1.70 0.371

MR-Egger 20 1.67 0.74–3.80 0.234

Simple mode 20 0.94 0.41–2.14 0.877

Weighted median 20 0.97 0.59–1.58 0.891

Weighted mode 20 0.88 0.41–1.89 0.755

Premature rupture of membranes IVW 20 1.17 1.05–1.30 0.004

(Continued)
fro
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TABLE 1 Continued

Outcome MR method No. of SNP OR 95% CI P-value

MR-Egger 20 1.13 0.89–1.43 0.331

Simple mode 20 1.27 0.99–1.64 0.075

Weighted median 20 1.22 1.06–1.41 0.006

Weighted mode 20 1.25 0.99–1.58 0.076

Postpartum hemorrhage IVW 13 1.00 0.91–1.10 0.947

MR-Egger 13 0.85 0.65–1.11 0.256

Simple mode 13 0.97 0.83–1.13 0.669

Weighted median 13 1.00 0.91–1.11 0.939

Weighted mode 13 0.99 0.87–1.12 0.816

Birthweight IVW 19 0.99 0.98–1.01 0.398

MR-Egger 19 1.01 0.97–1.05 0.673

Simple mode 19 0.97 0.93–1.01 0.194

Weighted median 19 0.99 0.97–1.01 0.156

Weighted mode 19 0.97 0.94–1.01 0.171

Gestational age IVW 18 0.99 0.97–1.02 0.549

MR-Egger 18 0.95 0.91–1.00 0.062

Simple mode 18 0.98 0.93–1.03 0.464

Weighted median 18 0.98 0.96–1.01 0.294

Weighted mode 18 0.98 0.93–1.03 0.404

Preterm birth IVW 18 1.05 0.95–1.16 0.366

MR-Egger 18 1.13 0.90–1.42 0.313

Simple mode 18 1.16 0.89–1.51 0.278

Weighted median 18 1.12 0.97–1.29 0.137

Weighted mode 18 1.15 0.88–1.50 0.311
F
rontiers in Cellular and Infection Microbiolo
gy
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MR, mendelian randomization; IVW, inverse variance weighted; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
TABLE 2 Pleiotropy and heterogeneity tests of IVs for nine pregnancy and neonatal outcomes.

Outcome Pleiotropy Heterogeneity

MR-PRESSO (P-value) MR-Egger
(P-value)

MR Egger
(P-value)

IVW
(P-value)

Miscarriage 0.168 0.007 0.589 0.152

Preeclampsia or eclampsia 0.414 0.129 0.496 0.391

Gestational diabetes mellitus 0.494 0.999 0.423 0.489

Placental abruption 0.210 0.364 0.214 0.216

Premature rupture of membranes 0.865 0.761 0.821 0.859

Postpartum hemorrhage 0.085 0.237 0.082 0.058

Birthweight 0.041 0.373 0.037 0.036

Gestational age 0.309 0.070 0.518 0.337

Preterm birth 0.595 0.489 0.602 0.635
IV, instrumental variable; MR, mendelian randomization; PRESSO, pleiotropy residual sum and outlier; IVW, inverse variance weighted.
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Discussion

In this MR study, we found that anti-H. pylori IgG level was

causally associated with preeclampsia or eclampsia and premature

rupture of membranes, but not associated with other pregnancy

(miscarriage, gestational diabetes mellitus, placental abruption, and

postpartum haemorrhage) and neonatal (birthweight, gestational

age, and preterm birth) outcomes.

Emerging evidence has shown the role of H. pylori infection in

preeclampsia-eclampsia. In 2006, Ponzetto et al. (Ponzetto et al.,

2006) first reported that pregnant women with preeclampsia had a

19.2% higher rate of H. pylori seropositivity compared with

uncomplicated women. Following that, other groups also

demonstrated an epidemiological association between H. pylori

infection and preeclampsia, especially for women who were
Frontiers in Cellular and Infection Microbiology 06
infected with cytotoxin-associated gene A (CagA) positive strains

(Mosbah and Nabiel, 2016; Bellos et al., 2018; Nourollahpour Shiadeh

et al., 2019). In vitro studies further showed that anti-CagA antibodies

could cross-react with cytotrophoblast cells through b-actin, thus
reducing their invasiveness by decreasing ERK 1/2 activation, NF-kB

translocation and MMP-2 expression (Franceschi et al., 2012). Since

trophoblast invasion of maternal decidua is vital for embryo

implantation and placental development, the infection-induced

autoimmunity may lead to inadequate placentation and

preeclampsia onset (Tersigni et al., 2014). In addition, Di Simone

et al. (Di Simone et al., 2017) found that H. pylori infection was

associated with abnormality of uterine arteries Doppler velocimetry

in preeclamptic women, and anti-H. pylori IgG fractions from these

women could inhibit endothelial cells’ proliferation, migration and

differentiation both in vitro and in vivo. Therefore,H. pylori infection
B C

D E F

G H I

A

FIGURE 2

Leave-one-out plots for the causal associations between anti-H. pylori IgG levels and nine pregnancy and neonatal outcomes. (A) Sporadic
miscarriage. (B) Preeclampsia or eclampsia. (C) Gestational diabetes mellitus. (D) Placental abruption. (E) Premature rupture of membranes. (F)
Postpartum haemorrhage. (G) Birthweight. (H) Gestational age. (I) Preterm birth. MR, mendelian randomization.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1343499
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fcimb.2024.1343499
may also have an impact on the angiogenesis and vascular resistance,

which constitutes an important mechanism of preeclampsia

pathogenesis (Chaiworapongsa et al., 2014).

For the correlation with premature rupture of membranes, the

mechanisms are still unclear but may be associated with systematic

and local effects of H. pylori infection. On the one hand, H. pylori

could stimulate the release of pro-inflammatory cytokines, such as

interleukin (IL)-1b, IL-6, IL-8, tumor necrosis factor-a, and

macrophage migration inhibitory factor (Xia et al., 2005; UstUn

et al., 2010; Chen et al., 2022). Among infected patients, systemic

indices of inflammation were also observed to be elevated, including

white blood cell count and C-reactive protein (Graham et al., 1998;

Oshima et al., 2005; UstUn et al., 2010). Given the crucial role of the

inflammation-oxidative stress axis in fetal membrane weakening
Frontiers in Cellular and Infection Microbiology 07
(Menon and Richardson, 2017), the infection may thus lead to

premature rupture of membranes. On the other hand, research

found that extracellular vesicles (EVs) could be derived from H.

pylori-infected gastric epithelial cells and entered the blood

circulation (Xia et al., 2020). Additionally, outer membrane vesicles

(OMVs) released byH. pylori also existed in the serum samples (Park

and Tsunoda, 2022). Both EVs and OMVs could serve as transport

vehicles to deliver pathogenic virulence factors (e.g., CagA) to

extragastric organs including brain (Qiang et al., 2022; Xie et al.,

2023). In this regard, the fetal membrane may be directly affected as

well, while further studies are warranted for investigation.

Consistent with previous pooled results (Tang et al., 2021), our

study did not support the link between H. pylori infection and

preterm birth. However, several cohorts have shown an increased
B C

D E F

G H I

A

FIGURE 3

Scatter plots for the causal associations between anti-H. pylori IgG levels and nine pregnancy and neonatal outcomes. (A) Sporadic miscarriage. (B)
Preeclampsia or eclampsia. (C) Gestational diabetes mellitus. (D) Placental abruption. (E) Premature rupture of membranes. (F) Postpartum
haemorrhage. (G) Birthweight. (H) Gestational age. (I) Preterm birth. Five MR methods are indicated by different colors, including inverse variance
weighted (light blue), MR Egger (dark blue), weighed median (dark green), weighted mode (red), and simple mode (light green). SNP, single
nucleotide polymorphism; MR, mendelian randomization.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1343499
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fcimb.2024.1343499
risk of miscarriage (Hajishafiha et al., 2011), gestational diabetes

mellitus (Cardaropoli et al., 2015; Li et al., 2020; Tang et al., 2021),

and low birth weight (Wanyama et al., 2016; Grooten et al., 2017;

Zhan et al., 2019) among infected pregnant women, which were not

detected by the current MR analysis. This may be due to the

insufficiency of cases as well as residual confounding of

observational design. As for placental abruption and postpartum

haemorrhage, no relevant research is available thus far and their

associations with H. pylori infection remain to be explored.

To our knowledge, this is the first MR study on the association

of H. pylori infection with a series of pregnancy and neonatal

outcomes, thus eliminating the interference of confounding factors

and reverse causation. To avoid sample overlap and its associated

bias, we used the exposure and outcome datasets from multiple

independent GWAS. An iterative MR analysis with five different

approaches was conducted to acquire conservative results, and the

absence of pleiotropy and heterogeneity in most sensitivity analyses

further rule out the false-positive likelihood.

There are some limitations of the current study that should be

acknowledged. Firstly, in order to minimize demographic bias, we

selected only data from people of European descent, making the

generalizability of our finding to other ethnic populations

compromised. Secondly, the GWAS sample size of H. pylori

infection was relatively small. Based on the traditional GWAS

significance threshold (P <5×10−8), the SNPs obtained were too few

for further study. Therefore, we used the locus-wide significance level

(P <1×10-5) for SNP selection, which may introduce weak instrument

bias to the overall estimates. Thirdly, our analysis was based on

summary statistics instead of raw data, and it was not possible to

conduct further subgroup analyses on the specific strain of H. pylori

(e.g., CagA-positive and CagA-negative) and severe degree or subtype

of disease (e.g., early-onset and late-onset preeclampsia). Lastly,

serological tests measuring the overall antibody immune response

towards H. pylori are incapable of distinguishing ongoing from past

infection. For a more specific differentiation, additional information is

needed such as 13C-urea breath test, histological examination, or

eradication record (Sabbagh et al., 2019). Therefore, the present

study using genetically-predicted H. pylori seropositivity only

represent the susceptibility to infection, and further studies are

needed to compare the outcomes of different infection status.

Conclusion

In summary, this two-sample MR study showed that genetically

predictedH. pylori infection was causally associated with increased risks

of preeclampsia-eclampsia and premature rupture of membranes. Our

findings confirm the epidemiological evidence on the adverse impact of

H. pylori in pregnancy. Further studies are needed to thoroughly

elucidate the pathophysiological mechanisms and assess the

effectiveness of pre-pregnancy screening and preventive eradication.
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