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Introduction: The global evolution of resistance to Artemisinin-based

Combination Therapies (ACTs) by malaria parasites, will severely undermine

our ability to control this devastating disease.

Methods: Here, we have used whole genome sequencing to characterize the

genetic variation in the experimentally evolved Plasmodium chabaudi parasite

clone AS-ATNMF1, which is resistant to artesunate + mefloquine.

Results and discussion: Five novel single nucleotide polymorphisms (SNPs) were

identified, one of which was a previously undescribed E738K mutation in a 26S

proteasome subunit that was selected for under artesunate pressure (in AS-ATN) and

retained in AS-ATNMF1. Thewild type andmutated three-dimensional (3D) structure

models and molecular dynamics simulations of the P. falciparum 26S proteasome

subunit Rpn2 suggested that the E738K mutation could change the toroidal

proteasome/cyclosome domain organization and change the recognition of

ubiquitinated proteins. The mutation in the 26S proteasome subunit may therefore

contribute to altering oxidation-dependent ubiquitination of the MDR-1 and/or K13

proteins and/or other targets, resulting in changes in protein turnover. In light of the

alarming increase in resistance to artemisin derivatives and ACT partner drugs in

natural parasite populations, our results shed new light on the biology of resistance

and provide information on novel molecular markers of resistance that may be

tested (and potentially validated) in the field.
KEYWORDS
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1 Introduction

Human malaria parasites, especially Plasmodium falciparum,

have evolved resistance to nearly all drugs available, including

artemisinin (ART) derivatives. This class of compounds consists

of rapidly acting drugs, with extremely high antimalarial potency

(Kumar and Zheng, 1990; ter Kuile et al., 1993; Meshnick et al.,

1996). The World Health Organization recommends their use in

combination with longer lasting antimalarial partners, under the

practice known as ACT (World Health Organization, 2015).

Unfortunately, reports of parasites showing increased tolerance to

one or both components of ACT are increasingly more frequent

(Ward et al., 2022). If high levels of resistance to ACTs should

evolve, the loss of the last effective treatment against the disease

could become a reality.

ART derivative’s mode of action and the mechanisms of

parasitic resistance in P. falciparum have been extensively studied.

ART and its derivatives require the cleavage of their distinctive

endoperoxide ring in order to be activated, after interacting with

intraparasitic heme (Meshnick, 2002). Once activated, ARTs bind

promiscuously to a large number of parasitic proteins (targets) that

are important for several different metabolic pathways (Wang et al.,

2015), causing parasite cell death through protein damage and

disruption of essential cellular functions (Wang et al., 2017).

Phenotypically, ART resistance in P. falciparum has been shown

to correlate with a deceleration on the progression from the

parasite’s ring stage, where heme occurs at low levels, to the

trophozoite stage, where heme is abundant. The phenotype of

ART resistance has been shown to be determined by several

mutations in the propeller domain of the parasite kelch 13 (K13)

gene, both through laboratory studies and in natural parasite

populations (Ward et al., 2022). K13 mutants have been

suggested to reduce the binding of ART to P. falciparum

phosphatidylinositol-3-kinase (PfPI3K), resulting in reduced

PfPI3K ubiquitination and a consequent lower synthesis of the

phospholipid signaling molecule PI3P (Mbengue et al., 2015).

Interestingly, PI3P has been implicated in intracellular trafficking

events, including protein export and haemoglobin (Hb) endocytosis

(Bhattacharjee et al., 2012), which is consistent with the observation

that mutant ART-resistant parasites exhibit reduced endocytosis

and haemoglobin uptake in ring stages (Behrens et al., 2021). More

recently, mutations in the K13 gene were confirmed to confer

artemisinin resistance by gene editing via clustered regularly

interspaced short palindromic repeat (CRISPR)/CRISPR-

associated protein 9 (Cas9) (Ghorbal et al., 2014; Simwela et al.,

2020) or zinc finger nuclease (ZFN) (Straimer et al., 2015).

Our group has long been addressing both the genetics and

genomics of ART and ACT resistance, using the rodent malaria

parasite Plasmodium chabaudi. We first identified mutations in a

gene coding for a deubiquitinating enzyme (UBP-1), which were

shown to be selected for, in recombinant progeny from genetic

crosses under ART treatment (Hunt et al., 2007), providing early

evidence for a potential role of differential protein ubiquitination in

ART resistance. Later, a parasite clone (P. chabaudi AS-ATNMF1),

selected experimentally in vivo for resistance to artesunate (ATN) +
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mefloquine (MF) was shown to harbor amplification and

overexpression of the mdr1 gene (Rodrigues et al., 2010). Also, we

have shown that mdr1 duplications are consistently selected for in

genetic crosses, when using not only artemisinin, but also other

drugs such as mefloquine and lumefantrine (Borges et al., 2011).

Later, we showed that an increased artemisinin-resistant phenotype

occurred along with a mutation in a functional element of the AP2

adaptor protein complex (Henriques et al., 2013), suggesting that

endocytosis and trafficking of membrane proteins may be involved.

In a bid to further explore ART resistance, and more

specifically, the dynamics and genetics of resistance to ACTs, the

genome of the ATN + MF-resistant AS-ATNMF1 clone was

investigated genome-wide for the presence of mutations using

second generation whole-genome sequencing. The mutations

identified in AS-ATNMF-1 were also inspected in its ATN-

resistant progenitor, AS-ATN. Among the variants found, one

mutation in a 26S proteasome subunit is the most likely to

modulate resistance to artemisinins in malaria parasites.
2 Materials and methods

2.1 Parasite clones, maintenance, and
measurement of parasite growth

Blood infected with Plasmodium chabaudi AS parasites was

kept in liquid nitrogen and thawed on ice upon use. Infected blood

was inoculated into six-to-eight week old CD1 male mice and

parasite growth was observed during time by inspection of

Giemsa-stained blood smears by optical microscopy. The parasite
FIGURE 1

The AS lineage consists of an isogenic line of clones obtained a long
time after many steps of selection with different antimalarials. These
clones share a common precursor, the drug-sensitive clone, AS-
sensitive. Drugs used for the selection of each clone are
represented alongside each arrow: PYR, pyrimethamine; SP,
sulphadoxine/pyrimethamine; CQ, chloroquine; MF, mefloquine;
ART, artemisinin; ATN, artesunate. The clones used in this work are
highlighted in red. In addition, genome sequences previously
obtained for AS-sensitive and AS-50SP (highlighted in green) were
used for filtering the lineage specific mutations identified by whole-
genome sequencing of AS-ATNMF1.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1353057
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Cassiano et al. 10.3389/fcimb.2024.1353057
clones used in this study were (Figure 1): AS-ATN, which displays

low level resistance to artesunate (Afonso et al., 2006); AS-

ATNMF1, derived from AS-ATN through in vivo selection with

ATN + MF administered simultaneously (Rodrigues et al., 2010);

AS-ATN27P, a parasite that was obtained after twenty-seven

consecutive sub-inoculations of AS-ATN into untreated animals

(Rodrigues et al., 2010); clones AS-SENS (drug-sensitive) and AS-

50SP (resistant to sulphadoxine and pyrimethamine).

All animal work was conducted according to relevant national

and international guidelines: in Portugal, after approval by the

Ethics Committee of the Instituto de Higiene e Medicina Tropical of

Lisbon, Portugal, under PARECER 2/2006 from August 1st, 2006; in

the United Kingdom, in compliance with the United Kingdom

Animals (Scientific Procedures) Act 1986.
2.2 DNA extraction

Parasite DNA samples were extracted from blood by two

different methods: (a) Fresh blood samples – Infected mice were

exsanguinated by brachial artery puncture. Blood was processed,

and DNA extracted as previously described (Grech et al., 2002).

Host white blood cells were removed by CF11 cellulose (Whatman)

and Plasmodipur filters (Eurodiagnostica); and (b) Blood samples

preserved in filter paper – Blood samples were collected by a small

puncture on the mouse tail vein. A drop was preserved in Whatman

N° 4 filter paper and was extracted by boiling in Chelex-100 (Plowe

et al., 1995).
2.3 Illumina® (Solexa) genome sequencing

DNA obtained from fresh blood samples was processed

using standard methods according to the manufacturer’s

recommendation (Illumina, 2010). AS-ATNMF1 genome

sequencing was performed using the Illumina® (Solexa) platform,

with 50 bp reads, using a paired-end read approach at the Genepool

facilities at the University of Edinburgh, UK. Sequences were

aligned against an isogenic reference genome [AS-WTSI, curated

by the Pathogen Sequencing Group, Welcome Trust Sanger

Institute and available at Sanger Institute webpage (Sanger

Institute, 2009). The updated reference genome is available at

https://plasmodb.org/plasmo/app/record/dataset/DS_5dab6e4a9f,

with the following accession number: GCA_900002335.2] by two

software packages, Mapping and Assembly with Quality (MAQ) (Li

et al., 2008) and Sequence Search and Alignment by Hashing

Algorithm (SSAHA2), using default settings (Ning, 2001).

SNP detection was performed using in-built algorithms, with a

read depth of 3 set as the minimum threshold for SNP detection. In

order to filter out SNPs arising in the sensitive progenitor AS-SENS,

the list of SNPs obtained for AS-ATNMF1 was compared against a

list previously obtained for AS-SENS (Hunt et al., 2010). The two

filtered lists (for MAQ and SSAHA2) were then combined. Small

indels (< 3bp) were detected using the internal algorithm of

SSAHA2 only. The list of small indels was filtered against a

similarly obtained list for AS-SENS (Hunt et al., 2010).
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Larger indels (≥ 3bp) and copy number variation (CNV)

detection was performed using SSAHA2 as previously described

(Hunt et al., 2010). Two approaches were used to indicate areas of

significantly decreased or increased coverage (Hunt et al., 2010).

Since AS-ATNMF1 was sequenced using paired-end reads but AS-

SENS was originally sequenced using single-end reads (Hunt et al.,

2010), this approach could not be adopted using this clone, due to

the excessive variation introduced by the different sequencing

strategies adopted. Instead, a clone selected for sulphadoxine

resistance (AS-50SP) and re-sequenced using paired-end reads

(Martinelli et al., 2011) was selected to act as a “filter”, with the

caveat that false positives and negatives are likely to appear. Due to a

complete sequencing and analysis of other clones in the AS lineage

(Hunt et al., 2010), we can rely on the data previously obtained for

resolving any uncertainties and discovering false negatives. The

positions of all the mutations described here are in accordance to an

older version of the P. chabaudi annotated genome available on

Welcome Trust Sanger Institute website as indicated above.

All SNPs were treated as potentially genuine mutations pending

verification by di-deoxy sequencing. In the case of small and large

indels, the vast majority is still expected to be false positive calls

(Hunt et al., 2010; Martinelli et al., 2011; Kinga Modrzynska et al.,

2012) and limited di-deoxy sequencing was performed based on the

potential biological role attributed to the proteins coded by the

genes where mutations were present or, in the case of intergenic

mutations, the role of genes immediately close (either upstream or

downstream) to the identified mutations.
2.4 PCR, di-deoxy sequencing and
mutation inspection

A sub-set of mutations was chosen for verification by di-deoxy

sequencing. For that purpose, a region of about a 1.000 bp flanking

each mutation was used for designing oligonucleotide primers

(Supplementary Table 1) and the fragments were amplified by

PCR. DNA samples were obtained from dried blood spots and 1

ml of DNA was used as template in 50 ml reactions. The other

reagents were added to 10x Green GoTaqR Flexi Buffer (Promega)

to a final concentration of 1.5 mMMgCl2, 0.2 mM deoxynucleoside

triphosphate (each), 0.2 pmol/ml forward and reverse primers, and

1.25 U of Go Taq Flexi DNA Polymerase (Promega). Cycling

conditions were 93°C for 3 minutes, followed by 35 repeats of

denaturation at 93°C for 30 seconds, annealing for 45 seconds, and

elongation at 72°C for 1 minute. A final elongation step was

performed at 72°C for 10 minutes. PCR products thus obtained

were sequenced using the commercial services of STABVIDA

Laboratories (Oeiras, Portugal). Chromatograms were inspected

using Chromas 2.33 software (Technelysium).
2.5 Bioinformatics analysis of
protein sequences

Predicted protein sequence and function was retrieved from

PlasmoDB (Aurrecoechea et al., 2009) for all genes where a
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mutation was confirmed. Additionally, in cases where the predicted

protein sequence did not contain a functional annotation in

PlasmoDB, it was inspected for conserved domains and

functional sites using InterProScan, a tool that combines different

protein signature recognition methods into one resource (Zdobnov

and Apweiler, 2001; Quevillon et al., 2005; Mulder and

Apweiler, 2007).
2.6 Molecular modeling studies

The wild-type 3D structure of 26S proteasome subunit Rpn2 of

P. falciparum (PF3D7_1466300) was built by threading approach

through the I-Tasser server (Zhang, 2008; Yang et al., 2015). After

modeling, the structure underwent refinement through the

KobaMin server (Rodrigues et al., 2012), utilizing a knowledge-

based potential of mean force for minimization (Summa and Levitt,

2007). Hydrogen atoms were added using the MolProbity server

(Hintze et al., 2016). The mutant 3D structure E694K was derived

from the wild-type structure by substituting the side chain of

residue 694, using GROMACS v.5.1.2 (Van Der Spoel et al., 2005;

Abraham et al., 2015). For the molecular dynamics (MD)

simulations, the systems were solvated in a cubic box (solute box

distance of 1.2 nm) and charge neutrality was achieved by

introducing Na+ and Cl− ions at a concentration of 0.15 mol/L.

All simulations were conducted in GROMACS v.5.1.2, utilizing the

AMBER FF99SB-ILDN force field (Cornell et al., 1995). Water

molecules were described by the TIP3P model (Jorgensen

et al., 1983).

The systems were prepared as mentioned above and then

submitted to 1.000 steps of energy minimization using the

steepest descent method, with harmonic restraints applied to all

heavy atoms, to remove highly repulsive contacts or geometric

strain. The minimizations were completed when the tolerance of

1000 kJ/mol was no longer exceeded. Subsequently, the following

steps were performed to equilibrate the systems: (a) MD

simulations using the NVT ensemble with harmonic restraints

applied to all of the heavy atoms (1 ns); (b) MD simulations

using the NPT (isothermal-isobaric) ensemble with harmonic

restraints on all of the heavy atoms (1 ns); (c) MD simulations

using the NPT ensemble without any restraints (1 ns). After these

preparatory steps, MD trajectories of 100 ns for each system were

generated as the production phase, in duplicates. The simulations

were performed through periodic boundary conditions, using a cut-

off of 1.0 nm, at a temperature of 300 K and 1 atm pressure.

Electrostatics interactions were evaluated using the particle mesh

Ewald algorithm (Leach, 2001). All RMSF and b-factor were

calculated using the GROMACS gmx-toolbox (https://

manual.gromacs.org/current/user-guide/cmdline.html). Visual

Molecular Dynamics program (VMD) (Humphrey et al., 1996)

was employed for visualizing MD trajectories, calculating residue-

residue distances and rendering the molecular images. Additional

molecular images were created using Python Molecular Viewer

v.1.5.6 (Morris et al., 2009), while the graphs were generated using

XMgrace software (http://plasma-gate.weizmann.ac.il/Grace/).
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3 Results

3.1 Whole genome sequencing of
AS-ATNMF1

The genome of the resistant clone AS-ATNMF1 was sequenced

and 23,732,208 reads were produced with 21,816,439 reads

(approximately 91% of all reads) mapped to the reference genome

by SSAHA2. The average coverage of the whole genome was ~50-

fold and 43% of the genome had at least 40-fold coverage, 92% was

covered by at least 10 reads, whereas less than 0.7% of genome was

not covered by any read. A subset of mutations was chosen for

verification by di-deoxy sequencing, as will be described in detail

below. It is worth noting that all the mutations analyzed by di-deoxy

sequencing in AS-ATNMF1 and AS-ATN were also investigated in

the parasites sub-inoculated twenty-seven times in untreated

animals, AS-ATN27P. Unsurprisingly, AS-ATN27P showed the

same genotype as AS-ATN.

3.1.1 SNP detection
A total of 21 potential SNPs were identified by SSAHA2, which

were all treated as potentially genuine mutations pending

verification by di-deoxy sequencing. However, four SNPs were

not subjected to di-deoxy sequencing. This was due to their

location in subtelomeric regions or in unassigned contigs (bin),

and the technical difficulties associated with PCR amplification of

these regions. The remaining potential SNPs were successfully

inspected by di-deoxy sequencing. Eight of these were rejected

upon re-inspection as Illumina sequencing false positives

(Supplementary Table 2).

The presence of nine genuine SNPs was confirmed by di-deoxy

sequencing. Four of these had been previously identified: (a)

V2697F substitution on the pcubp1 gene (PCHAS_020720),

coding for a deubiquitinating enzyme which has been associated

with resistance to artesunate in the progenitor of AS-ATNMF1, AS-

ATN (Hunt et al., 2007); (b) S109N replacement on the pcdhfr gene

(PCHAS_072830), which encodes a dihydrofolate reductase

enzyme previously implicated in pyrimethamine resistance

(Hayton et al., 2002; Martinelli et al., 2011); (c) A173E

substitution on the pcaat1 gene (PCHAS_112780), coding for a

putative amino acid transporter which appears to be involved in CQ

resistance (Kinga Modrzynska et al., 2012); and (d) a T to G

substitution in position 936,945 on chr 14, placed in an intergenic

region, close to the 5´-end of the PCHAS_142600 gene of unknown

function (annotated as conserved Plasmodium protein). This

mutation was first identified in a clone showing resistance to PYR

(Hunt et al., 2010; Martinelli et al., 2011).

Out of the five remaining genuine SNPs (Table 1), three were

already present in the progenitor AS-ATN. These were (a) an A to G

substitution identified in position 636,862 on chr 6. This nucleotide

substitution falls within an intergenic region near the 3´-end of the

PCHAS_061710 gene, which codes for a seryl t-RNA ligase, as

indicated in PlasmoDB; (b) a K998* substitution on gene

PCHAS_132020 whose corresponding product´s function is

annotated as a conserved Plasmodium protein in PlasmoDB, but
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which contains an RNI-like signature following inspection through

InterProScan; and (c) a E738K subst itut ion on gene

PCHAS_133430, coding for the 26S proteasome regulatory

subunit RPN2.

Only two SNPs were identified in AS-ATNMF1 as appearing

after selection with the ATN + MF combination (Table 1). The first

was a K998L mutation in the PCHAS_132020 gene. Interestingly,

this gene was also mutated in the same residue in AS-ATN (which is

the progenitor of AS-ATNMF1; see above), where a nucleotide

substitution created a STOP codon (K998*), possibly generating a

truncated form of the encoded protein. Thus, in AS-ATNMF1, the

K998 mutation is likely to ‘rescue’ protein function either partially

or completely (as the STOP codon present in AS-ATN was replaced

by a leucine (neutral). In AS-SENS, this position originally coded

for a lysine (positively charged).

Furthermore , we ident ified a D560Y mutat ion in

PCHAS_143160. Although the function of the gene is unknown,

inspection of its predicted protein sequence in InterProScan

indicated that the product of this gene contains a region with

high similarity to armadillo-type repeats (Table 1). These typically

consist of a multi-helical fold comprised of two curved layers of

alpha helices arranged in a regular right-handed superhelix, where

the repeats that make up this structure are arranged about a

common axis (Groves and Barford, 1999). Usually, these

structures are well suited to binding proteins and nucleic acids

and are found in a wide range of proteins.

3.1.2 Indel and CNV detection
The 193 potential indels or CNVs were identified by SSAHA2 in

AS-ATNMF1. As referred in the Material and Methods section, in

this work only a sub-set of thirteen indels/CNVs was analyzed and,

when possible, verified by di-deoxy sequencing (Supplementary

Table 3). Ten of those were certified as false positives upon

resequencing (Supplementary Table 3, highlighted in red). One

indel identified on chr 3 in AS-ATNMF1 was confirmed by di-deoxy

sequencing (Supplementary Table 3, highlighted in green) to be

present also in its progenitor AS-ATN. This consisted of an AAT

deletion (I103) which was identified in the PCHAS_031370 gene, a

protein coding gene of unknown function, but predicted to have 12

transmembrane domains, according to PlasmoDB. Interestingly,
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the I103 deletion falls within the third predicted transmembrane

domain of the protein and has been previously shown to be selected

by chloroquine earlier in the AS lineage (Kinga Modrzynska

et al., 2012).

A 34 bp deletion from position 876,894 to 876,927 on chr 7

present in AS-ATNMF1 (Supplementary Table 3, highlighted in

blue) was not identified by Illumina sequencing due to the use of

AS-50SP as a filter for the identification of indels but was verified by

di-deoxy sequencing. This mutation first appeared in AS-PYR

(Walliker et al., 1975), the progenitor of AS-50SP (Hayton et al.,

2002). Instead, two SNPs very close to each other were identified (A

to G substitution in position 876,917 and a C to A substitution in

position 876,919 on chr 7). It is worth noting that SNP

identification was made using AS-SENS as filter, instead of AS-

50SP, and for that reason, these polymorphisms were detected and

rather than being genuine SNPs were artefacts due to the presence

of the deletion. The presence of this false negative raises the issue of

other potential indels having been overlooked due to the use of AS-

50SP as a filter. However, the extensive knowledge of the other

clones belonging to the AS lineage minimizes the probability of

other false negatives.

The remaining indels could not be verified by di-deoxy

sequencing due to their large sizes or location in low complexity

regions that prevent the design of suitable sequencing primers.

However, there is strong evidence indicating they represented

genuine polymorphisms, since large indels leave a strong

signature in the reads mapping patterns.

These included deletions located on chr 5, chr 13 and contig

11844. The deletion on chr 5 was identified as present in other

clones of the AS lineage in previous work (Hunt et al., 2010). A

60Kb deletion at the beginning of chr 13 was identified in AS-ATN

(Supplementary Table 3), encompassing approximately 15 genes. A

large deletion on contig 11844, which contains many features

associated with sub-telomeric and telomeric chromosomal

regions, was postulated to be a continuation of the sub-telomeric

60 kb deletion on chr 13. Indeed, contig 11844 has been merged

with the sub-telomeric end of chr13 containing the deletion in the

latest version of the P. chabaudi genome (Aurrecoechea et al., 2009;

Brugat et al., 2017). The potential contribution of these deletions to

artesunate resistance remains to be investigated.
TABLE 1 List of mutations identified exclusively in Plasmodium chabaudi AS-ATNMF1 and in its progenitor AS-ATN.

SNPs Selected
in

Type Predicted protein function Chromosome Gene ID

a636,862g AS-ATN Intergenic – 6 –

K998* AS-ATN Nonsense Conserved Plasmodium protein in PlasmoDB. RNI-like Superfamily (aa 788-1421,
1.1E-13) in InterPro

13 PCHAS_132020

E738K AS-ATN Missense 26S proteasome regulatory subunit RPN2, putative 13 PCHAS_133430

K998L AS-ATNMF1 Missense Conserved Plasmodium protein in PlasmoDB. RNI-like Superfamily (aa 788-1421,
1.1E-13) in InterPro

13 PCHAS_132020

D560Y AS-ATNMF1 Missense Conserved Plasmodium protein in PlasmoDB. Armadillo-type fold in InterPro (aa
799-958, 1.5E-25)

14 PCHAS_143160
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3.2 Molecular modeling of P. falciparum
26S proteasome subunit Rpn2

The 26S proteasome comprising a 20S proteolytic core and two

19S regulatory particles (19S-RP) plays a pivotal role in the

proteolysis of ubiquitylated proteins in the cell. The 19S-RP

subunits Rpn1 and Rpn2 are responsible for recognizing

ubiquitylated proteins and priming them for proteolysis by the

20S core. The Rpn2 subunit is assembled from a rod-like N-

terminal domain, a toroidal proteasome/cyclosome (PC) domain,

and a globular C-terminal domain (He et al., 2012) (Figure 2A). The

PC repeat domain is a concentric arrangement of a helices: two

antiparallel a helices (axial helices), wrapped in a double layer of a
helices, consisting of the inner and outer helices (Figure 2B). We

built the wild-type structure of the P. falciparum Rpn2 subunit

based on P. falciparum primary sequence (Uniprot ID Q8IKH3),

through a fold recognition (threading) approach. Analysis of the

model’s Ramachandran plot (Supplementary Figure 1) revealed that

87.2% of the residues occupy the most favorable regions which is

close to the ideal of 90% (Laskowski et al., 1993), suggesting that the

built model is acceptable. Based on wild-type structure modeled, the

E694K mutant was computationally built. This mutation on P.

falciparum corresponds to the E738K mutation on the

PCHAS_133430 gene of P. chabaudi (Supplementary Figure 2).
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Considering the Rpn2 wild-type tertiary structure, we observe that

E694 is surrounded by positively charged residues, such as H689,

H693, K695 and R698. Hence, the substitution of glutamate with

lysine (E694K) leads to a significant alteration in the residue’s

standard interaction network.

To gain a deeper understanding of the dynamic behavior of the

Rpn2 subunit in both the wild-type (WT) and E694K mutant (MT)

models, we conducted two independent molecular dynamics

simulations (MDs) (100 ns each, in duplicate) of the WT and MT

structures. Figures 2C, D present snapshots of the most prevalent

E694 network interactions (WT-MD) and K694 network

interactions (MT-MD), respectively, as observed during the MD

simulations. Hydrogen bond analysis of residues interaction, in WT

and MT-MD simulations, are available as Supplementary Data

(Supplementary Figure 3). In WT-MD simulations, E694 network

interactions were extended from inner to axial helices, through salt

bridges (Figure 2C). In MT-MD simulations, K694 interacts with

outer helices residues/water molecules, and there is a rearrangement

of neighborhood residues (conformations and interactions)

(Figure 2D). The residue R698 underwent a conformational

change, deviating from its WT state by disrupting interactions

with inner helix residues and establishing new associations with

axial helix residues (Figure 2D). This shift in conformation affects

the interplay between the axial-inner and inner-outer a helices
B

C

D

A

FIGURE 2

(A) 3D structure of the whole P. falciparum protein 26S proteasome, Rpn2 subunit, PC domain, obtained by threading method. (B) Top view focusing
the toroidal-barrel-like PC repeat domain structural organization, highlighting outer, inner, and axial a helices. (C) Snapshoot of the MD simulation of
wild type Rpn2 subunit (top view of the toroidal-barrel-like PC domain), highlighting E694 network interactions: salt bridge among R698 (inner helix)
- E694 (inner helix) - D767 (inner helix) and salt bridge among R770 (inner helix) - D767 (inner helix) - Y926 (axial helix). (D) Snapshoot of the MD
simulation of E694K mutant Rpn2 subunit (top view of the toroidal-barrel-like PC domain), highlighting the conformational change of R698 and the
K694 network interactions: cation-p interaction between R698 and Y926; hydrogen bond between K694 and D727 or K694 and H689; salt bridge
between D767 - R770 - Y926.
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within the proteasome/cyclosome (PC) domain, subsequently

influencing the toroidal organization of the PC domain.
4 Discussion

We characterized the genome-wide variations occurring after

experimental evolution of resistance to artesunate + mefloquine in

the rodent malaria parasite AS-ATNMF1, which was derived from

the low artesunate-resistant parasite AS-ATN. This identified novel

mutations in AS-ATNMF1, some of which were shown to be

already present in is progenitor AS-ATN. Previously, we have

shown that P. chabaudi AS-ATNMF1, selected for resistance to

artesunate + mefloquine, has gained an extra copy of the multi-drug

resistance 1 (mdr1) gene (Rodrigues et al., 2010) and, interestingly,

that this does not incur in a fitness cost for AS-ATNMF1 (Rodrigues

et al., 2013). Overall, this provided early evidence that mdr1

amplification plays a role in resistance to the combination of

these drugs in P. chabaudi (Rodrigues et al., 2010). These results

have a parallel in P. falciparum, where mdr1 amplification is

associated with increased in vitro resistance or delayed parasite

clearance after treatment with ATN and MF either alone or in

combination (Price et al., 1997; Pickard et al., 2003; Price et al.,

2004; Wongsrichanalai and Meshnick, 2008; Chaijaroenkul et al.,

2010; Chavchich et al., 2010; Kubota et al., 2022).

It has been demonstrated in cancer cells that P-gp1 (coded by

mdr1) is targeted to degradation by the proteasome and that increased

ubiquitination results in reduction of P-gp1 function (Zhang et al.,

2004). As shown in a previous study, the AS-ATN clone harbours a

V2697F mutation in pcubp1 gene, which is believed to affect the

function of this protein, reducing de-ubiquitination of different

proteins, which would probably increase protein degradation,

including parasitic P-gp1, via the 26S proteasome (Hunt et al., 2007).

Since AS-ATNMF1 has inherited this mutation it could be expected

that reduced function of pcubp1 product would cause an increase in P-

gp1 degradation, therefore, being responsible for a reduction of P-gp1

expression. Interestingly, we found here that a previously undescribed

E738K mutation in the 26S proteasome regulatory subunit Rpn2 was

selected for with artesunate (in AS-ATN) and retained in

AS-ATNMF1.

Our molecular modeling simulations suggest that the E694K

mutation may disrupt axial-inner helix interactions and lead to the

formation of new inner-outer helix interactions within the structure of

the 26S proteasome regulatory subunit Rpn2. Consequently, this

mutation has the potential to alter the organization of the toroidal

PC domain and impact the recognition of ubiquitinated proteins. It is

well-established that oxidative stress, as induced by artemisinin, can

induce misfolding in proteins, which are subsequently degraded by the

proteasome. We therefore speculate that the mutation in the 26S

proteasome regulatory subunit Rpn2 may contribute to altering

oxidation-dependent ubiquitination of P-gp1 and/or other artesunate

protein targets, resulting in changes in protein turnover. These results

re-enforce the overall notion that differential protein ubiquitylation is

central to the biology of resistance to artemisinins in malaria parasites.
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Interestingly, genetic mutations in a gene encoding a putative

Kelch protein, K13, which is not mutated in P. chabaudi, are the

most important resistance artemisinin determinants in natural

populations of P. falciparum (Ashley et al., 2014). There is strong

evidence for an endocytic pathway concentrated around a K13‐

compartment, where apart from K13, a number of other proteins

are located, including UBP1 and AP2-mu (Behrens et al., 2021).

Also, it has been recently shown that reduced activity of Kelch13

and its interactors in this compartment causes a reduction in

hemoglobin endocytosis and, consequently, the activation of

artemisinins, resulting in parasite resistance (Birnbaum et al.,

2020). In light of these observations, we hypothesize that 26S

proteasome regulatory subunit Rpn2 may contribute to altered

K13 turnover. In AS-ATNMF1 apart from the previously

identified duplication and overexpression of the pcmdr1 gene

(Rodrigues et al., 2010), two additional SNPs were identified: (a)

the A805,659T substitution in PCHAS_132020 in chr 13; and (b)

the G1,155,448T in the PCHAS_143160 gene in chr 14 (Table 1).

Interestingly, PCHAS_132020 and the orthologous P. falciparum

protein PF3D7_1453200 possess an RNI domain. Fbox proteins

with RNI domains are part of Skp1-Cullin-Fbox (SCF) complexes

that ubiquitinate proteins with different substrate specificities (Jin

et al., 2004). The PCHAS_132020 mutated residue 998 is located in

the RNI domain (805-1035), which may lead to loss of Fbox-like

function in this protein. The NEDD8 Cullin-activating protein

inhibitor MLN4924 antagonizes the antimalarial activity of

dihydroartemisinin (Bridgford et al., 2018); hence, chemical

inhibition of SCF may phenocopy genetic loss of function in Fbox

and other parasite SCF proteins. SCF mutations that reduce protein

ubiquitination during normal parasite development may reduce the

load on the proteasome when the parasite is exposed to artemisinin.

In the future, inferring potential roles for the mutations reported

here in the resistance phenotype will benefit from conformational

studies, such as gene editing and drug sensitivity laboratorial assays

comparing with wild-type parasites from the same genetic

background, and phenotype-genotype association studies in

natural parasite populations of human malaria.
5 Conclusions

We had previously shown that the evolution of resistance to the

combination of artesunate + mefloquine selects malaria parasites

with amplification of the mdr1 gene. Additionally, we have now

shown that ACTs select point mutations in other genes, including

the 26S proteasome subunit. Molecular modeling calculations

suggest that compared to the wild-type, the E694K mutant of the

26S proteasome Rpn2 subunit may alter the organization of the

proteasome/cyclosome domain and this could impact in the

recognition of ubiquitinated proteins. The present work lends

weight to the general evidence that resistance to artemisinins is

largely conferred by ubiquitin-proteasome-dependent protein

turnover and provides novel molecular markers that may be

tested in natural populations of human malaria parasites.
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