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Introduction: The emergence of extended-spectrum b-lactamase (ESBL)-

producing Enterobacteriaceae is an urgent and alarming One Health problem.

This study aimed to investigate duplications of plasmid-encoded ESBL genes and

their impact on antimicrobial resistance (AMR) phenotypes in clinical and

screening isolates.

Methods: Multi-drug-resistant bacteria from hospitalized patients were

collected during routine clinical surveillance from January 2022 to June 2023,

and their antimicrobial susceptibility patterns were determined. Genotypes were

extracted from long-read whole-genome sequencing data. Furthermore,

plasmids and other mobile genetic elements associated with ESBL genes were

characterized, and the ESBL genes were correlated to ceftazidime minimal

inhibitory concentration (MIC).

Results: In total, we identified four cases of plasmid-encoded ESBL gene

duplications that match four genetically similar plasmids during the 18-month

surveillance period: five Escherichia coli and three Klebsiella pneumoniae

isolates. As the ESBL genes were part of transposable elements, the

surrounding sequence regions were duplicated as well. In-depth analysis

revealed insertion sequence (IS)-mediated transposition mechanisms. Isolates

with duplicated ESBL genes exhibited a higher MIC for ceftazidime in comparison

to isolates with a single gene copy (3–256 vs. 1.5–32 mg/L, respectively).

Conclusion: ESBL gene duplications led to an increased phenotypic resistance

against ceftazidime. Our data suggest that ESBL gene duplications by an IS-

mediated transposition are a relevant mechanism for how AMR develops in the

clinical setting and is part of the microevolution of plasmids.
KEYWORDS

antimicrobial resistance, ESBL, plasmid, transposons, gene duplication,
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1 Introduction

Antimicrobial resistance (AMR) is an alarming and urgent One

Health problem (Ventola, 2015; Kim and Cha, 2021). AMR allows

bacteria to resist and persist even though antibiotics are present.

Ever since the first introduction of antimicrobials, the number of

resistant bacteria has steadily increased and is becoming a major

challenge for healthcare systems worldwide (Davies and Davies,

2010; O’Neill, 2014; Murray et al., 2022). The dissemination of

AMR is driven by a combination of different factors such as the

extensive use of antimicrobial agents (Browne et al., 2021) as well as

selection pressure in almost all environments (Kizny Gordon et al.,

2017; Chen et al., 2019). Especially in the hospital setting, AMR is a

major concern, as they limit treatment options for serious bacterial

infections significantly (Huemer et al., 2020).

Hydrolysis of the b-lactam ring of penicillin, the first discovered

antibiotic agent, and their derivates by b-lactamases, is among the

most important AMR mechanisms. In 1965, the first plasmid-

encoded b-lactamase TEM-1 was discovered, which provided

significant resistance in addition to the natural occurrence of

chromosomal b-lactamase genes (Datta and Kontomichalou,

1965). Point mutations in the bla genes coding for b-lactamases

generate the fast-growing family of extended-spectrum beta-

lactamases (ESBLs), i.e., TEM-type and SHV-type b-lactamases

(Bradford, 2001; Behzadi et al., 2020). ESBLs also provide

res i s tance aga ins t newer ant ib io t i c c la s ses such as

aminopenicillins and cephalosporins. The most commonly found

and clinically relevant ESBL genes are blaTEM, blaSHV, and blaCTX-M
(Liakopoulos et al., 2016).

ESBL-producing Enterobacteriaceae (Bradford, 2001) are of

special concern in the healthcare setting, as they are listed as

critical in the priority pathogens list by the WHO (Tacconelli

et al., 2018). Most ESBL-producing Enterobacteriaceae in the

hospital setting can be identified as Escherichia coli and Klebsiella

pneumoniae. For ESBL-producing E. coli, an asymptomatic and

persistent carriage in the human intestine is well-known and has

been increasing in the last decades (Bezabih et al., 2021).

Most AMR genes are coded as accessory genes on mobile

genetic elements (MGEs) (Partridge et al., 2018) that can be

transferred among bacteria on plasmids via conjugation. This

conjugation is possible not only between bacteria of the same

species but also beyond species borders within a multispecies

bacterial community. Therefore, plasmids are believed to be the

key drivers in the development and spread of antimicrobial

resistance (Carattoli, 2009). Furthermore, different types of

transposons are described as MGEs used to transfer AMR genes

(Frost et al., 2005). There, AMR genes are often found as accessory

genes, for example, within composite transposons. These

transposons are characterized by flanking insertion sequence (IS)

coding a transposase, and AMR and virulence genes in between.

The transposase uses the IS as recognition sites to transfer the whole

transposon from one position in the DNA to another as well as from

plasmids to the chromosome if a suitable site is found. Other AMR

gene transpositions are carried out by unit transposons, where an IS

transposase is only found on one site of the AMR gene (He et al.,

2015; Varani et al., 2021).
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For many years, the investigation of AMR plasmids has been

labor-intensive due to the shortfalls of short-read whole-genome

sequencing (WGS) technology. For instance, short-read WGS only

covers parts of transposons, which leads to possible misassemblies

of these sequence repetitions (Juraschek et al., 2021). Recent long-

read WGS offers a significant advantage by enabling the complete

coverage of plasmids or the generation of reads that span entire

transposons. This capability simplifies the detection of transposons

and gene duplications within the sequences.

To increase the understanding of AMR development and spread

especially in ESBLs, we analyzed multi-drug-resistant

Enterobacteriaceae isolated from clinical samples in more detail by

long-read WGS. Although plasmids are key drivers of AMR spread,

only little is known about the evolutionary and molecular mechanisms

of plasmids harboring AMR genes in the clinical setting. Here, we

characterize four cases of ESBL gene duplications on plasmids and

demonstrate how these duplications affect the AMR phenotype.
2 Material and methods

2.1 Clinical setting and bacterial isolates

The University Hospital Münster (UHM) is a 1,300-bed tertiary

care center in Münster, Germany, admitting on average 55,000

patients per year. Bacterial samples were collected from hospitalized

patients at the UHM for an 18-month time period from January

2022 to June 2023 as part of the routine hospital surveillance of

multi-drug-resistant bacteria (MDRBs) according to national

recommendations (Bundesgesundheitsblatt, 2012). Screening

specimens were cultivated on chromID ESBL Agar (biomérieux,

Marcy-l’Etoile, France) and incubated at 36°C ± 1°C for 18 to 24 h.

Clinical specimens were cultivated on Columbia Blood agar with 5%

Sheep Blood (BD, Heidelberg, Germany; aerobic incubation at 35°C

± 2°C ambient air for up to 3 days), and MacConkey selective agar

for Gram-negative bacteria (MacConkey II Agar, BD, Heidelberg,

Germany; aerobic incubation at ambient air 35°C ± 2°C for up to 2

days) if applicable. During the study period, >500 MDRB

Enterobacteriaceae isolates were identified.
2.2 Species identification

Species identification was performed by matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF/MS) (MALDI-TOF MS, Biotyper® Sirius one, Bruker,

Bremen, Germany) with scores above 2.0.
2.3 Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed using

VITEK®2 automated system (biomérieux, Marcy-l’Etoile, France).

In addition, Etests® (biomérieux, Marcy-l’Etoile, France) for

ceftazidime were performed on Müller-Hinton-Agar (Oxoid,

Schwerte, Germany) to determine the minimal inhibitory
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concentration (MIC). All MICs were interpreted according to the

2023 European Committee on Antimicrobial Susceptibility Testing

(EUCAST) clinical breakpoints version 13.1 (EUCAST, 2023).
2.4 Whole-genome sequencing

DNA from bacterial isolates was extracted using the NEB

Monarch Purification Kit (New England Biolabs, Ipswich, MA,

USA) and sequenced on a PacBio® Sequel IIe system (Pacific

Biosciences, Menlo Park, CA, USA) as described previously

(Effelsberg et al., 2021). A de novo assembly approach was used

for the raw reads and analyzed using the SMRT® Link software

suite v. 10 or v. 11 with default parameters.
2.5 Whole-genome data analysis,
annotation, and visualization

The phylogenetic tree was generated based on WGS data by the

Genome BLAST Distance Phylogeny (GBDP) approach using the

Type Strain Genome Server (Meier-Kolthoff and Göker, 2019). For

genotyping based on multilocus sequence typing (MLST) and core

genome MLST (cgMLST) and to determine the clonal relationship,

the respective schemes in Ridom SeqSphere+ software version 9.0.9

(Ridom GmbH, Münster, Germany) were used (Jünemann et al.,

2013). Isolates were rated as clonal when the distance of their

cgMLST allelic profiles was ≤5 alleles. Antimicrobial resistance

genes were determined using the NCBI AMRFinderPlus

(Feldgarden et al., 2019) implemented in SeqSphere+. If duplicated

AMR ESBL genes were identified, a more detailed analysis of the

respective contigs was performed. Contigs were predicted as plasmids

using MOB-Suite v3.1.4 (Robertson and Nash, 2018) and further

characterized by pMLST Server 2.0 (Carattoli et al., 2014). Plasmids

were completely annotated using DFAST v1.6.0 (including additional

scans against TIGRFAM and COG database by NCBI) (Tanizawa

et al., 2018). Next, it was searched for genetically matching plasmids

with the same ESBL gene but without a gene duplication in the

dataset by a mash-based approach (Ondov et al., 2016) implemented

in SeqSphere+. Isolates containing these plasmids were used as

references and were analyzed in the same way.

Progressive Mauve (Darling et al., 2004) was used to compare

and visualize the similarity of plasmid sequences and to localize the

gene duplication site of the transposable regions. In addition, all

mobile genetic elements were annotated using ISFinder (Siguier

et al., 2006) and MobileElementFinder with the default parameters

(Johansson et al., 2021). Plasmid sequences were manually curated

using SnapGene® Viewer (Dotmatics; www.snapgene.com).
3 Results

3.1 Characteristics of bacterial isolates

We identified four isolates (three E. coli and one K.

pneumoniae) containing more than one plasmid-based ESBL gene
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copy within the isolates found by our routine molecular

surveillance. For comparison, we matched these four isolates with

more than one plasmid-based ESBL gene to four additional isolates

(two E. coli and two K. pneumoniae) in the dataset containing

genetically the same plasmids with only a single ESBL gene copy

(Supplementary Figures 1–4). These isolate matches are named

pairs I–IV and originate from different or the same patient. Details

of the isolates analyzed and the patients’ characteristics are listed in

Table 1. In total, bacterial isolates of six patients were included in

the study: four female patients and two male patients. The median

age of patients was 63 (32–94) years. According to their medical

history based on the medical reports, all patients suffered from

chronic or severe infections (Table 1).

The phylogenetic relation of all isolates was calculated based on

the WGS data to illustrate the phylogenetic similarity between the

isolates in pairs III and IV and the species difference in pair II

(Figure 1A). In case the matched isolates were the same species,

cgMLST typing was performed to determine whether the pairs only

share a similar plasmid or in addition have a clonal relation (on the

chromosomal level). The isolates of pairs I and III did not show

clonality in cgMLST analysis among the E. coli isolates (Figure 1B).

Pair IV was identified as a clonal lineage of K. pneumoniae isolates

found in one patient (patient 6). Here, the isolates were collected 3

weeks apart in different sample materials (Table 1). The similar

plasmids of pair II were shared between an E. coli isolate and a K.

pneumoniae isolate that originated from the same specimen of

patient 3 (Table 1). There was no clonal relationship due to the two

different bacterial species.
3.2 In-depth analysis of plasmids harboring
ESBL-encoding genes

Using the MOB-suite software and AMRFinderPlus tool, we

analyzed the plasmids harboring ESBL genes with respect to their

sizes, replication and relaxase types, anticipated/predicted mobility,

and encoded AMR genes (Table 2). Overall, the replication type, the

relaxase type, and the predicted mobility of the plasmids were

identical within a pair. However, due to the ESBL gene duplication,

the plasmid size varied. In addition to the duplicated ESBL-

encoding genes, we only found an analog AMR duplication of

qnrS1 in p1_Ec1.2 mediating quinolone resistance. Of note, the

similar plasmids p2_Ec2.1 and p2_Kp2.2 are most likely directly

related and caused by an intra-host transmission via horizontal

gene transfer (HGT) from one species to another.

For an in-depth analysis of the plasmids, we annotated the

whole plasmids with DFAST and used ISFinder and

MobileElementFinder (Supplementary Figures 1–4). All

duplicated ESBL genes were part of a longer transposable DNA

sequence, which was duplicated in full length (Figure 2;

Supplementary Table 1).

In pair I, the duplication occurred in p1_Ec1.2 as a tandem

duplication with flanking IS26 elements (Figure 2), notably with

three IS26 elements in comparison to p3_Ec1.1 instead of two

flanking IS26 elements for each duplication. The transposon was

classified as a composite transposon and harbors the ESBL gene
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blaCTX-M-15 as well as the quinolone resistance gene qnrS1. In

addition to AMR genes, a WbuC family cupin fold metalloprotein

and Tn3 transposase were encoded.

In p2_Ec2.1, the reference plasmid of pair II, we already

detected an IS26 tandem duplication of a transposon harboring
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the ESBL gene blaSHV-12. However, there was a difference in the

sequence length of one of the transposons caused by an incomplete

IS26 element in the second repeat (Figure 2) and a deletion in the

ESBL gene (blaSHV-12/blaSHV-family). A BLAST analysis revealed a

deletion of three nucleotides in the ESBL gene coding originally for
B

A

FIGURE 1

Relationship of the four pairs of isolates included. (A) Phylogenetic tree based on whole-genome sequences of the eight isolates calculated by Type
(Strain) Genome Server. The branch lengths are scaled in terms of Genome BLAST Distance Phylogeny distance formula. The pairs describe the
compared plasmids of the isolates. Below the isolate name, the sequence type (ST) of each isolate is given. (B) Detailed relation within the pairs of
isolates of the same species using cgMLST. Each circle is a separate genotype based on the allelic profile of up to 2,325 genes for Escherichia coli
and 2,358 genes for Klebsiella pneumoniae, with the parameter “ignoring missing genes in the pairwise comparison”. The number on the connecting
lines displays the allelic distance.
TABLE 1 Overview of samples analyzed including origin and patients’ backgrounds.

Plasmid
pair

Isolate
(patient #)

Specimen Medical history
Antibiotics
prescribed

ST
No. of

plasmids
detected

ESBL-
encoding

gene

I

Ec1.1 (1)
Rectal

screening
Colorectal cancer with

liver metastasis
Piperacillin–tazobactam,
vancomycin, micafungin

46 3

blaCTX-M-15

Ec1.2* (2) Urine
Ulcer (stage IV) requiring
reconstructive surgery

Ampicillin–sulbactam 69 1

II
Ec2.1 (3)

Tissue
Recurrent periprosthetic hip

joint infection
Ceftazidime,

vancomycin, meropenem

95 4
blaSHV-12

Kp2.2* (3) 353 4

III

Ec3.1 (4) Drainage fluid
Primary sclerosing cholangitis,

Klatskin tumor, recurrent episodes
of cholangitis

Ceftriaxone 453 3

blaCTX-M-14

Ec3.2* (5) Urine
Cystectomy, recurrent urinary

tract infections

Nitrofurantoin and others
(unspecified,

outpatient prescription)
453 2

IV
Kp4.1 (6) Blood culture Renal transplant, recurrent episodes

of pyelonephritis
Cotrimoxazole,
amphotericin B

1,634 1
blaSHV-2

Kp4.2* (6) Urine 1,634 2
Isolates containing ESBL gene duplications are marked with an asterisk.
Ec, Escherichia coli; Kp, Klebsiella pneumoniae; ST, sequence type; ESBL, extended-spectrum b-lactamase.
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leucine 53 in blaSHV-12. In addition, the transposon contains genes

for a PAS domain-containing methyl-accepting chemotaxis protein

and for the DNA-binding transcriptional repressor YgbI. While the

reference plasmid already shows a duplication, we found a tandem

triplication of the transposon in p2_Kp2.2. The coded genes remain

the same as in the reference p2_Ec2.1. Nevertheless, one of the three

blaSHV genes shows a nucleotide deletion as well. The deletion

corresponding to threonine 18 in blaSHV-12 results in a frame shift

and an early stop codon, thereby shortening the potentially encoded

b-lactamase.

In pair III, we observed another duplication pattern. The ESBL

target gene blaCTX-M-14 in p2_Ec3.2 and the reference plasmid

p2_Ec3.1 was carried in an ISEcp1-mediated unit transposon.

ISEcp1 could be aligned with 100% and 99.94% sequence

identities. In addition to the b-lactamase gene, only potential gene

residues were transferred within the transposon. The comparison

revealed that the point of insertion of the second repeat of the unit

transposon in p2_Ec3.2 is the traU gene (Figure 2).

The plasmid p1_Kp4.2 belongs to pair IV. A tandem

duplication of IS26-mediated composite transposons could be

detected. The one nucleotide difference in the first repeat in

p1_Kp4.2 was caused by an insertion in the already truncated

oligosaccharide MFS transporter gene as indicated in Figure 2.

The transposon contains the ESBL target gene blaSHV-2 and a gene

for an AAA family ATPase.

Taken together, IS26-mediated duplications were found to be

tandem duplications, where one IS26 element is shared between two

transposons. This mechanism was identified in three out of four

described cases. An alternative mechanism was observed in pair II.

Here, a unit transposon was duplicated in an ISEcp1-

mediated mode.
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3.3 Correlation of phenotypic
cephalosporin resistance and ESBL
gene copies

To investigate the correlation between the phenotypic

antimicrobial susceptibility and the presence of AMR resistance

genes, we manually curated the VITEK®2 data and used the NCBI

AMRFinderPlus to identify matching resistance genes.

Furthermore, we used Etests for ceftazidime as a reference

substance to determine the cephalosporin resistance more

specifically and compare it with the number of ESBL gene copies

in the AMR plasmids. In total, AMRFinderPlus annotated 37

different AMR genes within the eight WGS datasets with four to

13 different genes per isolate; including duplications, six to 25

AMR-encoding genes were detected. The lowest numbers of

resistance genes were found in Ec1.2 with the duplication of the

ESBL gene blaCTX-M-15 and the qnrS1, and cya_S352T and

glpT_E448K. The broadest resistance spectrum showed the three

K. pneumoniae isolates, with the highest number of AMR genes in

Kp4.2. A complete overview of the resistome of the eight analyzed

bacterial isolates, categorized into chromosome and plasmid-

en cod ed g en e s , c an b e f ound in t h e Supp l emen t

(Supplementary Table 2).

The phenotypic resistance pattern of the bacterial isolates was

analyzed by comparing up to 12 different antibiotic substances

(Supplementary Table 3). All isolates were susceptible to

carbapenems, and no carbapenemases were detected in the

genomic data. In contrast, all isolates were resistant to ampicillin

in line with the expression of at least one b-lactamase also found in

the genotypic annotation (Supplementary Table 2). To determine

the MIC of ceftazidime, we performed Etests®. The MICs within
TABLE 2 Characteristics of analyzed plasmid harboring the ESBL genes.

Plasmid Size
[bp]

Mash dis-
tance
(hashes)

pMLST Replication
type/s

Relaxase
type

Predicted
mobility

AMR genes

p3_Ec1.1 72,476 0.0001
(995/1,000)

[F2:A-:B-] IncFIA, IncFIC MOBF Conjugative blaCTX-M-15, qnrS1

p1_Ec1.2 82,307 0.0001
(995/1,000)

[F2:A-:B-] IncFIA, IncFIC MOBF Conjugative blaCTX-M-15, blaCTX-M-15, qnrS1, qnrS1

p2_Ec2.1 57,462 0.0015
(940/1,000)

unknown IncX1, IncX3 MOBP Conjugative blaSHV-12, blaSHV-family, qnrS1

p2_Kp2.2 66,525 0.0015
(940/1,000)

unknown IncX1, IncX3 MOBP Conjugative blaSHV-12, blaSHV-12, blaSHV-family, qnrB19, qnrS1,

p2_Ec3.1 96,364 0.0004
(985/1,000)

unknown IncI-gamma/K1 MOBP Conjugative blaCTX-M-14

p2_Ec3.2 100,710 0.0004
(985/1,000)

Unknown IncI-gamma/K1 MOBP Conjugative blaCTX-M-14, blaCTX-M-14

p1_Kp4.1 53,023 0.0001
(997/1,000)

[F-:A13:
B-]

IncFIA, IncR – Mobilizable arr-3, aac(3)-IId, aac(6′)-Ib-cr5, aadA16, tet(D),
blaSHV-2, dfrA27, sul1, sul1, qnrB6

p1_Kp4.2 57,775 0.0001
(997/1,000)

[F-:A13:
B-]

IncFIA, IncR – Mobilizable arr-3, aac(3)-IId, aac(6′)-Ib-cr5, aadA16, tet(D),
blaSHV-2, blaSHV-2, dfrA27, sul1, sul1, qnrB6
ESBL genes are indicated by bold letters.
ESBL, extended-spectrum b-lactamase.
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each pair were found to be more than two times higher for the

isolates with the ESBL gene duplications compared to the references

(Figure 3). The elevated resistance to ceftazidime correlates in all

pairs with the higher number of the ESBL target genes.
4 Discussion

The emergence of ESBL-producing Enterobacteriaceae is

reported worldwide and poses a substantial threat to public health

(Murray et al., 2022). There is consensus that plasmids are key

drivers for the dissemination of AMR genes such as ESBL genes

(Carattoli, 2013). However, little is known about the underlying
Frontiers in Cellular and Infection Microbiology 06
mechanisms that increase MICs of isolates harboring AMR-

encoding genes in the clinical context. Therefore, the aim of our

study was to investigate long-read WGS data of clinical bacterial

samples with a focus on AMR plasmids and gain insights into the

spread of AMR genes in the hospital setting.

We found that ESBL gene duplications occur by transposition

events within plasmids and increase the phenotypic resistance

against cephalosporins due to the higher gene copy number. Four

different cases of gene duplications in plasmids harboring ESBL

genes were identified after analyzing the surveillance dataset.

Interestingly, all described cases share the IS-mediated

transposition with ESBL gene duplication as an in vivo evolution

event of AMR plasmids and indicate a genotype–phenotype
FIGURE 2

Transposons harboring the ESBL genes and the duplicated regions. All repeated regions harbor the same genes unless indicated otherwise. The
blaSHV-family gene is a mutated variant of blaSHV-12. Ec, Escherichia coli; Kp, Klebsiella pneumoniae; ESBL, extended-spectrum b-lactamase; AMR,
antimicrobial resistance; IS, insertion sequence; IR, inverted repeats; ESBL, extended-spectrum b-lactamase.
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correlation between ESBL gene copy number and increased

ceftazidime MIC. Our study highlights the potential of long-read

WGS data to better understand AMR and the underlying genetic

adaptation mechanisms.
4.1 Role of plasmids in AMR spread

All presented cases show gene duplications within the plasmid.

The association between plasmids, AMR genes, and a high number

of plasmid-borne AMR genes is well known (Vrancianu et al.,

2020). Despite the metabolic burden required to maintain a

plasmid, most studies could demonstrate that the benefit of the

encoded resistance genes is much higher for bacteria or is

compensated by additional mutations (Loftie-Eaton et al., 2017;

San Millan and MacLean, 2017). This seems plausible for the

described cases, as all samples were collected from patients who

frequently receive antibiotic treatment. Hence, all isolates have

experienced selection pressure.

Interestingly, our study observed highly similar plasmids in

different bacterial isolates that showed no genetic relation based on

cgMLST (pairs I and III). This could be an example illustrating how

plasmids are shared within a community of bacteria with different

genetic backgrounds. This HGT is an important mechanism to

exchange genetic information known for decades (Thomas and

Nielsen, 2005) and well-studied in the adaptive evolution of bacteria

(Arnold et al., 2022; Dimitriu, 2022). For the E. coli Ec2.1 and the K.

pneumoniae Kp2.2 (pair II), we assume the HGT of the plasmid

harboring the ESBL gene because the species borders have to be

crossed. However, it is not possible to determine clearly the

chronological sequence of the HGT and the duplication event. On

note, even if we discuss predominantly the duplication event, the

relation between the compared isolates could also be a loss of a
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transposable region except in pair IV, where the timeline is clear.

Kp4.2 was isolated 3 weeks after Kp4.1 from the same patient.
4.2 IS-mediated transposition and other
mobile genetic elements associated with
ESBL genes

IS-mediated transposition is often observed with accessory

genes including AMR genes. All duplication events investigated

used this mode of action but with either an IS26 or an ISEcp1

transposition. IS26 transposition events that could arrange

transposons containing AMR genes with only three remaining

IS26 elements were described before including the mechanistic

details (He et al., 2015; Harmer and Hall, 2019; Harmer and Hall,

2021). Our data indicate that tandem duplication of the same

transposon is also a quite common transposition event as

observed in three out of four cases, i.e., in pairs I, III, and IV. In

accordance with this observation, a few cases of IS26-mediated

ESBL gene duplications were described before (Garza-Ramos et al.,

2009; Tamamura-Andoh et al., 2021; van Almsick et al., 2022), and

also the association of IS26 and blaCTX-M genes was already

described in Enterobacteriaceae in a systematic study (Shropshire

et al., 2022). Interestingly, neither documented IS26 transposon

with ESBL genes nor a high sequence similarity could be found in

the databases of TnCentral (Ross et al., 2021) or Transposon

Registry (Tansirichaiya et al., 2019) yet. In the fourth analyzed

case (pair II), the transposition was ISEcp1 mediated. The detected

unit transposon contains a blaCTX-M-14 gene, which also was found

in the E. coli isolates of Shropshire et al (Shropshire et al., 2022).
4.3 Gene duplications in evolution and
correlation to the phenotypic susceptibility

Gene duplication is a common mechanism in evolutionary

biology to develop new traits and adaptations (Innan and

Kondrashov, 2010; Vosseberg et al., 2021). A new variant to

improve resistance by mutation might be observed in pair II

annotated as blaSHV genes in p2_Ec2.1 and p2_Kp2.2 (Figure 2).

Both investigated plasmids in this pair have different deletions of

nucleotides within one gene copy of the ancestor blaSHV-12 gene.

However, it is unclear whether these mutated genes code for a

functional and optimized b-lactamase. Schuster et al. found similar

results; they identified a novel blaCTX-M gene in this context

(Schuster et al., 2022). In that study, the encoded b-lactamase

only differed by one amino acid from the ancestor gene that was

found in a similar gene array as the new gene. In accordance with

this, the evolution of blaSHV genes from blaTEM with the high

sequence similarities underlines this as a plausible mechanism for

the generation of novel and better-adapted b-lactamases

(Liakopoulos et al., 2016).

In addition, we hypothesize that the increased resistance level to

ceftazidime correlates with the number of ESBL gene copies
FIGURE 3

Number of ESBL gene copies in the analyzed plasmids in relation to
ceftazidime MIC. ESBL gene copy numbers are color-coded (gray,
single copy; black, two copies), and the numbers display the MICs
for ceftazidime [mg/L]. ESBL, extended-spectrum b-lactamase; MIC,
minimal inhibitory concentration.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1343858
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sobkowiak et al. 10.3389/fcimb.2024.1343858
encoded on the plasmid. Only very few reported cases of ESBL gene

duplications found this correlation between genotypic and

phenotypic resistance so far (Tamamura-Andoh et al., 2021; van

Almsick et al., 2022). However, in accordance, this observation has

been described before for other AMR genes (Coppi et al., 2020; Han

et al., 2021). Nevertheless, increased antibiotic resistance has also

been linked to point mutations in resistance genes (Finci et al.,

2022). To gain more insights into the genetic resistance patterns of

Enterobacteriaceae, more genetic analyses based on studies with

higher sample sizes are required.
4.4 Study limitations

One limitation of our study is the relatively small number of

isolates included in the study. During the 18-month period, four

cases of ESBL gene duplications were identified. While this result

indicates that ESBL gene duplication is a possible mechanism for

developing AMR in the clinical context, higher sample sizes are

needed to estimate how frequently this phenomenon happens.

Moreover, the comparison of different species and different clonal

lineages with variable resistomes has an influence on MIC

determination (Girlich et al., 2021). To consider these aspects, we

listed additional b-lactamases encoded on other plasmids or

integrated into the chromosome for all isolates (Supplementary

Table 1). Furthermore, the plasmid copy numbers and other

regulatory mechanisms were not covered and are out of the scope

of this study (Nelson et al., 2017).
5 Conclusion

We identified IS-mediated AMR gene duplications as a

mechanism to overcome antibiotic selection pressure in the

hospital setting and to generate new genetic variants of the

ancestor resistance gene. Our results also highlight the genetic

potential of Enterobacteriaceae for adaptation and evolution

of AMR.
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