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Unraveling the mystery: a
Mendelian randomized
exploration of gut microbiota
and different types of obesity
Siyuan Liu1†, Fan Li2†, Yunjia Cai1, Linan Ren1, Lin Sun1,
Xiaokun Gang1 and Guixia Wang1*

1Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun,
Jilin, China, 2Department of Gastroenterology, The First Hospital of Jilin University, Changchun,
Jilin, China
Background: Numerous studies have demonstrated the influence of gut

microbiota on the development of obesity. In this study, we utilized Mendelian

randomization (MR) analysis to investigate the gut microbiota characteristics

among different types of obese patients, aiming to elucidate the underlying

mechanisms and provide novel insights for obesity treatment.

Methods: Two-sample multivariable Mendelian randomization (MR) analysis was

employed to assess causal relationships between gut microbiota and various

obesity subtypes. Gut microbiota data were obtained from the international

consortium MiBioGen, and data on obese individuals were sourced from the

Finnish National Biobank FinnGen. Eligible single-nucleotide polymorphisms

(SNPs) were selected as instrumental variables. Various analytical methods,

including inverse variance weighted (IVW), MR-Egger regression, weighted

median, MR-RAPS, and Lasso regression, were applied. Sensitivity analyses for

quality control included MR-Egger intercept tests, Cochran’s Q tests, and leave-

one-out analyses and others.

Results: Mendelian randomization studies revealed distinct gut microbiota

profiles among European populations with different obesity subtypes.

Following multivariable MR analysis, we found that Ruminococcaceae UCG010

[Odds Ratio (OR): 0.842, 95% confidence interval (CI): 0.766-0.926, Adjusted P

value: 0.028] independently reduced the risk of obesity induced by excessive

calorie intake, while Butyricimonas [OR: 4.252, 95% CI: 2.177-8.307, Adjusted P

value: 0.002] independently increased the risk of medication-induced obesity.

For localized adiposity, Pasteurellaceae [OR: 0.213, 95% CI: 0.115-0.395,

Adjusted P value: <0.001] acted as a protective factor. In the case of extreme

obesity with alveolar hypoventilation, lactobacillus [OR: 0.724, 95% CI: 0.609-

0.860, Adjusted P value: 0.035] reduced the risk of its occurrence. Additionally,

six gut microbiota may have potential roles in the onset of different types of

obesity. Specifically, the Ruminococcus torques groupmay increase the risk of its

occurrence. Desulfovibrio and Catenabacterium may serve as protective factors

in the onset of Drug-induced obesity.Oxalobacteraceae, Actinomycetaceae, and

Ruminiclostridium 9, on the other hand, could potentially increase the risk of

Drug-induced obesity. No evidence of heterogeneity or horizontal pleiotropy
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among SNPs was found in the above studies (all P values for Q test and MR-Egger

intercept > 0.05).

Conclusion: Gut microbiota abundance is causally related to obesity, with

distinct gut microbiota profiles observed among different obesity subtypes.

Four bacterial species, including Ruminococcaceae UCG010, Butyricimonas,

Pasteurellaceae and lactobacillus independently influence the development of

various types of obesity. Probiotic and prebiotic supplementation may represent

a novel approach in future obesity management.
KEYWORDS
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1 Introduction

Obesity is a chronic metabolic disorder, and with its global

incidence steadily rising, it has become a significant economic and

health concern worldwide (Vlassopoulos and Lean, 2016). Obesity

is often associated with cardiovascular diseases, diabetes,

musculoskeletal disorders (especially osteoarthritis), and cancers

(including ovarian, liver, and colon cancers, etc). Consequently,

obesity and its related issues have gained increasing attention

(Haslam and James, 2005). Obesity is recognized as a

multifactorial disorder, with its etiology involving a multitude of

factors including genetics, environment, behavior, and psychology.

The gut microbiome stands out as a significant environmental

determinant contributing to its onset. The human gut microbiota

comprises approximately 100 trillion species and carries genes

numbering about 150 times that of the human genome (Marchesi

et al., 2016). The gut microbiota plays a pivotal role in maintaining

normal intestinal function and host health, participating in

metabolic homeostasis. Consequently, alterations in the gut

microbiota contribute significantly to the development of

metabolic disorders. The gut microbiota is primarily influenced

by environmental factors, particularly diet, and exhibits variation

based on ethnicity, possibly owing to disparities in dietary customs

across regions (Deschasaux et al., 2018; Rothschild et al., 2018).

While the host genome plays a central role in shaping the

composition of the gut microbiota, numerous geographic and

environmental factors, including diet, lifestyle, sanitation, and

medication use, can lead to variations in the gut microbiota.

Research suggests that the impact of genes on the gut microbiota

appears to be less pronounced, whereas environmental factors

(especially diet) hold greater influence (Rothschild et al., 2018).

In recent years, an increasing body of evidence has

substantiated a causal relationship between the gut microbiota

and obesity. Bäckhed et al. transplanted the gut microbiota of

normal mice into germ-free mice, resulting in a significant

increase in body fat percentage even without altering food intake

(Backhed et al., 2004). Li et al. observed that the genus Akkermansia
02
exhibited a protective effect against childhood obesity and BMI (Li

et al., 2023). There are several potential mechanisms underlying the

association between the gut microbiota and obesity: The gut

microbial community enhances energy intake from food by

producing efficient enzymes for the degradation of dietary

nutrients (Blaut, 2015). Dietary fibers, through metabolites such

as short-chain fatty acids (SCFAs) produced by the gut microbiota,

not only serve as an energy source but also interact with G protein-

coupled receptor (GPR) 41 and GPR43 (Lin et al., 2012) to

modulate lipid and glucose metabolism. Additionally, AMPK is

involved in mediating the effects of SCFAs, contributing not only to

the aforementioned metabolic regulations but also to cholesterol

metabolism (den Besten et al., 2013); In addition to the

aforementioned effects, SCFA can also influence the production

of hormones such as leptin, peptide YY (PYY), ghrelin, insulin, and

glucagon-like peptide-1 (GLP-1). These hormones all play crucial

roles in the development and occurrence of obesity (Fukumoto

et al., 2003; Neuman et al., 2015). Furthermore, the gut microbiota

can also impact the integrity of the intestinal barrier, modulate

plasma lipopolysaccharide (LPS) levels, and further influence the

occurrence and progression of metabolic endotoxemia and low-

grade inflammation in the body, thereby either promoting or

reducing the development of obesity (Tsukumo et al., 2015).

While the fundamental cause of obesity is an excessive calorie

intake compared to expenditure, variations in the human gut

microbiota ecosystem may be a pivotal factor influencing energy

homeostasis. Specifically, individuals prone to obesity might exhibit

distinctive alterations in gut microbiota, as opposed to normal or

lean populations (Ley et al., 2005). According to the ICD-10 coding

(The, 2019), we included localized adiposity, obesity (including

calorie-induced obesity, drug-induced obesity, extreme obesity with

alveolar hypoventilation) in our study, and analyzed the gut

microbiota characteristics of patients with different types of

obesity. This study explores the gut microbiota characteristics in

various obesity types, aiming to enhance comprehension of obesity

pathogenesis and provide insights into novel therapeutic avenues

for obese individuals.
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2 Methods

2.1 Source of datasets

In this study, we obtained whole-genome association study

(GWAS) data on gut microbiota from the International

MiBioGen Consortium. The database coordinated 16S rRNA gene

sequencing profiles and genetic typing data for 18,340 participants

from 24 cohorts across the United States, Canada, Israel, South

Korea, Germany, Denmark, the Netherlands, Belgium, Sweden,

Finland, and the United Kingdom. This comprehensive meta-

analysis of autosomal human genetic variations and their

associations with the gut microbiota involved a large-scale, multi-

ethnic, whole-genome approach (Kurilshikov et al., 2021). Details of

recruitment criteria, sample size, and ethical approval can be found

in the Supplementary Note 1, 2, Supplementary Table 9. GWAS

datasets on obesity were obtained from the FinnGen research

project, which originates from the Finnish National Biobank

Network. Participants in FinnGen were recruited from 2017 to

2023. This database encompasses data from 473,681 participants,

including 15,045 individuals with obesity due to excessive caloric

intake, 240 individuals with drug-induced obesity, 1,064 individuals

with extreme obesity associated with alveolar hypoventilation, and

132 individuals with localized adiposity. The control group

consisted of varying numbers of individuals, ranging from

355,786 to 355,902 (Kurki et al., 2023). The inclusion and

exclusion criteria for participants were determined based on the

ICD-10 codes of the primary diagnosis during hospitalization.

Pharmaceuticals inducing obesity include Corticosteroids,

antihypertensive drugs (b-adrenergic blockers), neuropsychiatric

medications (Clozapine, olanzapine, quetiapine), antidepressants

(amitriptyline, nortriptyline, and mirtazapine), and antiepileptic

drugs (valproate and carbamazepine). Specific disease codes are

provided in Table 1. Participants in FinnGen provided informed

consent for biobank research on basis of the Finnish Biobank Act.

The Coordinating Ethics Committee of the Hospital District of

Helsinki and Uusimaa (HUS) approved the FinnGen study protocol

(number HUS/990/2017). Due to variations in race and population

stratification, the exposure and outcome databases were derived

from European populations. The study population includes both

males and females, mitigating potential biases arising from

population stratification (Emdin et al., 2017).
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2.2 Study approach

In this study, a two-sample Mendelian randomization (MR)

design was employed to investigate the causal effects of gut

microbiota on various types of obesity (Figure 1). Genetic

variants associated with gut microbiota were selected as

instrumental variables (IVs). Multiple analytical methods,

including inverse variance-weighted (IVW), MR-Egger regression,

weighted median, and MR-RAPS, were utilized. Additionally,

sensitivity analyses were conducted using MR-Egger intercept

test, Cochran’s Q test, and leave-one-out analysis for quality

control purposes. A MR analysis must adhere to the following

three assumptions: 1) the relevance assumption: there is a strong

association between instrumental variables and exposure factors; 2)

the independence assumption: instrumental variables must be

independent of confounding factors influencing both exposure

and outcomes; 3) the exclusion assumption: instrumental

variables should not directly impact the outcome variable.
2.3 Instrumental variable selection

In line with the study design and assumptions described above,

our initial step involved extracting SNPs significantly correlated

with both exposure and outcomes using a p-value threshold of

p<1×10-5. A linkage disequilibrium (LD) threshold (r2<0.01,

kb=0000) was applied to ensure SNP independence by

eliminating linkage disequilibrium. Subsequently, we calculated

the F-value for each SNP as an indicator of strength, and SNPs

with F<10 were deemed weak instrumental variables and removed

(Burgess et al., 2017). During the process of outcome data

extraction, any missing SNPs in the outcome database were

replaced with highly correlated proxy SNPs. Additionally, during

dataset matching, this study excluded ambiguous and palindromic

SNPs. Each SNP was examined using the PhenoScanner database

(Staley et al., 2016), and SNPs associated with distinct confounding

factors were excluded based on different outcomes (as shown in

Table 1). MR-PRESSO was utilized to detect and eliminate SNPs

with levels of horizontal pleiotropy outliers. MR-Steiger analysis

was conducted on all SNPs to verify the direction of causal

estimates, and SNPs with erroneous directions were removed

according to the method described by (Li et al., 2022).
TABLE 1 Dataset information, disease ICD-10 codes, and confounders identification.

Datasets NCase
Sample
Size

Year Author Gender Population NSNP
ICD10
Codes

Confounders

Gut microbiota abundance 14306 14306 2021 Kurilshikov MF European 5547067 – –

Localized adiposity 132 355918 2023 FINNGEN MF European 20167370 E65 E, M, D

Obesity due to excess calories 15045 370947 2023 FINNGEN MF European 20167370 E66.0 M, D

Drug-induced obesity 240 356142 2023 FINNGEN MF European 20167370 E66.1 E, D

Extreme obesity with
alveolar hypoventilation

1064 356966 2023 FINNGEN MF European 20167370 E66.2 E, M, D
NCase, Number of Cases; NSNP, Number of Available SNPs; MF, Males and Females; E, Excessive intake of calories; M, Medications (e.g., hormones.); D, Endocrine Disorders (e.g.,
hypothalamic disorder.).
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Subsequently, a Bonferroni correction (P<0.05/n, where n

represents the number of remaining SNPs) was applied to remove

SNPs directly correlated with outcomes. Following this stringent

selection process, the SNPs that remained were deemed as qualified

instrumental variables.
2.4 Univariable MR analysis

We employed a variety of MR methods to assess the causal

relationship between gut microbiota and obesity, including Inverse

Variance Weighting (IVW), MR-Egger regression, weighted

median, weighted mode, and MR-PAPS method.

The IVW method is a weighted linear regression without an

intercept term that uses the reciprocal of the variance of the genetic

associations’ product with the outcome as weights (Burgess et al.,

2013). Although some have suggested weighted methods with

second-order weights, in practice, utilizing first-order standard

errors is often reasonable (Burgess et al., 2016). The IVW method

is divided into fixed-effects (FE) and multiplicative random-effects

(MRE) models based on the consistency of SNP effect differences. In

contrast to the IVW method, MR-Egger includes an intercept term

that allows for detection of SNP-level pleiotropy (Burgess and

Thompson, 2017).

Although the aforementioned methods are commonly used in

MR analysis, the weighted average of ratio estimates will differ from
Frontiers in Cellular and Infection Microbiology 04
zero if the ratio estimate of a single variant is non-zero, leading to a

“0% breakdown point” inferences issue where a single incorrect data

point can cause estimates to exhibit arbitrary large bias. To address

the “0% breakdown point” issue, we also employed two consensus

methods. We considered the weighted median method with a 50%

breakdown point (based on the majority valid assumption) and the

weighted mode method with a higher breakdown point (based on

the plurality valid assumption) (Bowden et al., 2016a; Burgess

et al., 2019).

Finally, we also employed a common modeling approach, the

MR-Robust Adjusted Profile Score (RAPS) method. This method

directly models pleiotropic effects of genetic variants using a

random-effects distribution, which is likely to perform well when

pleiotropic effects are truly normally distributed about zero. To

mitigate the increased statistical Type I error rate due to multiple

testing, we applied the False Discovery Rate (FDR) method to

correct the results, and an adjusted p-value <0.05 was considered a

significant causal effect.
2.5 Multivariable MR analysis

Building upon the results of univariable MR analysis, we

conducted multivariable MR (MVMR) analysis using the same

parameters with various methods.Multivariable MR is an

extension of the standard univariable MR, incorporating
FIGURE 1

The study design of the MR study of the associations of gut microbiota on obesity. UV, univariable; MV, multivariable; MR, Mendelian Randomization;
GWAS, Genome-Wide Association Study; SNP, Single Nucleotide Polymorphism, used as instrumental variables for exposure and outcome; LD,
Linkage Disequilibrium; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; FDR, False Discovery Rate. Parts of the figure
were drawn by using pictures from Servier Medical Art.
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instrumental variables related to one or more gut microbiota

and enabling the estimation of direct causal effects of each

microbiota in a single analysis (Burgess and Thompson, 2015;

Sanderson et al., 2019). Additionally, all included SNPs must be

independent of each other. In this study, multivariable analyses

were performed using the IVW method, MR-Egger method,

Weighted median method, and Lasso method to elucidate gut

microbiota with independent causal effects.
2.6 Sensitivity analysis

Cochran’s Q test was employed to assess heterogeneity among

IVs, considering SNPs with Q test P-value < 0.05 as

heterogeneous; MR-Egger intercept was computed to determine

the presence of pleiotropy among SNPs, and an intercept

significance P-value < 0.05 indicates horizontal pleiotropy.

Given the adoption of various MR analysis methods, in the

absence of heterogeneity and pleiotropy among SNPs, we

considered the results from the IVW-random effects model as

the primary results; in the presence of heterogeneity, we

integrated results from the IVW-random effects model and the

weighted median method; in the presence of pleiotropy, we

regarded results from the MR-Egger method as the primary

results (Burgess et al., 2019). Additionally, we employed the

MR-Steiger model to validate the estimated overall direction for

result robustness; to ascertain the presence of influential SNPs, we

conducted a leave-one-out sensitivity test. The MR-Egger

regression requires fulfillment of the Instrument Strength

Independent of Direct Effect (InSIDE) assumption (Burgess and

Thompson, 2017) and the No Measurement Error (NoME)

assumption (Bowden et al., 2016b). We generated a funnel

plot and calculated the I2 statistic to confirm the validity of

these assumptions. Correction for causal estimates is necessary

when I2 < 90%, and MR-Egger is the primary analytical method

(Bowden et al., 2016b).
2.7 Visualization of results

We created a heatmap for the overall MR results and depicted

significant MR findings using forest plots. Additionally, for each set

of MR analyses, scatter plots and regression curve plots were

generated, along with forest plots illustrating the effects of

individual SNPs. These visualizations will be presented in the

Supplementary Materials.
2.8 Statistical analysis software

All statistical analyses and visualizations in this study were

conducted using R software (version 4.1 .2) with the

“TwoS amp l eMR , ” “MR-PRES SO , ” “mr . r a p s , ” a n d

“forestploter” packages, as well as several foundational

R packages.
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3 Results

3.1 Instrument variable selection

Initially, we screened a total of 7671 SNPs associated with gut

microbiota. No weak instruments with F<10 were identified.

Among them, 388 SNPs were excluded due to missing data in the

outcome database, 1716 SNPs were removed as ambiguous or

palindromic SNPs during dataset integration, and 99 SNPs were

deleted after PhenoScanner retrieval revealed associations with

confounding factors. MR-PRESSO testing identified 25 SNPs with

horizontal pleiotropy. MR-Steiger analysis did not reveal any SNPs

with incorrect causal directions. After Bonferroni correction, 18

SNPs directly related to the outcome were removed. In the end,

5965 qualified SNPs were included in the study.
3.2 Mendelian randomization analysis

In this study, MR analysis was conducted for a total of 750

batches, and detailed results for all methods can be found in

Supplementary Table 2. A total of 60 batches exhibited positive

results in the MR analysis. However, after FDR correction, only 10

batches showed significant causal relationships (adjusted P-value <

0.05). We created a heatmap with red indicating significant findings

(Figure 2) and a forest plot based on the main methods in the

significant MR results (Figure 3). We conducted a comprehensive

sensitivity analysis on all MR results. The results of the Q-test are

provided in Supplementary Table 6, indicating heterogeneity in 13

batches. After comparing the results of IVW (MRE) and Weighted

median methods for these batches, we found consistent conclusions

between the two methods. The MR-Egger intercept test results can

be found in Supplementary Table 7, indicating horizontal

pleiotropy in the analysis of 7 batches. Therefore, we employed

the MR-Egger method as the primary analytical approach for these

7 batches without the need for causal correction (I2 > 90%). The

remaining batches were analyzed using the IVW (MRE) method as

the primary approach. This study did not identify SNPs that

strongly influenced the significant results. Leave-one-out analysis

results are available in Supplementary Figure 3. The MR-Steiger test

did not identify overall directional errors in the analysis results.
3.3 Impact of gut microbiota abundance
changes on obesity onset

Through univariate and multivariate MR analyses, we identified

four intestinal microbial communities that influence the occurrence

of obesity. Additionally, we discovered six potential influential

microbial communities, which were no longer significant after the

multivariate analysis. Ruminococcaceae UCG010 independently

reduces the risk of obesity due to excess calorie intake (Odds

Ratio (OR): 0.842, 95% confidence interval (CI): 0.766-0.926,

Adjusted P value: 0.028). Butyricimonas independently increases

the risk of obesity due to excess calorie intake (OR: 4.252, 95% CI:
frontiersin.org
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2.177-8.307, Adjusted P value: 0.002). Pasteurellaceae is a protective

factor for localized adiposity population (OR: 0.213, 95% CI: 0.115-

0.395, Adjusted P value: <0.001). Lactobacillus reduces the risk of

extreme obesity with alveolar hypoventilation (OR: 0.724, 95% CI:

0.609-0.860, Adjusted P value: 0.035). Although the following

bacteria are no longer significant after multivariable MR, we still

consider them potential factors influencing the onset of obesity.

Specifically, the Ruminococcus torques group may potentially

increase the risk of its onset. Desulfovibrio, and Catenabacterium

may act as protective factors in the development of Drug-induced

obesity in the population. Oxalobacteraceae, Actinomycetaceae, and

Ruminiclostridium 9 may potentially increase the risk of Drug-

induced obesity. No heterogeneity and horizontal pleiotropy were

observed among the SNPs in the above-mentioned study (all P

values for Q test and MR-Egger intercept > 0.05) (Table 2).
4 Discussion

In this study, we found significant differences in the gut

microbiota characteristics among different types of obese

populations, revealing a close association between gut microbiota

and obesity. Through univariate and multivariate Mendelian

randomization (MR) analyses, we identified significant alterations

in the abundance of Ruminococcaceae UCG010, Butyricimonas,

Lactobacillus, and Pasteurellaceae in populations with Obesity due
Frontiers in Cellular and Infection Microbiology 06
to excess calories, drug-induced obesity, extreme obesity with

alveolar hypoventilation, and localized adiposity, respectively,

which confirms the independent association of these four-gut

microbiota with obesity. Additionally, we observed potential

correlations between obesity and six other gut microbiota.

Previous studies, both in rodents and human clinical research,

consistently demonstrated a common pattern in the gut microbiota

of obese individuals, characterized by a relative decrease in the

abundance of Bacteroidetes and an increase in Firmicutes. Reiner

and Mary, among others, observed an increase in Firmicutes and a

decrease in Bacteroidetes abundance in mice exposed to a high-fat

diet (Hildebrandt et al., 2009; Jumpertz et al., 2011). A study

conducted on the Ukrainian population found a significant

increase in Firmicutes and a decrease in Bacteroidetes levels in

adult obese individuals in the country. Furthermore, the Firmicutes/

Bacteroidetes ratio was positively correlated with BMI (Koliada

et al., 2017). Ley et al. also reported a higher abundance of

Firmicutes and a lower abundance of Bacteroidetes in obese

populations, with the proportion of Bacteroidetes gradually

increasing with the frequency of low-calorie (that is, low-fat

and low-carbohydrate) diets (Ley et al., 2006). At the genus

level, the gut microbiota of overweight or obese individuals

exhibited differences compared to the healthy group. Million et al.

identified a positive association between Lactobacillus reuteri

and obesity, while Lactobacillus reuteri, Escherichia coli, and

Methanobrevibacter smithii showed a negative correlation with
FIGURE 2

Significance heatmap of MR analysis. IVW, inverse variance weighted; MR, Mendelian randomization; RAPS, Robust Adjusted Profile Score.
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obesity (Million et al., 2013). Yun et al. conducted 16S rRNA gene

sequencing on healthy, overweight, and obese populations and

identified a positive association of Paraprevotellaceae with

overweight individuals, while Acidaminococcus and Adlercreutzia

showed a positive correlation with obesity; Eggerthella exhibited

a negative correlation with both overweight and obese patients

(Yun et al., 2017).

In contrast to the aforementioned studies, our investigation of

obese patients in a European population, where both the exposure

and outcome were European individuals, revealed a decrease in the
Frontiers in Cellular and Infection Microbiology 07
abundance of Firmicutes and Bacteroidetes in their gut microbiota,

accompanied by an increase in Bacteroidetes abundance. We believe

that the primary reason for the observed differences lies in the

variation in the study populations. Previous related studies

primarily focused on individuals with obesity primarily attributed

to excessive calorie intake. In contrast, our study conducted a more

detailed stratification of obese patients, incorporating multiple

outcome variables for Mendelian randomization analysis.

Consequently, we observed a decrease in the abundance of

Ruminococcaceae UCG010 (a family within the Ruminococcaceae
B

A

FIGURE 3

Results and forest plot of the MR analysis. (A) Results and forest plot of the significant UVMR analysis; (B) Results and forest plot of the MVMR
analysis; IVW(MRE), inverse variance weighted (multiplicative random effects model); CI, confidence interval; NExp, sample size of exposure dataset;
NOut, sample size of outcome dataset; NSNP, number of SNP included in MR analysis; *refer to existence of heterogeneity of SNPs, #refer to
existence of pleiotropy between SNPs.
TABLE 2 Sensitivity analysis of significant MR results.

Exposures Outcomes
Pval for
MR-Egger
intercept

Q of IVW
Pval for Q
test of IVW

Q of
MR-Egger

Pval for Q
test of
MR-Egger

MR-Steiger

genus Lactobacillus
Extreme obesity with
alveolar hypoventilation

0.762 1.934 0.963 1.833 0.934 TRUE

family
Pasteurellaceae

Localized adiposity 0.586 6.389 0.895 6.075 0.868 TRUE

genus
Ruminococcaceae
UCG010

Obesity due to
excess calories

0.482 2.022 0.846 1.424 0.840 TRUE

genus
Ruminococcus
torques group

Obesity due to
excess calories

0.599 0.906 0.970 0.581 0.965 TRUE

genus Desulfovibrio Drug-induced obesity 0.432 5.655 0.686 4.961 0.665 TRUE

genus
Catenibacterium

Drug-induced obesity 0.602 0.385 0.943 0.009 0.996 TRUE

family
Oxalobacteraceae

Drug-induced obesity 0.769 10.855 0.623 10.765 0.549 TRUE

family
Actinomycetaceae

Drug-induced obesity 0.730 0.676 0.879 0.518 0.772 TRUE

genus
Ruminiclostridium9

Drug-induced obesity 0.882 1.199 0.991 1.175 0.978 TRUE

genus
Butyricimonas

Drug-induced obesity 0.540 7.901 0.793 7.501 0.757 TRUE
MR analysis with less than 3 SNPs are not available for Cochran’s Q test. IVW, inverse variance weighted method; MVMR, multivariable mendelian randomization.
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family) in individuals with obesity resulting from excessive calorie

intake. This bacterium belongs to the Firmicutes phylum, and its

production of short-chain fatty acids (SCFAs), primarily butyrate,

serves as a major energy source for colonocytes (Kang et al., 2017).

Butyrate not only contributes to extra fat deposition in the body but

also binds to G protein-coupled receptors (GPR) 41 and GPR43

(Lin et al., 2012), promoting the expression of satiety hormones

such as peptide YY (PYY) and leptin in adipocytes (Louis and Flint,

2017; Cuevas-Sierra et al., 2019). Additionally, it stimulates hepatic

fat synthesis and intestinal motility (Chakraborti, 2015).

Furthermore, butyrate can induce L cells to secrete glucagon-like

peptide-1 (GLP-1), attenuating obesity (Yadav et al., 2013).

Therefore, we proposed that Ruminococcaceae UCG010 serves as

a protective factor against Obesity due to excess calories.

It is noteworthy that this study represents the first analysis of the

gut microbiota characteristics in individuals with drug-induced

obesity, extreme obesity with alveolar hypoventilation, and localized

adiposity. The findings have revealed some intriguing results. We

observed an increased abundance of Butyricimonas in the gut

microbiota of individuals with drug-induced obesity. Butyricimonas,

the Gram-negative anaerobic bacterium within the Bacteroidota

phylum, Odoribacteraceae family, is considered to significantly

ameliorate obesity induced by a high-fat diet and reduce hepatic fat

deposition (Rodriguez et al., 2020; Lee et al., 2022). However, in this

study, Butyricimonas not only had no discernible impact on the

population with obesity due to excess calorie intake but rather

increased the risk of developing drug-induced obesity. Several

potential reasons may underlie this paradox: Gram-negative bacteria

contain lipopolysaccharides (LPS) as an intrinsic component of their

cell wall, which is considered an endotoxin. In healthy individuals,

blood levels of LPS are typically low. LPS is a potent activator of toll-

like receptor 4 (TLR4) (Lim and Staudt, 2013). The binding of LPS to

TLR4 can activate a wide array of cellular signaling pathways, inducing

inflammation responses and the expression and secretion of cytokines

within adipocytes and macrophages, leading to insulin resistance

development and increased obesity (Medzhitov and Horng, 2009;

Abdallah Ismail et al., 2011). Furthermore, the increase in LPS can

directly enhance intestinal permeability, further exacerbating

metabolic endotoxemia and inflammatory responses (Saad et al.,

2016). Additionally, it is possible that Butyricimonas amplifies the

effects of drugs in the process of inducing obesity, thereby further

promoting or exacerbating obesity. Our hypothesis gains additional

support from a report detailing the isolation of a new anaerobic

bacterial species, Butyricimonas phoceensis sp. nov., from a severely

obese 57-year-old French woman with a BMI of 55.8 kg/m² (Togo

et al., 2016). Further research is required to delve into the specific

mechanistic correlations between Butyricimonas and drug-

induced obesity.

In individuals with extreme obesity accompanied by alveolar

hypoventilation, we observed a decreased abundance of Lactobacillus,

a genus within the Lactobacillaceae family, Firmicutes phylum.

Previous research has consistently demonstrated the beneficial

effects of many Lactobacillus strains in mitigating obesity in calorie-

induced obesity populations. Wei et al. observed that
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reduced the body weight, Lee’s index, and fat index in high-fat

diet-fed mice, significantly alleviating obesity (Song et al., 2021).

Kang et al. also confirmed the significant role of Lactobacillus

acidophilus in combating obesity, suppressing inflammation,

increasing energy metabolism, and regulating lipid metabolism

(Kang et al., 2022). Lactobacillus can restore the intestinal barrier,

reduce intestinal permeability, inhibit bacteria and LPS entry into the

liver, further suppressing the TLR4/NF-kB signaling pathway, and

reducing inflammation. Additionally, this bacterium can increase the

production of short-chain fatty acids (SCFAs) and regulate bile acid

metabolism (Carvalho and Saad, 2013). In this study, we identified

Lactobacillus as a protective factor in individuals with extreme obesity

accompanied by alveolar hypoventilation. This represents the first

discovery of this bacterium’s newfound prominence in this context.

However, the specific mechanisms remain incompletely understood,

necessitating further in-depth research.

Lastly, we observed a decreased abundance of Pasteurellaceae in

individuals with localized adiposity. There is limited research

regarding the association between Pasteurellaceae and obesity.

This bacterium belongs to the Gram-negative anaerobic bacteria

within the phylum Proteobacteria, comprising 13 genera and 65

species (Bonaventura et al., 2010). Most of its members live in

symbiosis on the mucosal surfaces of birds and mammals,

particularly in the upper respiratory tract (Kokotovic et al., 2007).

Some of the human pathogens within this family include

Haemophilus influenzae (St Geme, 2002) and Aggregatibacter

species (Peng et al., 2019), which can cause various diseases such

as meningitis, otitis media, chancroid, pneumonia, periodontitis,

among others (Mullen et al., 2007). Maria et al. conducted a

comparative genomic analysis of Pasteurellaceae and identified

numerous unique conserved signature indels (CSIs). These CSIs

were found to be uniquely shared among all sequenced Pasteurella

species/strains and were not present in other bacteria. Hence, it is

not out of the realm of possibility that Pasteurellaceae’s potential

role in ameliorating localized adiposity may be linked to these

unique CSIs. However, due to the limited research in this area,

further validation is required (Bonaventura et al., 2010).

With the increasing annual incidence of obesity, obesity, as one of

the key global economic and health concerns, is receiving growing

attention. Obesity not only affects the quality of people’s life but also

increases the risk of various short-term and long-term complications,

thereby reducing life expectancy. Therefore, the treatment of obesity

is currently a focal point of interest. To date, apart from lifestyle

interventions, there are some anti-obesity medications available that

are effective. However, they still have limitations, such as the potential

for adverse events and higher costs (Aron-Wisnewsky et al., 2021).

Therefore, in order to reverse the global obesity trend and its

associated management costs, there is a need to develop and

implement safe and cost-effective public health interventions.

It is known that probiotics can alter the composition and

population of the gastrointestinal microbiota and can be used to

prevent or ameliorate associated gastrointestinal diseases. However,

both have demonstrated promising preventative or therapeutic
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effects on non-gastrointestinal diseases, such as obesity, type 2

diabetes, and cardiovascular diseases, in animal models. Although

human data are equivocal, it offers a novel perspective for their

potential clinical use in managing diseases (Forgie et al., 2019) .

In this study, based on databases comprising European

populations for both exposure and outcomes, we conducted

univariable and multivariable Mendelian randomization (MR)

analyses. This study is the first to comprehensively stratify obesity

and unveil distinctive gut microbiota features among various obesity

types. It confirms the causal relationship between gut microbiota and

obesity. It is our hope that this work will provide novel diagnostic and

therapeutic avenues for different types of obesity in future clinical

practice. Furthermore, our study rigorously controlled for

confounding factors related to obesity, rendering the conclusions

more reliable compared to previous observational studies.

Nevertheless, this study has certain limitations. Firstly, our study

was confined to European populations. Given the substantial

differences in dietary habits and genetic traits among diverse

populations, the findings of this study may not be directly

applicable to populations outside of Europe. Secondly, this study

did not provide a molecular mechanism explaining how gut

microbiota precisely influences the occurrence of thrombotic

diseases. Thirdly, due to the limitations of the gut microbiota

genome-wide association study (GWAS) databases used in this

study, some gut microbiota beyond the scope of these databases

may have been inadvertently overlooked.
5 Conclusion

There is a causal relationship between gut microbiota

abundance and obesity, with distinct gut microbiota profiles

observed in different obese populations. The bacteria, including

Ruminococcaceae UCG010, Butyricimonas, Pasteurellaceae and

lactobacillus independently influence the development of various

types of obesity. Additionally, there are six gut microbiota species

with potential associations with the development of obesity. The

adjunctive therapy of probiotics and prebiotics may emerge as a

novel approach in the future treatment of obesity.
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