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of Fusobacterium sp.,
Porphyromonas sp.,
Campylobacter sp., and Neisseria
sp. on the oral malignant
fibroma surface of giant panda
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Introduction: Microbial community composition is closely associated with host

disease onset and progression, underscoring the importance of understanding

host–microbiota dynamics in various health contexts.

Methods: In this study, we utilized full-length 16S rRNA gene sequencing to

conduct species-level identification of the microorganisms in the oral cavity of a

giant panda (Ailuropoda melanoleuca) with oral malignant fibroma.

Results: We observed a significant difference between the microbial community

of the tumor side and non-tumor side of the oral cavity of the giant panda, with

the latter exhibiting higher microbial diversity. The tumor side was dominated by

specific microorganisms, such as Fusobacterium simiae, Porphyromonas sp.

feline oral taxon 110, Campylobacter sp. feline oral taxon 100, and Neisseria sp.

feline oral taxon 078, that have been reported to be associated with tumorigenic

processes and periodontal diseases in other organisms. According to the linear

discriminant analysis effect size analysis, more than 9 distinct biomarkers were

obtained between the tumor side and non-tumor side samples. Furthermore, the

Kyoto Encyclopedia of Genes and Genomes analysis revealed that the oral

microbiota of the giant panda was significantly associated with genetic

information processing and metabolism, particularly cofactor and vitamin,

amino acid, and carbohydrate metabolism. Furthermore, a significant bacterial

invasion of epithelial cells was predicted in the tumor side.
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Discussion: This study provides crucial insights into the association between oral

microbiota and oral tumors in giant pandas and offers potential biomarkers that

may guide future health assessments and preventive strategies for captive and

aging giant pandas.
KEYWORDS

giant panda, oral tumor, 16S rRNA gene sequencing, oral malignant fibroma,
Fusobacterium, Porphyromonas
Introduction

The giant panda (Ailuropoda melanoleuca) was classified as a

vulnerable species by the International Union for Conservation of

Nature in 2016 and has thus been under rigorous protection in

China (Wei et al., 2020). They are renowned for having a

predominantly bamboo-based diet and can spend over 14 hours a

day consuming more than 30 pounds of bamboo to fulfill their

energy requirements (Viswanathan, 2010). Several studies found

that oral diseases in giant pandas not only disrupt their feeding but,

in certain cases, lead to their mortality (Jin et al., 2015).

Additionally, oral tumors present significant challenges to the

well-being of giant pandas, especially older individuals who, due

to dental degradation or loss, have specific dietary needs. Therefore,

exploring the mechanisms of oral carcinogenesis and minimizing

the incidence of oral tumors is paramount for the conservation of

giant pandas.

The oral cavity of giant pandas is a complex, warm, and moist

environment, similar to that of humans. Various factors, including

diet, age, and living conditions, can contribute to the development of

oral diseases. Although, in recent years, extensive research has been

conducted on oral diseases, such as dental caries (Liu et al., 2020),

periodontitis (Reyes, 2021), and oral tumors (Chen et al., 2021), in

humans and animals, there are limited reports on oral diseases in

giant pandas. Increasing evidence underscores the intrinsic

relationship between oral diseases and resident microorganisms.

Additionally, some studies suggest a strong association between

oral tumors and oral microbial species (El Tekle and Garrett, 2023;

Hayes et al., 2018; Stasiewicz and Karpinski, 2022), including

Peptostreptococcus oralis, Streptococcus salivarius, and Streptococcus

grigneri (Pushalkar et al., 2012; Zhang et al., 2020). A previous study

elucidated the role of the oral microbiome in the pathogenesis,

progression, and metastasis of oral tumors in humans (Li et al.,

2023). While some studies have delved into the oral microbe-disease

nexus in pets, like cats and dogs (Davis andWeese, 2022), research on

the oral microbiome of giant pandas is limited.

Jin isolated a total of 253 bacterial strains, representing 23

genera and 48 species, from the oral cavity of giant pandas (Jin et al.,

2012). Among these, the predominant bacterial genera included

Streptococcus, Moraxella, Peptostreptococcus, and Porphyromonas.

Additionally, a comprehensive analysis of the caries-related

microbiome in giant pandas detected 268 bacterial species,
02
spanning 189 genera, 98 families (Ma et al., 2022). Among these,

the dominant genera included unclassified Neisseriaceae,

Actinobacillus, Lautropia, Neisseria, Porhyromonas, unclassified

Pasteurellaceae, Moraxella, Streptococcus, Bergeywlla, and

Capnocytophaga. The paucity of research concerning the interplay

between oral microorganisms and the incidence of oral diseases in

giant pandas has been particularly underscored.

In this study, we aimed to explore the association between oral

malignant fibroma and the oral microbiome of giant pandas by

collecting oral samples from an afflicted individual and conducting

the full-length 16S rRNA gene sequencing analysis by PacBio

technology. Our aim is to identify the microorganism

composition and abundance that may be linked to the occurrence

of oral tumors in giant pandas, with the ultimate goal of providing

guidance for safeguarding their oral and overall health.
Materials and methods

Samples

In this study, we examined a 23-year-old elderly female giant

panda with a tumor located on the right side of her oral cavity. The

tumor originated from the right buccal mucosa and measured 9.2

cm × 5.0 cm, as visualized on a computed tomography scan.

Immunohistochemical results of the tumor were, AE1/AE3 (-),

CK (-), EMA (-), S100 (+), SMA (-), CD34 (-), CD31 (-), Desmin

(-), Vimentin (+ +), Calponin (-), CD99 (-), Ki67 (positive rate

about 1%), and the immunophenotype and biological behavior were

indicative of a low-grade malignant fibroma. Microbial sampling

from various niches (mucosa, dental plaque, tumor surface, and

vestibular sulcus) within the oral cavity were collected using sterile

cotton swabs. Oral hygiene and surgical removal of the tumor were

performed after sampling. We obtained a total of 16 samples, whose

names and abbreviations are provided in Table 1. The samples were

immediately stored in sterile phosphate-buffered saline on dry ice

and kept at −80°C for further analysis. The samples were collected

in June 2022 at the Dujiangyan base of the China Conservation and

Research Center for the Giant Panda in Chengdu, Sichuan province.

All animal experiments were approved by Animal Care and Use

Committee of the China Conservation and Research Center (Letter

no: CCRCGP2020003).
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DNA extraction

Total genomic DNA samples were extracted using the OMEGA

Soil DNA Kit (M5635-02; Omega Bio-Tek, Norcross, GA, USA),

following the manufacturer’s instructions, and stored at −20°C

prior to further analysis. The quantity and quality of the extracted

DNA samples were measured using the NanoDrop NC2000

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA) and agarose gel electrophoresis, respectively.
16S rRNA gene sequencing

Polymerase chain reaction (PCR) of the full-length bacterial 16S

rRNA genes was performed using the forward primer 27F (5’-

AGAGTTTGATCMTGGCTCAG-3’) and the reverse primer 1492R

(5’-ACCTTGTTACGACTT-3’). Thereafter, sample-specific 16-bp

barcodes were incorporated into the primers for multiplex

sequencing in the second step of PCR. Each PCR sample

contained 5 mL of buffer (5×), 5 mL of GC buffer (5×), 0.25 mL of

Q5 DNA polymerase (5 U/mL), 2 mL (2.5 mM) of dNTPs, 1 mL (10

mM) each of forward and reverse primers, 2 mL of DNA template,

and 8.75 mL of ddH2O. PCR was conducted under the following

conditions: initial denaturation at 98°C for 2 min; followed by 25/10

cycles (for first and second PCR amplification steps, respectively) of

denaturation at 98°C for 30 s, annealing at 55°C for 30 s, and

extension at 72°C for 90 s; and final extension at 72°C for 5 min.

The PCR amplicons were purified using Agencourt AMPure Beads

(Beckman Coulter, Indianapolis, IN) and quantified using the

PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA).

Subsequently, the amplicons were pooled in equal amounts and

subjected to single-molecule real-time sequencing using the PacBio

Sequel platform at Shanghai Personal Biotechnology Co., Ltd

(Shanghai, China). PacBio circular consensus sequencing (CCS)

reads were generated from multiple alignments of sub-reads to

reduce sequencing errors. In CCS, DNA polymerase reads a ligated

circular DNA template multiple times to generate a consensus

sequence from multiple reads of a single molecule. The raw

sequences were filtered for a minimum of 3 passes through the
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PacBio SMRT Link portal (version 5.0.1.9585) until a minimum

predicted accuracy of 99% was achieved. The predicted accuracy

threshold was defined as the level below which CCS acted as noise.

Files generated by the PacBio platform were trimmed to < 2,000 bp

amplicon size.
Sequence analysis

Bioinformatics was conducted using QIIME2 2022.11 (Bolyen

et al., 2019) with slight modification. Briefly, raw sequence data

were subjected to demultiplexing using the demux plugin followed

by primer cutting using the cutadapt plugin. Sequences were then

merged, quality filtered, and dereplicated using the fastq-

mergepairs, fastq-fi lter, and derep-fullength functions,

respectively, in the Vsearch plugin. Non-singleton amplicon

sequence variants (ASVs) were aligned with mafft (Katoh et al.,

2002) and used to construct a phylogeny with fasttree2 (Price et al.,

2009). Alpha- and beta-diversity metrics were estimated using the

diversity plugin with samples rarefied to 989 sequences per sample.

Taxonomy was assigned to ASVs using the classify-sklearn naïve

Bayes taxonomy classifier in the feature-classifier plugin (Bokulich

et al., 2018) against the SILVA Release 132 database (Koljalg et al.,

2013). The raw reads were submitted to the NCBI Sequence Read

Archive (SRA) database with the assigned Accession

Number: PRJNA1053871.
Bioinformatics and statistical analysis

Sequence data analyses were performed using the QIIME2 and

R packages (v3.2.0). ASV-level alpha diversity indices, such as the

Chao1 richness estimator (Chao, 1984), Observed species, Shannon

diversity index (Shannon, 1948a; Shannon, 1948b), Simpson index

(Simpson, 1949), Pielou’s evenness (Pielou, 1966), and Good’s

coverage were calculated using the ASV table in QIIME2 and

visualized as box plots. ASV-level ranked abundance curves were

generated to compare the richness and evenness of the ASVs among

samples. Beta diversity analysis was performed to investigate the
TABLE 1 Site niches and abbreviations for sample sampling and grouping method are indicated.

Name Abbreviation Name Abbreviation

Tumor side

Upper Right Buccal Mucosa URBMuc

Non-tumor side

Upper Left Buccal Mucosa ULBMuc

Lower Right Buccal Mucosa LRBMuc Lower Left Buccal Mucosa LLBMuc

Upper Right Canine URCan Upper Left Canine ULCan

Lower Right Canine LRCan Lower Left Canine LLCan

Upper Right Molar URMol Upper Left Molar ULMol

Lower Right Molar LRMol Lower Left Molar LLMol

Right Vestibular Sulcus RVesSul Left Vestibular Sulcus LVesSul

Surface of Tumor STum

Periphery of Tumor PTum
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structural variation of microbial communities across samples using

Bray-Curtis metrics (Bray and Curtis, 1957) and visualized via

principal coordinate analysis (PCoA) and unweighted pair-group

method with arithmetic means (UPGMA) hierarchical clustering

(Ramette, 2007). Significant variations in the microbiota structure

among the groups were assessed by permutational multivariate

analysis of variance (PERMANOVA) (McArdle and Anderson,

2001), analysis of similarities (Clarke, 1993; Warton et al., 2012),

and permutation test of multivariate homogeneity of groups

dispersions (Anderson et al., 2006) using QIIME2. The

microbiota composition and abundance were visualized using

MEGAN (Huson et al., 2011) and GraPhlAn (Asnicar et al.,

2015). Venn diagram was generated using the R package

“VennDiagram” to visualize the shared and unique ASVs among

groups, based on their occurrence, regardless of their relative

abundance (Zaura et al., 2009). Linear discriminant analysis effect

size (LEfSe) was performed to detect differentially abundant taxa

across groups using the default parameters (Segata et al., 2011).

Microbial functions were predicted by phylogenetic investigation of

communities by reconstruction of unobserved states (PICRUSt2)

(Douglas et al., 2020) using the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (https://www.kegg.jp/) database.
Results

Overall sequence statistics

To conduct a comparative analysis of the oral microbiota, the

samples obtained from the right and left regions were classified as

tumor side and non-tumor side samples, respectively. The samples

included in this study are enumerated in Table 1. A total of 269,344

sequences were acquired (16,834/sample), which were merged,

quality filtered, and dereplicated using the Vsearch plugin, to

obtain 200,817 ASVs (12,551/sample). To achieve consistent

sequencing depth across samples, the sequence data for each

sample was extracted using the rarefaction method, resulting in
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989 ASVs per sample. Rarefaction analysis was conducted to

confirm the validity of the sequencing data. The rarefaction

curves for all the samples demonstrated a plateau, indicating that

the sequencing depth was adequate to capture the majority of gene

diversity (Supplementary Figure S1). The distribution of sequenced

lengths ranged between 572–1899 bp, with the majority of

sequences (n = 23,230) being 1463 bp (Supplementary Figure S2).
Taxonomic composition analysis

Taxonomic richness varied at the different levels across all samples,

resulting in the identification of 31 phyla, 55 classes, 89 orders, 136

families, 219 genera, and 402 species (Figure 1A). At the species level,

the upper left molar and lower left molar samples exhibited the highest

abundance, with 248 and 209 species, respectively. In contrast, the

species content of the lower left buccal mucosa was the lowest,

amounting to only 30 species. According to the abundance ranking

curve (Figure 1B), the microbial composition of the left dental plaque

appears to be relatively uniform, while those of the other regions appear

to be uneven, as observed by the steep slope of the curves.

The top 20 abundant species identified in our study were Ottowia

sp. canine oral taxon 014, Spodiobacter cordis, Porphyromonas sp. feline

oral taxon 110, Moraxella sp. canine oral taxon 396, Neisseria

shayeganii, Capnocytophaga sp. H4358, Fusobacterium simiae,

Neisseria sp. feline oral taxon 145, Xanthomonadaceae bacterium

feline oral taxon 091, Aggregatibacter aphrophilus, Lautropia sp.

canine oral taxon 060, Globicatella sp. feline oral taxon 122,

Glaesserella parasuis, Cardiobacterium sp. canine oral taxon 177,

Neisseria sp. feline oral taxon 078, Leptotrichia sp. canine oral

taxon 345, Neisseria sp. VA252/2008, Campylobacter sp. feline

oral taxon 100, Streptococcus parasuis, and Streptococcus minor

(Supplementary Table S1).

Owing to the complex and diverse nature of the oral microbiota

composition of the giant panda, we conducted a comprehensive

detection of its microbial species. The results revealed the presence

of Ottowia sp. canine oral taxon 014, S. cordis,Moraxella sp. canine
A B

FIGURE 1

Abundance statistics of microbial species in the oral cavity of the giant panda with an oral tumor. (A) The number of samples at various taxonomic
levels. (B) Rank abundance curves. Dashed lines of different colors correspond to distinct samples. The x-axis denotes the sequential order of
amplicon sequence variants (ASVs) sorted by abundance and the y-axis represents the abundance value of each ASV in the sample after the log 2
transformation. The length of the dashed line on the horizontal axis indicates the abundance of the ASVs in the sample. The gradient of the dashed
line reflects the evenness of the community composition. A flatter line indicates a more even community composition with a smaller disparity in
abundance among ASVs, while a steeper line indicates a less even community composition.
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oral taxon 396, N. shayeganii, Capnocytophaga sp. H4358,

Xanthomonadaceae bacterium feline oral taxon 091, A.

aphrophilus , Lautropia sp. canine oral taxon 060, and

Cardiobacterium sp. canine oral taxon 177 in various niches of

the oral cavity. However, the other species were confined to specific

regions within the oral cavity, suggesting a complex and diverse

microbial composition in these areas.
Alpha diversity analysis

The alpha diversity indexes Chao1 and observed species

represent community richness, Shannon and Simpson indices

represent community diversity, Pielou’s evenness index represents

community evenness, and Good’s coverage represents the coverage

of species in the community. In the tumor side and non-tumor side

samples, the mean Chao1 indices were 109.70 and154.91, observed

species indices were 107.93 and 153.39, Shannon indices were 5.05

and 5.47, Simpson indices were 0.93 and 0.95, and Pielou’s evenness

indices were 0.76 and 0.79, respectively. However, the Good’s

coverage was 99% for both samples, suggesting that the

sequencing depth was sufficient to indicate the diversity of the

samples (Figure 2). These results indicate no significant difference

in the alpha diversity of the oral microbiota in the tumor side and

non-tumor side of the giant panda.
Beta diversity and group
differences analysis

The beta diversity analysis was conducted to assess the

similarity of microbial structure among different samples using

the Bray-Curtis distance algorithm and PCoA analysis. The results

revealed a difference between the community structure of the tumor

side and non-tumor side samples, with the first two principal

coordinate components accounting for 32.9% and 20.7% of the

total variation, respectively (Figure 3A). The PERMANOVA
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analysis confirmed a significant difference between the tumor side

and non-tumor side samples (P < 0.05). Similarly, the UPGMA

analysis also demonstrated a notable difference between the

microbial communities of the tumor side and non-tumor side

samples (Figure 3B). Furthermore, the microorganisms on the

teeth (including canine teeth and molars) as well as oral mucosa

exhibited prominent clustering. Altogether, these results indicate a

significant difference in the microbial composition of the tumor side

and non-tumor side samples.
Taxonomic analysis between the tumor
side and non-tumor side

The number of ASVs between the tumor side and non-tumor

side samples was significantly different, with the tumor side

containing 331 ASVs and non-tumor side containing 643 ASVs,

among which 169 were common to both sides (Figure 4A). These

results indicate that the microbial abundance is relatively low in the

tumor side compared to the non-tumor side.

The top 20 most abundant species exhibited a distinct

distribution pattern within the oral cavity of the giant panda.

Specifically, the abundance of F. simiae (99.6%), Porphyromonas

sp. feline oral taxon 110 (99.3%), Campylobacter sp. feline oral

taxon 100 (98.9%), Neisseria sp. feline oral taxon 078 (98.3%),

Xanthomonadaceae bacterium feline oral taxon 091 (86.4%),

Cardiobacterium sp. canine oral taxon 177 (83.7%), and

Leptotrichia sp. canine oral taxon 345 (82.0%) was significantly

higher in the tumor side, with F. simiae, Porphyromonas sp. feline

oral taxon 110, Campylobacter sp. feline oral taxon 100, and

Neisseria sp. feline oral taxon 078 present exclusively in the

tumor side of the oral cavity. In contrast, the abundance of G.

parasuis (86.9%), Neisseria sp. VA252/2008 (86.1%), and S. parasuis

(84.5%) was significantly higher in the non-tumor side of the oral

cavity. The outer periphery of the tumor exhibited the highest

abundance of Porphyromonas sp. feline oral taxon 110 and F.

simiae (Figure 4B).
FIGURE 2

Alpha diversity analysis of microbial species in the oral cavity of the giant panda with an oral tumor.
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The cluster heatmap of the groups revealed a significant

difference in microbial clustering between the tumor side and

non-tumor side of the oral cavity (Figure 4C). The tumor side

exhibited a more uniform microbiome compared to the non-tumor

side, with F. simiae, Porphyromonas sp. feline oral taxon 110,

Campylobacter sp. feline oral taxon 100, Neisseria sp. feline oral

taxon 078, Xanthomonadaceae bacterium feline oral taxon 091,

Cardiobacterium sp. canine oral taxon 177, and Leptotrichia sp.
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canine oral taxon 345 as the primary strains. Notably, F. simiae,

Porphyromonas sp. feline oral taxon 110, Campylobacter sp. feline

oral taxon 100, and Neisseria sp. feline oral taxon 078 were present

exclusively in the tumor side. Furthermore, N. shayeganii was found

to be present in low abundance in the mucosa surrounding the

tumor, whereas it was significantly more abundant in the

corresponding regions in the non-tumor side of the oral cavity

(68.3%); however, the difference in the abundance of N. shayeganii
A B

FIGURE 3

Beta diversity analysis of microbial species in the oral cavity of the giant panda with an oral tumor. (A) Principal coordinate analysis and (B) unweighted pair-
group method with arithmetic means (UPGMA).
A B

C

FIGURE 4

Analysis of species variations between the tumor side and non-tumor side samples of the oral cavity of the giant panda with an oral tumor. (A) Venn diagram
analysis of amplicon sequence variants (ASVs) in the tumor side and non-tumor side samples. The quantities within the circles denote the number of ASVs in
each group, while the quantity in the overlapping region denotes the number of shared ASVs between the two groups. (B) Species-level microbial
composition of the tumor side and non-tumor side. (C) Heatmap of significant microbial clustering in the tumor side and non-tumor side at the
species level.
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in the dental plaques of tumor side (56.1%) and non-tumor side

(43.9%) regions was not significant.
Potential biomarkers

After investigating the variations in microbial community

composition, we determined the specific species in the tumor side

and non-tumor side that contribute to these differences, using LEfSe

analysis. We identified robustly differential species (marker species;

P < 0.05) between the tumor side and non-tumor side samples,

based on the linear discriminant analysis scores (> 4). The

predominant marker species in the tumor side were F. simiae,

Porphyromonas sp. feline oral taxon 110, Xanthomonadaceae

bacterium feline oral taxon 091, Moraxella sp. canine oral taxon

396, Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline

oral taxon 078, while the predominant species in the non-tumor

side were Capnocytophaga sp. H4358, G. parasuis, and Globicatella

sp. Feline oral taxon 122, with Streptococcus being the primary

genus (marker taxon; Figure 5). These results suggest that the

marker species around the oral tumor were F. simiae ,

Porphyromonas sp. feline oral taxon 110, Xanthomonadaceae

bacterium feline oral taxon 091, Moraxella sp. canine oral taxon

396, Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline

oral taxon 078. Among them, F. simiae, Porphyromonas sp. feline

oral taxon 110, Campylobacter sp. feline oral taxon 100, and

Neisseria sp. feline oral taxon 078 are consistent with the results

of the taxonomic analysis conducted on the tumor side.
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Functional annotation

KEGG metabolic pathway analysis revealed that the oral

microbiota of the giant panda was predominantly associated with

metabolism, especially cofactor and vitamin metabolism, amino

acid metabolism, and carbohydrate metabolism, as well as

genetic information processing, including replication and repair

activities. The abundance of metabolic pathways was found to be

higher on the tumor side compared to the non-tumor side; however,

the overall metabolic pattern remained consistent on both sides.

(Figures 6A, B). According to the KEGG orthologous group

description of each metabolic pathway, we predicted that

the metabolic disparity between the tumor side and non-tumor

side may be the bacterial invasion of the epithelial cells

(P < 0.001; Figure 6C).
Discussion

The results of this study enhance our understanding of the

association between tumorigenesis and the oral microbiome of giant

pandas, providing information on its pathogenic mechanisms and

preventative strategies. Advances in microbiome research have

found that perturbations in the oral microbiome can hold

significant implications for overall host health (Singhal et al.,

2011). In this study, we used full-length 16S rRNA gene

sequencing, a highly precise sequencing method, to conduct

species-level identification of the oral microbiome of the giant

panda with an oral tumor (Hall and Beiko, 2018; Johnson et al.,

2019), thus enhancing the reliability of microbial diversity and

abundance for pathological analysis.

In this study, we identified the oral microbiota composition and

diversity in the tumor side and non-tumor side of the giant panda.

We identified a total of 31 phyla, 55 classes, 89 orders, 136 families,

219 genera, and 402 species within the entire oral cavity. Diversity

analysis revealed that the non-tumor side exhibited a higher

microbial diversity compared to the tumor side, which may be

attributed to the more uniform microbial ecosystem. These results

are consistent with the previous oral microbiome studies in other

animals (Adler et al., 2016; Tian et al., 2022). Additionally, a

significant difference was observed in microbial clustering between

the tumor side and non-tumor side, suggesting that the microbial

composition on the two sides was distinct. Species richness on dental

plaques was found to be notably higher than that on mucosa in both

regions. This may be attributed to the complex composition of dental

plaques, which facilitates microbial colonization (Velsko et al., 2019).

This observation aligns with the concept that distinct regions within

the oral cavity harbor unique microbial compositions, additionally, it

is consistent with previous research demonstrating that oral mucosa

exhibits lower richness and diversity while dental plaque showcases

higher richness and diversity in humans (Xu et al., 2014; Zhang et al.,

2018). However, this finding still required further investigation to

establish its validity in the giant panda’s oral cavity.

The tumor side was dominated by specific microorganisms,

including F. simiae, Porphyromonas sp. feline oral taxon 110,

Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline
FIGURE 5

Linear discriminant analysis effect size analysis of microbial species
in the tumor side and non-tumor side samples of the oral cavity of
the giant panda with an oral tumor. The y-axis represents taxa
exhibiting significant differences between the tumor side and non-
tumor side samples, while the x-axis represents the score value of
each taxon in the linear discriminant analysis. Taxa are hierarchically
ranked based on their scores, which describe their specificity in
grouping samples. Increased bar lengths signify more substantial
differences for a given taxon, while the color scheme indicates the
sample grouping corresponding to the highest abundance of
that taxon.
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oral taxon 078. F. simiae was first isolated in 1982 from the dental

plaque of a monkey (Macaca arctoides) (Slots and Potts, 1982).

Fusobacterium sp. have been found to be associated with various

tumorigenic processes in other organisms (Bullman et al., 2017;

Fujiwara et al., 2020). Porphyromonas gingivalis, a member of

Porphyromonas sp., is a well-studied periodontal pathogen (Reyes,

2021) that can promote tumor development by creating a

carcinogenic microenvironment (Wen et al., 2020). Furthermore,

Campylobacter and Neisseria species are known to cause various

diseases, including diarrheal diseases, periodontitis, and other

chronic conditions (Baral et al., 2007; Man, 2011), in both

humans and animals (Liu et al., 2015). Therefore, variations in

the abundance of these species may be associated with

tumorigenesis or may be a consequence of tumor presence.

Furthermore, KEGG pathway analysis revealed that the oral

microorganisms of the giant panda were predominantly associated

with genetic information processing and metabolism, particularly

cofactor and vitamin, amino acid, and carbohydrate metabolism,

suggesting their crucial role in nutrient processing and host cellular
Frontiers in Cellular and Infection Microbiology 08
processes. Moreover, a marked bacterial invasion of epithelial cells

was predicted in the tumor side, indicating that the interplay

between microbial communities and host tissues may contribute

to the initiation and progression of tumors by inducing

inflammatory responses, tissue damage, and creating a tumor-

promoting microenvironment. However, further experimental

investigations at morphological or molecular biology levels are

required to substantiate this hypothesis.

In conclusion, this comprehensive investigation into the

microbial dynamics in the giant panda with an oral tumor

provides insights into microbial interactions and their potential

impacts on health. The observed differences between the tumor side

and non-tumor side, along with the identification of potential

biomarkers, could facilitate further research into the oral health of

giant pandas, thereby contributing to the improved care of captive

and elderly giant pandas. These findings not only enrich our

understanding of the oral health of giant pandas but could also

hold broader implications for deciphering the relationships between

the microbiome and diseases in other species.
A

B

C

FIGURE 6

Metabolic pathway analysis of the abundant microbial species in the oral cavity of the giant panda with an oral tumor. (A, B) Relative abundance
distribution of the second level based on Kyoto Encyclopedia of Genes and Genomes database. The x-axis represents the relative abundance of the
species in the six functional groups, while the leftmost part of the y-axis indicates the functional pathway of the KEGG second classification level and
the rightmost part of the y-axis indicates the first-level pathway to which the pathway belongs. The result of non-tumor side and tumor side are
shown in panel (A, B), respectively. (C) Comparison of the metabolic pathways associated with the abundant microbial species in the tumor side and
non-tumor side of the oral cavity of the giant panda. The positive value of log 2 fold change signifies the up-regulation of the up-regulated group
compared with the control group, with the ordinate representing different pathway tags.
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