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Shifts in the functional capacity
and metabolite composition of
the gut microbiome during
recovery from enteric infection
Zoe A. Hansen1*†, Anthony L. Schilmiller2, Douglas V. Guzior1,3,
James T. Rudrik4, Robert A. Quinn3, Karla A. Vasco1†

and Shannon D. Manning1*

1Department of Microbiology, Genetics, and Immunology, Michigan State University E., Lansing,
MI, United States, 2Research Technology Support Facility, Mass Spectrometry and Metabolomics
Core, Michigan State University E., Lansing, MI, United States, 3Department of Biochemistry and
Molecular Biology, Michigan State University E., Lansing, MI, United States, 4Michigan Department of
Health and Human Services, Bureau of Laboratories, Lansing, MI, United States
While enteric pathogens have been widely studied for their roles in causing

foodborne infection, their impacts on the gut microbial community have yet to

be fully characterized. Previous work has identified notable changes in the gut

microbiome related to pathogen invasion, both taxonomically and genetically.

Characterization of the metabolic landscape during and after enteric infection,

however, has not been explored. Consequently, we investigated the

metabolome of paired stools recovered from 60 patients (cases) during and

after recovery from enteric bacterial infections (follow-ups). Shotgun

metagenomics was applied to predict functional microbial pathways combined

with untargeted metametabolomics classified by Liquid Chromatography Mass

Spectrometry. Notably, cases had a greater overall metabolic capacity with

significantly higher pathway richness and evenness relative to the follow-ups

(p<0.05). Metabolic pathways related to central carbon metabolism, amino acid

metabolism, and lipid and fatty acid biosynthesis weremore highly represented in

cases and distinct signatures for menaquinone production were detected. By

contrast, the follow-up samples had a more diverse metabolic landscape with

enhanced richness of polar metabolites (p<0.0001) and significantly greater

richness, evenness, and overall diversity of nonpolar metabolites (p<0.0001).

Although many metabolites could not be annotated with existing databases, a

marked increase in certain clusters of metabolites was observed in the follow-up

samples when compared to the case samples and vice versa. These findings

suggest the importance of key metabolites in gut health and recovery and

enhance understanding of metabolic fluctuations during enteric infections.
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1 Introduction

Microbes in the human gut have been shown to contribute to

host metabolic health by breaking down complex carbohydrates

and converting compounds into forms usable by the body

(Oliphant and Allen-Vercoe, 2019). Specifically, these

microorganisms generate beneficial short-chain fatty acids

(SCFAs) like butyrate, acetate, and propionate that play crucial

roles in counteracting inflammation and immune disorders

(Richards et al., 2016). Successful production of these

compounds, however, relies on specific microbes, most commonly

those in the Bacteroidetes and Firmicutes phyla, whose abundance

can change with diet and other perturbations (Wolters et al., 2019;

Fusco et al., 2023).

Gut microbial composition has been linked to various disease

states and the impacts of disease on the human gut microbiome and

metabolome have been characterized using multi-omics approaches

(Fan and Pedersen, 2021). Defining a “healthy gut” has been

difficult due to the high level of variation in microbial and

metabolic profiles across and within individuals. Indeed, changes

in factors such as diet, exercise, nutrient load, age, and colonic

transit time can impact the gut microbiome (Jumpertz et al., 2011;

Roager et al., 2016; Singh and Manning, 2016; Rothschild et al.,

2018). Because host metabolic health is strongly influenced by the

gut microbiota, less diverse microbiomes have been linked to

enhanced risk of metabolism-related diseases (Le Chatelier et al.,

2013). Genetic variation among members of the same microbial

taxa can also lead to differences in metabolic capacity and health

(Zeevi et al., 2019). The interplay between the fluctuating human

gut microbiome and related metabolic consequences in the context

of disease, however, is understudied.

Numerous studies have explored microbial differences between

otherwise healthy individuals and those with autoimmune and

autoinflammatory disorders such as inflammatory bowel disease

(IBD), and metabolic disorders like obesity and diabetes (Schippa

and Conte, 2014). Obesity, for example, was associated with an

increased Firmicutes : Bacteroidetes ratio and lower overall bacterial

diversity (Candido et al., 2018), while prolonged consumption of a

low-fiber diet was linked to the extinction of beneficial microbes

(Sonnenburg et al., 2016). Furthermore, IBD patients had different

gut-derived bile acids than healthy individuals, which can influence

the host response to intestinal inflammation (Duboc et al., 2012).

Understanding the relationship between the gut microbiota and

metabolism in the presence of inflammation is of great relevance for

many conditions and disorders.

Of particular interest to this study are metabolic shifts in the gut

caused by foodborne bacterial pathogens, which were linked to

25,866 cases of infections, 6,164 hospitalizations, and 122 deaths in

the United States in 2019 (Tack et al., 2020). Few studies, however,

have explored the impact of acute enteric bacterial infections on the

metabolic composition of the gut. In our prior studies, we

documented shifts in taxonomic and resistance gene composition

and diversity in patients with enteric bacterial infections relative to

their healthy family members using 16S rRNA sequencing and

metagenomics (Singh et al., 2015; Hansen et al., 2021, 2023).

We therefore hypothesized that these shifts would also contribute
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to significant alterations in the human gut metabolome. To test this

hypothesis, we characterized the metabolic trajectories in the gut

among 60 patients during and after enteric infection using

metagenome analysis and untargeted metabolomics.
2 Materials and methods

2.1 Study population and sample collection

We conducted a longitudinal case-control study in Michigan in

collaboration with the Michigan Department of Health and Human

Services (MDHHS) between 2011 and 2015 as described (Singh

et al., 2015; Hansen et al., 2023). Sixty-one stool samples were

collected from patients with enteric disease (cases) caused by

Campylobacter (n=25; 41.0%), Salmonella (n=29; 47.5%), Shigella

(n=4; 6.6%) and Shiga toxin-producing E. coli (STEC) (n=3; 4.9%)

prior to treatment (Supplementary Table S1). After providing

written informed consent, the same patients (follow-ups)

submitted a second stool sample after they had recovered from

the initial infection. The range of the follow-up period was 8-205

days, though the period was not known for one case. All stools were

preserved in Carey-Blair transport media for submission to either

the MDHHS or Michigan State University (MSU) for processing.

Data about demographics, exposure history, antibiotic use,

hospitalization, and symptoms were obtained from a

questionnaire, or the Michigan Disease Surveillance System

(MDSS) as noted in our prior study (Singh et al., 2015). Resident

counties were classified as ‘rural’ or ‘urban’ based on the National

Center for Health Statistics classification scheme (Ingram and

Franco, 2014).
2.2 Sample preparation and sequencing

Metagenomic DNA was extracted, sheared, and normalized as

described (Singh et al., 2015). Briefly, stools were initially

homogenized and centrifuged prior to long-term storage at –80°

C. The QIAamp DNA Stool Mini Kit (QIAGEN, Valencia CA) was

used to extract metagenomic DNA from approximately 200 mg of

fecal matter. Libraries were constructed using the TruSeq Nano

library kit (Illumina, Inc., San Diego, CA, USA). DNA was

fragmented prior to end-repair and 3’ adenylation. DNA adapter

ligation was completed with a thermocycler program of 30°C for

10 min followed by a hold at 4°C. Subsequent DNA amplification

included the following PCR program: 3 min at 95°C followed by

eight cycles of 98°C for 20 s, 60°C for 15 s, and 72°C for 30 s; the

final step was 5 min at 72°C. Libraries were then validated,

normalized, and pooled. Shotgun metagenomic sequencing was

performed in four runs on the Illumina HiSeq (Hansen et al., 2021,

2023). Samples were not selected in a specific order per batch. The

Real Time Analysis (RTA) v1.18.66 (Illumina) software was used

for base calling. Briefly, reads were demultiplexed at the MSU

Research Technology Support Facility, converted to FASTQ files

with the Bcl2fastq v2 + conversion software (Illumina). Paired-end

sequences were processed using the AmrPlusPlus v2.0 pipeline
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1359576
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Hansen et al. 10.3389/fcimb.2024.1359576
(https://www.meglab.org/amrplusplus/). Trimmomatic (Bolger

et al., 2014) was used to remove adapters (https://github.com/

BioInfoTools/BBMap/blob/master/resources/adapters.fa) and

poor-quality sequences by trimming the 5’ end of a sequence

until an average Phred score > 15 was achieved with a sliding

window value of 4. Sequences < 36 nucleotides were discarded.

Reads matching to adapter sequences with ≤ 2 mismatches and a

match score ≥ 30 were clipped to ensure complete adapter removal.

Resulting reads were mapped to the human genome, GRCh38

(GRCh38_latest_genomic.fna.gz, downloaded December 2020) in

RefSeq using the Burrows-Wheeler Aligner (Li and Durbin, 2009).

SAMTools (Li and Durbin, 2009) and BEDTools (Quinlan and Hall,

2010) were used to remove those reads that aligned to the human

genome. Non-human reads were saved as FASTQ files for use in the

subsequent metabolic prediction analyses. Two paired samples were

omitted from the metabolic pathway prediction pipeline due to

poor alignment and annotation, though they were still included in

the untargeted metabolomics analysis.
2.3 Metabolic prediction profiling
from metagenomes

The HMPUnified Metabolic Analysis Network (HUMAnN) 3.0

program was used to profile the abundance of microbial metabolic

pathways (Beghini et al., 2021). Non-host paired-end reads were

merged for input into the program that used the UniRef90 database

(Suzek et al., 2015) to generate gene family abundances, pathway

abundances, and pathway coverage estimates for each sample. The

entire gene family data file was input into the program

‘humann_infer_taxonomy’ to retrieve taxonomic information for

“unclassified” genera. Resulting files were re-run through

HUMAnN 3.0 to compute pathway abundances and coverage as

reads-per-kilobase (RPK) values, which were normalized to relative

abundances with the ‘humann_renorm_table’ function. The

‘humann_regroup_table’ function was used to display gene

families with MetaCyc reaction annotations (Caspi et al., 2020),

while ‘humann_rename_table’ was used to assign MetaCyc pathway

names. Lastly, ‘humann_barplot’ was used to produce plots of

stratified metabolic features sorted by metadata assignment or

Bray-Curtis dissimilarity.
2.4 Ecological analyses of
metagenomics data

The diversity of predicted metabolic profiles was compared

between cases and follow-ups using pathway abundances from

MetaCyc as input. Alpha and beta diversity metrics were

calculated and plotted in R (www.R-project.org/) as was described

previously (Hansen et al., 2021). To identify differentially abundant

metabolic signatures in cases and follow-ups, the Meta-analysis

Methods with Uniform Pipeline for Heterogeneity in Microbiome

Studies (MMUPHin) was used in R (Ma et al., 2022). Batch

adjustment of relative abundance data was performed based on

sequencing run. Significant associations between predicted
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microbial pathways and health status were explored via covariate-

adjusted meta-analytical differential abundance testing. Health

status was included as a fixed effect, while age (years), sex (male/

female), antibiotic use (yes/no) and the number of genome

equivalents were all included as covariates in the model as

described previously (Hansen et al., 2023) Significance values (p-

values) were adjusted using the Benjamini-Hochberg method of

correction for multiple hypothesis testing (q-value representing

False Discovery Rate (FDR)).

MMUPHin was also used to identify intrinsic drivers of beta

diversity point distributions (Ma et al., 2022). To classify potential

gradients, the ‘continuous_discover()’ function was applied to the

metabolic profile abundances for unsupervised continuous

structure discovery using Principal Components Analysis (PCA).

Upon generation of these continuous structure scores or “loadings”,

plots were generated to visualize the main drivers of continuous

data structure. Loadings that comprised the top principal

components were compared across batches to identify

“consensus” loadings for microbial features, which were overlaid

onto ordination plots based on Bray-Curtis dissimilarity.
2.5 Metabolite extraction

Metabolite extractions were performed using 20 mg of stool

from each of the 120 samples. Each sample was incubated on ice for

10 minutes after adding 350 ml of ice-cold methanol with 0.1%

butylated hydroxytoluene (BHT). Five internal standard solutions

for quality control and normalization included: 1) 13C-labeled

short-chain fatty acids (SCFAs) (10 µM each of [13C]sodium

formate, [13C2]sodium acetate, [13C3]sodium propionate, and

[13C4]sodium butyrate in 50:50 (v/v) methanol/water); 2)

phenylalanine-d7 (10 µM in 50:50 methanol/water); 3) succinic

acid-d4 (10 uM in 50:50 methanol/water; 4) [13C16]palmitic acid (10

µM in 100% isopropanol); and 5) labeled bile acids (10 µM each of

glycocholic acid-d4 and glycoursodeoxycholic acid-d4 in 50:50

methanol/water). Samples were mixed via agitation for 30

seconds and centrifuged (10,000 x g) at 4°C for 10 minutes. The

supernatant was transferred to a sterile microcentrifuge tube on ice;

the remaining pellet was washed with ice-cold HPLC-grade

isopropanol and the sample was homogenized for 30 seconds via

agitation and centrifuged again (10,000 x g) at 4°C for 10 minutes.

The resulting isopropanol supernatant was combined with the

initial extract to form a ‘Total Extract’ (TE) from which 100 µl

were aliquoted into amber glass autosampler vials (2 mL) sealed

with 9 mm screw septum caps and stored at -80°C until use.
2.6 Liquid chromatography
mass spectrometry

Each sample was analyzed using separate reverse phase and

hydrophilic interaction liquid chromotography (HILIC) methods to

cover a wide range of polar and nonpolar metabolites, respectively.

A Q-Exactive™ Hybrid Quadrupole-Orbitrap mass spectrometer

(MS) was coupled with a Thermo Scientific™ Vanquish Ultra
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High-Performance Liquid Chromatography (UHPLC) system to

analyze metabolites via Liquid Chromatography Mass Spectrometry

(LC-MS). Blank and pooled samples were included at the beginning

of each run (reverse phase and HILIC separation) and every 20

samples; three blank samples were processed between reverse phase

and HILIC runs.

For reverse phase separation (polar metabolites), 10 µL of

sample was injected onto a Waters Acquity Ethylene Bridged

Hybrid (BEH)-C18 UPLC column (2.1x100mm) at 60°C.

Compounds were separated using a gradient with a 0.4 ml/min

flow rate. Initial conditions were 98% mobile phase A (water + 0.1%

formic acid) and 2% mobile phase B (acetonitrile + 0.1% formic

acid), hold at 2% B until 1 min, ramp to 100% B at 8 min, hold at

100% B until 10 min, return to 2% B at 10.01 min and hold at 2% B

until 12 min. For HILIC separation, 10 µL of sample was injected

onto a Waters BEH-Amide UPLC column (2.1x100mm) at 60°C.

The gradient was run at 0.4 ml/min with initial conditions of: 100%

mobile phase B (10 mM ammonium formate/10 mM ammonium

hydroxide in 95:5 acetonitrile/water (v/v) and 0% mobile phase A

(10 mM ammonium formate/10 mM ammonium hydroxide in

water), hold until 1 min at 100% B, ramp to 40% B at 8 min, hold at

40% B until 10 min, return to 100% B at 10.01 min and hold at 100%

B until 12 min.

Mass spectra were acquired for both methods using the same

settings. Compounds were ionized by electrospray ionization in

positive ion mode with a capillary voltage of 3.5 kV, transfer

capillary temperature of 262.5°C, sheath gas at 50, auxiliary gas at

12.5, probe heater at 425°C, and S-lens RF level at 50. A data-

dependent MS/MS method was used to acquire spectra with survey

scan settings of 35,000 resolution, AGC target 1e6, maximum inject

time 100 ms, and m/z range 100-1500. MS/MS spectra were

acquired for the top 5 ions at a resolution setting of 17,500, AGC

target 1e5, minimum AGC 5e3, maximum inject time 50 ms,

isolation window of 1.5, fixed first mass at m/z 50, dynamic

exclusion setting of 3 s and stepped normalized collision energy

settings of 20, 40 and 60.
2.7 Data processing for mass
spectrometry output

Chromatographic component separation of fecal metabolites

was exported as. RAW files via Xcalibur™. Raw data were

transformed to the.mzXML format with the Global Natural

Product Social (GNPS) Molecular Networking conversion

software (Wang et al., 2016). MS data processing was performed

separately for polar and nonpolar output files using MZmine v.2.53

(Myers et al., 2017). mzXML files were imported to MZmine for

centroided mass detection at MS1 and MS2 using a noise level of

1.5E05 for MS1 and 1.0E4 for MS2; these noise cutoffs were

determined by visually investigating random scans pooled and

blank samples. Chromatograms were constructed using the

ADAP (Automated Data Analysis Pipeline) Chromatogram

Builder Module (Myers et al., 2017) with a scan retention time

(RT) of 1.00 - 10.00 min for MS1. A minimum group size in number
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of scans was set to 5, while a group intensity threshold of 1.5E5, a

minimum highest intensity of 1.5E5, and a m/z tolerance (for scan-

to-scan accuracy) of 0.02 m/z or 5.0 ppm were used.

Chromatograms were deconvoluted using a baseline cut-off

algorithm with a minimum peak height and baseline level of

1.5E5 and a peak duration ranging from 0.00 to 0.50 min. The m/

z range for MS1 and MS2 scan pairing was 0.02 Da while the RT

range for MS1 and MS2 scan pairing was 0.1 min; original features

were not removed during deconvolution. Isotopic peaks were

grouped with an m/z tolerance of 0.02 m/z or 5.0 ppm, an

absolute RT tolerance of 0.1 min, and a maximum charge of 5

with the representative isotope designated by highest peak intensity.

An aligned feature list containing data from all samples was

generated using the Join Aligner method, which aligns detected

peaks based on a match score determined by the mass and retention

time of each peak. Settings included a m/z tolerance of 0.02 m/z or

5.0 ppm with a weight for m/z of 75, while the absolute RT tolerance

was 0.1 min and the weight for RT was set to 25. The feature list was

filtered by row to identify features present in at least three samples;

only peaks with a MS2 scan available were kept in the feature list

and peak number IDs were reset during this step. After filtering, gap

filling was achieved by using the multithreaded peak finder

function. The intensity tolerance was set to 10.0% with a m/z

tolerance of 0.02 m/z and 5.0 ppm; the absolute RT tolerance was

0.1 min. The resulting feature list was exported for further analysis

in GNPS with the Feature-Based Molecular Networking (FBMN)

workflow; only rows with MS2 were included. Exported files

included a feature quantification table (.CSV) and a MS/MS

spectral summary file (.MGF).
2.8 Feature-based molecular networking
of metabolites

A molecular network was created with the FBMN workflow

(Nothias et al., 2020) through GNPS (Wang et al., 2016). The data

were filtered by removing all MS/MS fragment ions within +/- 17

Da of the precursor m/z. MS/MS spectra were window filtered by

choosing the top six fragment ions in the +/- 50 Da window. The

precursor ion mass tolerance was set to 0.02 Da and the MS/MS

fragment ion tolerance to 0.02 Da. A molecular network was created

after filtering the edges to have a cosine score over 0.7 (nonpolar

metabolites) or 0.65 (polar metabolites) with >4 matched peaks.

The edges between two nodes were retained if each node appeared

in both top-10 most similar node outputs. The maximum size of a

molecular family was set to 100, and the lowest scoring edges were

removed from molecular families until the size was below this

threshold. The spectra in the network were searched against

GNPS spectral libraries (Horai et al., 2010; Wang et al., 2016); the

library spectra were filtered in the same manner as the input data.

All matches kept between network spectra and library spectra

required a score above 0.7 and at least 4 matched peaks. The

DEREPLICATOR was used to annotate MS/MS spectra (Mohimani

et al., 2018), while the networks were visualized internally in GNPS

and externally using Cytoscape software (Shannon et al., 2003).
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2.9 Intensity normalization and
random forest

Metabolic intensities were output by FBMN for GNPS. The

cluster index was used to associate peak intensities with metadata.

All metabolites identified in blank samples were removed from the

dataset and peak intensities were normalized via sum-scaling. The

randomForest package in R (v 4.6-14) was used (Liaw and Wiener,

2002) that combines multiple decision trees into an ensemble,

thereby reducing error and increasing the accuracy of

assignments (Breiman, 2001). The dichotomous variable “health

status”, which stratifies by cases or follow-ups, was input and

samples were classified via agreement of 5,000 decision trees

generated based on intensities. If a compound could not be

characterized, other clusters in a related molecular network were

explored for annotation. The top-30 polar and top-30 nonpolar

metabolites identified by random forest were subset and used to

generate heatmaps displaying the normalized intensity of clusters

differentiating cases and follow-ups. Intensity values were log-

transformed to appropriately scale the data for viewing.
2.10 Statistical analysis of metabolites

Normalized peak intensity tables for polar and nonpolar

metabolites were used to assess alpha and beta diversity of the

metabolomes of cases and follow-ups. Metrics such as metabolite

richness, Shannon-Weiner diversity, Pielou’s evenness index, and

Bray-Curtis dissimilarity were calculated and plotted in R (www.R-

project.org/) as described previously (Hansen et al., 2021).

Additionally, peak intensities were input to MetaboAnalyst 5.0

(Pang et al., 2021). The ‘Statistical Analysis [one factor]’ approach

was used for a paired analysis of the case and follow-up samples per

individual with a paired fold-change (FC) analysis and 5.0 cutoff. A

volcano plot of nonparametric paired FC values was generated with

the same cutoff using a FDR threshold of 0.05 with an assumption of

equal variances.
3 Results

3.1 Characteristics of the study population

While all samples were included when performing untargeted

metabolomics, one case/follow-up pair was removed from the

metagenome analysis due to poor sequencing quality. Among the

remaining 60 cases, 28 (46.7%) self-identified as male and 26

(43.3%) were between 19-64 years of age. Most cases identified as

Caucasian (n=48; 80.0%), lived in urban areas (n=33; 55%), and

reported abdominal pain (n=50; 84.8%) and diarrhea (n=57; 96.6%)

during the initial infection. Seventeen cases (28.3%) required

hospitalization and two (3.3%) reported antibiotic use within two

weeks prior to the initial stool submission. The average follow-up

period was 107.9 days and five (8.3%) cases reported antibiotic use

within two weeks of collecting the follow-up sample.
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3.2 Variation in the metabolic potential of
the gut during and after enteric infection

HUMAnN 3.0 identified 389 MetaCyc pathways at the

community level (i.e., pathways not assigned to a specific genus)

in the 118 paired samples from 59 individuals; one outlier was

omitted along with its paired counterpart. Cases had significantly

more metabolic pathway signatures than follow-ups (Scase=272,

Sfollow-up=230 p=1.212e-07; Wilcoxon signed-rank test) as well as

enhanced diversity (H’case=2.25, H’follow-up=1.41; p=7.49e-10) and

evenness (J’case=0.402, J’follow-up=0.260; p=1.67e-09), (Figure 1A).

Predicted pathway composition was also significantly different

between cases and follow-ups (PERMANOVA, F=62.73; p=0.001)

(Figure 1B) as was the level of dispersion (PERMDISP, F=20.10;

p=0.001), with case samples having a greater average distance to the

median (0.148) than the follow-up samples (0.0947).

The extensive overlap and arch effect in the ordination plots

suggest a potential gradient (continuous structure) of metabolic

pathway abundance across samples. MMUPHin was used to correct

for batch effects in sequencing runs identified in our previous study

(Hansen et al., 2023) to evaluate the structure. After removing

unmapped reads, rhamnose biosynthesis and histidine degradation

were present primarily in follow-up-like samples (Supplementary

Figure S1A). These were opposite a superpathway for glycolysis,

TCA, and glyoxylate bypass, a palmitate biosynthesis pathway, and

an ornithine degradation pathway that were identified in case-like

samples. The top 20 loadings (Supplementary Table S2) in the

gradient-labeled ordination plots enables interpretation of

metabolic tradeoffs driving the observed distribution of points

(Supplementary Figure S1B). For example, a tradeoff was

observed between metabolic profiles dominated by rhamnose

biosynthesis and histidine degradation and those with heavy

signatures of glycolysis and glyoxylate bypass, ornithine

degradation, and palmitate synthesis.
3.3 Functional differences in metabolic
pathways during and after infection

Differential abundance analysis demonstrated that cases were

primarily defined by menaquinol biosynthesis (including

menquinol-10, -6, and -7), palmitate biosynthesis (coef= -0.048;

q-value= 0.0061), and glycolysis, TCA, and glyoxylate bypass

pathways (coeff= -0.047; q-value= 1.76e-07) (Figure 2; Table 1).

By contrast, follow-up samples had a high abundance of L-

rhamnose (coeff= 0.041; q-value=2.12e-10) and UMP (coef=

0.036; q-value=8.06e-08) biosynthesis pathways.
3.4 Specific metabolic pathways differ
between sample groups

As microbial SCFA metabolism contributes to host metabolic

health, MetaCyc pathways related to compounds such as butyrate,

propionate, and acetate production and degradation were explored.
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MetaCyc PWY-5100: pyruvate fermentation to acetate and lactate

II pathway was most abundant in both sample types but was

primarily associated with cases (Figure 3; coef= -0.0069; q-

value=0.027). A pathway potentially involved in acetate synthesis,

PWY-7254: TCA cycle VII (acetate-producers), was also associated

with cases (coef= -0.029; q-value= 0.00069). By contrast, P163-

PWY: L-lysine fermentation to acetate and butanoate, which is
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relevant to butyrate production, was associated with follow-ups

(coeff=0.0032; q-value=0.022). Other butyrate-specific pathways

included PWY-5676: acetyl-CoA fermentation to butanoate II,

CENTFERM-PWY: pyruvate fermentation to butanoate, and

PWY-5677: succinate fermentation to butanoate.

Although these pathways registered low relative abundance and

were not differentially abundant between cases and follow-ups, the
B

A

FIGURE 1

Predicted MetaCyc pathways show significant differences in metabolic potential among patients during and after enteric infection. (A) Alpha diversity
measures (Pielou’s Evenness, Richness, and Shannon diversity) are displayed in each boxplot. Case and follow-up (FollowUp) samples are indicated
by green circles and purple triangles, respectively. Data points are offset from the vertical and the median is shown as a thick black bar, while the
bottom and top of each box represents the first and third quartiles. P-values are shown above the comparison bar and were calculated using the
Wilcoxon signed-rank test for paired samples. (B) Case (green circles) and follow-up (purple triangles) samples were examined by principal
coordinates analysis (PCoA) based on Bray-Curtis dissimilarity of community level pathway abundances; cases reporting antibiotics within the 2
weeks prior to sample collection are also shown as asterisks. The first and second coordinate are displayed with their respective percentage of
variance explained.
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distribution of pathways among samples suggests various patterns

cannot be captured by statistical analysis alone. Propionate

production, for instance, was only identified in one pathway,

P108-PWY: pyruvate fermentation to propanoate I, but was not

associated with either sample type based on differential abundance.

Nonetheless, some interesting patterns were observed for this

pathway among samples and taxa. All other pathways related to

butyrate, acetate, and propionate involved degradation of these

compounds. In agreement with our earlier results, a pathway

(PWY-5971: palmitate biosynthesis (type II fatty acid synthase))

involved in the production of palmitate, another relevant fatty acid

in the human body, was prevalent primarily among cases. Relative

abundances and correlation coefficients (if applicable) of SCFA-

related pathways are shown in Supplementary Table S3.

Various metabolites that have been linked to gut dysbiosis were

also explored. For example, the lipopolysaccharide (LPS) of Gram-

negative bacteria is known to cause inflammation and health issues.

Hence, the observation that the LPSSYN-PWY: superpathway of

LPS biosynthesis was more abundant in cases (coef= -0.021; q-

value=2.95e-14) is notable (Supplementary Figure S2A). Moreover,

stratifying by causative pathogen of the acute infections led to

interesting differences in taxa associated with this pathway

(Supplementary Figure S2B). Notably, Escherichia was associated

with the LPS biosynthesis pathway in infections caused by

Campylobacter spp., STEC, and Shigella spp, while Salmonella

spp. was most important for patients with Salmonella infections.

Similarly, the presence of p-Cresol, a derivative of toluene that has

carcinogenic properties, has also been linked to reduced gut health.

One pathway related to p-Cresol production, PWY-5181: toluene

degradation III (aerobic) (via p-cresol) was found in the samples.
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This pathway had low abundances in general (case=2.09e-05;

follow-up=2.50e-06) but was affiliated with cases (coef= -0.0093;

q-value=0.0055).
3.5 Recovered patients have greater
diversity of polar and nonpolar metabolites

After filtering and normalization of mass-spectra collected via

untargeted metabolomics, a total of 7,916 polar features and 13,940

nonpolar features were identified among cases and follow-ups

(Supplementary Figure S3). Overall, the follow-up samples had

significantly greater richness of polar metabolites than the case

samples (Scase=875, Sfollow=1024 p=2.28e-07; Wilcoxon signed-rank

test), though no difference in Shannon diversity was observed

(H’case=5.00, H’follow=5.07; p=0.8971; Supplementary Figure S4A).

The cases, however, had greater evenness of the polar metabolites

(J’case=0.739, J’follow=0.731; p=0.008211, respectively), which

clustered distinctly in the PCoA plot by sample type

(PERMANOVA F-value=26.27; p-value=0.000999) despite the

greater dispersion among cases (PERMDISP p-value=0.026;

Supplementary Figure S4B).

In contrast, the nonpolar metabolites were significantly more

diverse in the follow-up samples across all three measures

(Scase=1790, Sfollow=2832, p=1.53e-11; H’case=4.89, H’follow=5.96,

p=1.48e-10; J’case=0.656, J’follow=0.750, p=6.49e-09; Supplementary

Figure S5A). Similarly, the cases and follow-ups clustered separately

based on Bray-Curtis dissimilarity of nonpolar metabolite

composition (PERMANOVA F-value=19.607; p-value=0.000999);

PERMDISP indicated a significant difference in the dispersion of
FIGURE 2

Differentially abundant MetaCyc pathways among infected and recovered samples. The case and follow-up samples had differentially abundant
metabolic features that were detected with MMUPHin after removing the UNMAPPED reads. Pathway coefficients are shown on the x-axis The top-
10 pathways demonstrating the strongest associations that differentiate by health status are shown. Positive coefficients indicate metabolic pathways
with higher abundances in follow-ups (purple), whereas negative coefficients show pathways more represented among cases (green). Pathway
names displayed on the y-axis are shortened to their BioCyc ID via MetaCyc; full pathway names, coefficients, standard error, p-values, and q-values
are shown in Table 1.
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points (F-value=14.903; p-value=0.001), particularly for the cases

(Supplementary Figure S5B).

When the samples were stratified by the two predominant

pathogens, Campylobacter and Salmonella, no significant

differences were observed in diversity of polar metabolites. Cases

infected with Campylobacter, however, had greater nonpolar

metabolite diversity during infection when compared to those

cases with Salmonel la infect ions (SCampy lobac t e r=2021,

SSalmonella=1627, p=0.032; H’Campylobacter=5.18, H’Salmonella=4.64,
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p=0.0085; J’Campylobacter=0.683, J’Salmonella=0.631, p=0.024;

Supplementary Figure S6A). Nonetheless, distinct clustering by

causative pathogen was not observed when the polar metabolite

composition was examined (PERMANOVA F-value=1.260;

p=0.1209) despite the significant dispersion of points (PERMDISP

F-value=4.549, p=0.013; Supplementary Figure S6B). Similar results

were observed for the nonpolar metabolite composition

(PERMANOVA F-value=1.2301, p=0.1189; PERMDISP F-

value=3.263, p=0.019; Supplementary Figure S6C).
TABLE 1 Metabolic pathways identified in patients with enteric infections (Case) and post-recovery (FollowUp).

Pathway ID MetaCyc Pathway Class Coefficient
Standard
Error

p-value
q-value (False
Discovery
Rate)

DTDPRHAMSYN-
PWY

dTDP-&beta;-L-
rhamnose biosynthesis

FollowUp 0.0412 0.0062 3.46E-11 2.12E-10

PWY-5686 UMP biosynthesis I FollowUp 0.0357 0.0064 2.03E-08 8.06E-08

PWY-7219
adenosine ribonucleotides de
novo biosynthesis

FollowUp 0.0349 0.0038 2.81E-20 7.24E-19

PWY-5030 L-histidine degradation III FollowUp 0.0332 0.0055 1.51E-09 7.48E-09

NONMEVIPP-
PWY

methylerythritol phosphate
pathway I

FollowUp 0.0328 0.0049 1.72E-11 1.09E-10

COA-PWY-1
superpathway of coenzyme A
biosynthesis III (mammals)

FollowUp 0.0326 0.0029 1.68E-28 2.16E-26

HISTSYN-PWY L-histidine biosynthesis FollowUp 0.0318 0.0038 7.64E-17 1.13E-15

COA-PWY
coenzyme A biosynthesis
I (prokaryotic)

FollowUp 0.0316 0.0047 1.39E-11 9.12E-11

PWY-4242
pantothenate and coenzyme
A biosynthesis III

FollowUp 0.0314 0.0039 2.00E-15 2.08E-14

PWY-7221
guanosine ribonucleotides de
novo biosynthesis

FollowUp 0.0312 0.0046 1.11E-11 7.41E-11

PWY0-781 aspartate superpathway Case -0.0434 0.0069 3.98E-10 2.10E-09

PWY-5675
nitrate reduction
V (assimilatory)

Case -0.0441 0.0085 2.33E-07 7.62E-07

TCA-
GLYOX-BYPASS

superpathway of glyoxylate
bypass and TCA

Case -0.0445 0.0077 8.37E-09 3.51E-08

PWY-6285
superpathway of fatty acids
biosynthesis (E. coli)

Case -0.0455 0.0120 1.54E-04 3.46E-04

PWY-5860
superpathway of
demethylmenaquinol-6
biosynthesis I

Case -0.0459 0.0055 8.31E-17 1.19E-15

GLYCOLYSIS-
TCA-
GLYOX-BYPASS

superpathway of glycolysis,
pyruvate dehydrogenase,
TCA, and glyoxylate bypass

Case -0.0473 0.0087 4.75E-08 1.76E-07

PWY-5840
superpathway of
menaquinol-7 biosynthesis

Case -0.0474 0.0079 2.25E-09 1.06E-08

PWY-5971
palmitate biosynthesis (type
II fatty acid synthase)

Case -0.0476 0.0162 3.31E-03 6.15E-03

PWY-5896
superpathway of
menaquinol-10 biosynthesis

Case -0.0501 0.0062 4.41E-16 5.00E-15

PWY-5850
superpathway of
menaquinol-6 biosynthesis

Case -0.0501 0.0062 4.41E-16 5.00E-15
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3.6 Random forest analysis identified
specific polar metabolites that differentiate
the infected and recovered samples

Random forest of normalized peak intensities was used to

identify polar features that could distinguish between the case and

follow-up samples. Among the most important (top-30) polar

metabolites predicted by random forest, the samples clustered

together based on the patient’s health status (case vs. follow-up)

with minimal overlap (Figure 4). Despite this, no clustering was

observed among the cases when stratified by the infecting pathogen

or among the follow-up samples when stratified by the pathogen

linked to the original infection. Nonetheless, a few case clusters

containing both Salmonella and Campylobacter samples were

apparent, while all but one Shigella sample grouped within two

case clusters with Salmonella samples.

The top-30 polar clusters identified in this analysis are listed in

Supplementary Table S4 with library IDs, though 24 of the 31

clusters could not be classified. The out-of-bag (OOB) estimate of

error rate for our random forest classification was 5.74% for polar

metabolites, suggesting high accuracy in classifying the samples

based on metabolite composition. Polar Cluster 313 was deemed

most important in distinguishing cases from follow-ups and

registered a mean decrease in accuracy (MDA) score of 13.86.

This compound was identified as {[2-hexadecanamido-3-

hydroxyoctadec-4-en-1-yl]oxy}[2-(trimethylazaniumyl)ethoxy]

phosphinic acid (Supplementary Figure S7). Although it was

elevated in the case samples relative to the follow-ups for both

Campylobacter and Salmonella infections (Figure 5), this compound

was not more abundant in Campylobacter case samples when

compared to the Salmonella case samples (Wilcoxon rank-sum

test, p=0.85). Moreover, no association was observed between the
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presence of Cluster 313 and epidemiological data, such as

hospitalization or reports of bloody stool (data not shown). The

next most important compound in distinguishing disease status was

polar Cluster 2705 (MDA=13.27), an uncharacterized compound

that was elevated among the follow-up samples (Supplementary

Figure 5B). Unlike Cluster 313, the follow-up samples had a higher

abundance of Cluster 2705 relative to the cases but no difference in

abundance was observed between the samples from the recovered

patients with Campylobacter versus Salmonella infections

(Wilcoxon rank-sum test, p=0.19).
3.7 Specific nonpolar metabolites also
distinguish infected and recovered samples

A set of the top-30 nonpolar metabolites that could distinguish

between the case and follow-up samples was also identified using

random forest analysis (Figure 6). Like the polar metabolites, the

samples clustered by health status (case vs. follow-up) with minimal

overlap. Similarly, the Shigella cases grouped together within two

clusters with the exception of one sample, while the Salmonella and

Campylobacter cases were intermingled among multiple clusters.

Surprisingly, only two of the top-30 nonpolar metabolites were

known compounds (Supplementary Table S5). The OOB estimate

of error rate for the nonpolar metabolites was 4.92%, suggesting that

the classification of our samples based on the nonpolar metabolite

composition is also highly accurate. The top-3 clusters, Cluster 2659

(MDA=12.34), Cluster 321 (MDA=11.70) and Cluster 299

(MDA=11.58), were unknown but more abundant in the case

samples and could be used to differentiate the case and follow-up

samples in the random forest model. Moreover, all three clusters

were more abundant in the Campylobacter and Salmonella case
FIGURE 3

Relative abundances of PWY-5100: pyruvate fermentation to acetate and lactate II among cases and follow-ups. Barplots show the relative
abundance of PWY-5100 calculated by HUMAnN 3.0. The horizontal color bar on the bottom designates case (green) vs. follow-up (purple) samples.
The ‘Contributions’ section displays genera found to be associated with the pathway of interest as determined by MetaPhlan 3.0; colors in the
stacked barplots show the proportion of relative abundances for PWY-5100 attributed to that specific genus.
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samples relative to the paired follow-up samples (Supplementary

Figure S8). A trend of increased abundance was observed between

the STEC and Shigella case samples, though the number of samples

evaluated was small and likely limited our ability to

detect differences.

Because of these differences as well as the finding that nonpolar

metabolite diversity differed by pathogen (Supplementary Figure

S6A), we performed a separate random forest analysis to identify

key metabolites that could differentiate samples from patients

infected with specific pathogens. The OOB estimation of error

rate was much higher for this model (41.8%), which may be

partially explained by the difference in sample sizes across

pathogens. Nonetheless, various metabolites could distinguish

between the two predominant pathogens, Campylobacter and

Salmonella (Figure 7). For example, nonpolar Cluster 2964 had

the highest mean decrease in accuracy (6.05) and was elevated

among cases infected with Salmonella, while nonpolar Clusters

6581 and 8369 (MDA=6.02 and MDA=5.69, respectively) were

more abundant in cases infected with Campylobacter. Importantly,

these metabolites could also differentiate between infected vs.

recovered samples for the respective pathogens (Supplementary

Figure S9). A slight increase in Cluster 8369 abundance among

cases relative to follow-ups was also observed.
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3.8 Feature-based molecular networking
promotes exploration of polar and
nonpolar metabolites of interest

Investigation of paired statistical analyses using MetaboAnalyst

v5.0 further characterized associations between different polar and

nonpolar features in the case versus recovered samples. A fold-change

(FC) analysis detected metabolites present in one group or the other.

3.8.1. Investigation of polar metabolites. Among the

polar metabolites detected, 497 were increased in the follow-ups

relative to cases (i.e., a positive log2FC value) and 242 were

increased among the cases versus follow-ups, yielding a negative

log2FC value (Supplementary Figure S10). The top-25 polar

metabolites with positive and negative values are listed in

Supplementary Table S6.

Notably, three clusters in the top-10 list of metabolites linked to

follow-ups were part of a molecular network with tomatidine

(Figure 8A). These included Cluster 326 (log2FC=8.95; p=2.42e-

07; Figure 8B), Cluster 7558 (log2FC=8.32; p=6.33e-07; Figure 8C),

and Cluster 1593 (log2FC=6.93; p-value=3.76e-07; Figure 8D).

Other polar clusters increased in follow-ups included Cluster

2113 (log2FC=7.72; p=2.27e-08), a compound related to

desmethylenylnocardamine and Nonaethylene glycol, and Cluster
FIGURE 4

Heatmap displaying abundance of the top-30 polar metabolites identified by random forest analysis to distinguish between cases and follow-ups.
The abundance of the top-30 distinguishing polar metabolites among cases and follow-ups clustered by health status. Abundances were amplified
by 109 and log-transformed to display in the heatmap. The color of each cell represents the abundance; metabolites of high abundance are shown
in red while metabolites of low or zero abundance are shown in blue. Each column represents one sample and samples were hierarchically
clustered using the Ward D2 algorithm based on the Euclidean distance of samples’ polar metabolite composition. Two color bars at the top of the
heatmap represent cases (green) and follow-ups (purple), while another designates the pathogen associated with case infections (Salmonella – red;
Campylobacter – blue; Shigella – yellow; and STEC – light purple). Rows represent metabolic features or “clusters” which are named on the right y-
axis. A dendrogram was generated for these clusters based on their distribution across samples and is shown on the left y-axis.
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2666 (log2FC=6.51; p=3.14e-09) related to 1-(1Z-Hexadecenyl)-sn-

glycero-3-phosphocholine.

Of the polar clusters affiliated with cases, the strongest signals

were from polar Cluster 970 (log2FC= -8.72; p=6.22e-09) and

Cluster 221 (log2FC= -8.65; p=5.56e-09), which were in the same

molecular network. This network contained multiple annotated

compounds, but Clusters 970 and 221 were both directly connected

to Cluster 318, which was a spectral match for 1-(1Z-Octadecenyl)-

sn-glycero-3-phosphocholine (Supplementary Figure S11). Cluster

221 also had connections to four other nodes annotated as

variations of glycerophosphocholine compounds including

Cluster 227 (Lyso-PAF C-18), Cluster 1337 (1-Heptadecanoyl-sn-

glycero-3-phosphocholine), Cluster 6245 (1-Hexadecyl-sn-glycero-

3-phosphocho l ine ) , and Clus te r 259 (sn-g lycero-3-

phosphocholine). Notably, each of these clusters were also in the

top-30 most important polar features identified in the random

forest classification for distinguishing between cases and follow-ups

(Supplementary Table S4).
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3.8.2. Investigation of nonpolar metabolites. Among the

nonpolar metabolites detected, 1,698 increased in follow-up

samples while 187 were solely affiliated with cases (Supplementary

Figure S12). The strongest association for the case samples was the

nonpolar singleton Cluster 321 (log2FC= -8.46; p=1.38e-08)

(Supplementary Figure S13), which was similar to our findings

generated by random forest. The lack of similarity to other

metabolites in our dataset coupled with its uncharacterized nature

suggests Cluster 321 may be an important, novel metabolite

connected to enteric infection.

Among the nonpolar clusters increased in follow-ups, Clusters

2756 (log2FC=7.03; p=3.23e-07), 4470 (log2FC=6.91; p=1.38e-09)

and 5193 (log2FC=6.59; p=7.41e-08) were the most notable

(Supplementary Table S7). Cluster 2756 was a part of an

extensive molecular network comprising ten different

connections. Two of these connections, Clusters 2739 and 4512,

were annotated as chenodeoxycholic acid, suggesting that Cluster

2756 may be involved in the metabolism of this bile acid (Figure 9).
FIGURE 5

Normalized abundances for Cluster 313 and Cluster 2705 among cases and follow-ups separated by infecting pathogen. Normalized abundances of
Cluster 313 (top) and Cluster 2705 (bottom) are displayed. The box-plots are faceted by infecting pathogen and stratified by health status, with
samples represented by circles (cases, green) or triangles (follow-ups, purple). Data points are offset from the vertical to allow for clear interpretation
of all samples. Within each box, the median is displayed as a thick black bar; the first and third quartiles are shown by the bottom and the top of
each box, respectively. Significance levels are displayed on the plot and were calculated using the Wilcoxon signed-rank test for paired case and
follow-up samples; ns: p>0.05, ****: p ≤ 0.0001.
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Molecular networks for the nonpolar metabolites suggested to

be associated with specific enteric infections were also explored.

Cluster 2964, which was more specific for Salmonella infections, is

part of a small molecular network containing three similarly related,

but uncharacterized, compounds. Comparatively, Clusters 6581 and

8369 were elevated in Campylobacter case samples and are part of

an extensive molecular network containing 81 total compounds

(Supplementary Figure S14). Both Clusters 6581 and 8369 were

identified as glutamylphenylalanine (isomer of 1503).
4 Discussion

The metabolic health of the human gut is undoubtedly linked to

the microbiome. Environmental flux related to disease state, diet,

antibiotic use, and other factors can also greatly influence the

composition of microbially-mediated metabolic pathways in the

gut (Rowland et al., 2018). Taxonomically diverse gut communities,

which typically represent a healthy, homeostatic gut environment

(Kriss et al., 2018), have greater metabolic functionality than

communities with fewer members. In our analysis, the functional

prediction of microbial metabolic pathways using metagenomic

data showed that patients with acute enteric infections had greater
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metabolic capacity during infection than post-recovery. Because we

previously observed lower taxonomic diversity in the cases relative

to the follow-ups (Hansen et al., 2023), this finding differs from our

hypothesis that the overall metabolic capacity (i.e., number of

pathways) would be similar or lower during an infection.

Nonetheless, the opposite was true in our corresponding LC/MS

analysis of metabolites, which showed increased metabolic diversity

among the follow-up samples. The overlap between the predicted

microbial metabolic pathways and the identified metabolites was

relatively scant, which is likely due to the different targets for the

two methods.

Perturbations in the microbiota during infection are likely to

influence the abundance of microbial metabolic pathway genes. Our

prior analysis showed that individuals with enteric infections had an

increased abundance of antibiotic resistance genes harbored by

members of Enterobacteriaceae such as Escherichia and Klebsiella

(Hansen et al., 2023). Moreover, these genera were increased in

abundance during infection regardless of the pathogen that was

linked to the initial infection. Expansion of Enterobacteriaceae

during enteric infections has previously been linked to the host-

mediated inflammatory response (Lupp et al., 2007). Increased

inflammation may be due, in part, to Enterobacteriaceae-mediated

production of LPS (Caradonna et al., 2000). Support for this
FIGURE 6

Heatmap displaying abundance of the top-30 nonpolar metabolites identified by random forest analysis to differentiate between cases and follow-
ups. The abundance of the top-30 distinguishing nonpolar metabolites among cases and follow-ups clustered by health status. Abundances were
amplified by 109 and log-transformed to display in the heatmap. Colors represent the abundance; metabolites of high abundance are red while
metabolites of low or zero abundance are blue. Each column represents one sample and samples were hierarchically clustered using the Ward D2
algorithm based on the Euclidean distance of samples’ polar metabolite composition. Two color bars at the top of the heatmap represent cases
(green) and follow-ups (purple) and type of case infections (Salmonella – red; Campylobacter – blue; Shigella – yellow; and STEC – light purple).
The right y-axis represents metabolic features or “clusters” and the left x-axis dendrogram was generated for these clusters based on their
distribution across samples.
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hypothesis comes from the greater LPS production pathway

abundance observed in infected case samples. Nonetheless, the

actual presence of LPS was not confirmed and would require use

of additional methods such as enzyme-linked immunosorbent

assays (Martinez-Sernandez et al., 2016) or direct LPS purification

and quantification as described (d'Hennezel et al., 2017). Other
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studies have shown that nitrate, which is generated by the host

during inflammation, confers a growth advantage to members of

Enterobacteriaceae that can degrade non-fermentable substrates

unlike many commensal anaerobes (Winter et al., 2013).

Interestingly, we observed increased abundance of pathways with

signatures of nitrogen metabolism related to nitrate reduction
FIGURE 7

Normalized abundances of Clusters 2964, 6581, and 8369 across infecting pathogens among cases and follow-ups. Normalized abundances of
Cluster 2964, 6581, and 8369 are displayed for the samples from cases (left) and follow-ups (right) and stratified by the infecting pathogen within
each boxplot. The abundances of each cluster among the cases with Campylobacter (blue circles), Salmonella (red triangles), Shigella (yellow
squares), and STEC (purple crosses) are shown. Data points are offset from the vertical and the median is represented within each box as a line. The
first and third quartiles are indicated by the bottom and the top of each box, respectively. P-values were calculated using the Wilcoxon signed-rank
test for paired samples and P-value signifiers are: not significant (ns): p>0.05, *: p ≤ 0.05. Statistical comparisons were only conducted for
Campylobacter and Salmonella due to small sample sizes in the other two groups.
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among the cases (Supplementary Figure S15) as well as pathways for

amino acid regulation and biosynthesis. Multiple arginine and

ornithine pathways were also detected, and these compounds are

precursors for nitric oxide (NO) and polyamines (Cynober, 1994)

Indeed, NO favored the overgrowth of Enterobacteriaceae and

modified amino acid composition and concentration, and led to

decreased abundance of beneficial SCFA-producing bacteria such as

F. prausnitzii (Leclerc et al., 2021). The observed overrepresentation

of these metabolic pathways in our dataset highlights the impact of

increased Enterobacteriaceae abundance and its importance during

acute infections.

Among infected cases, other notable findings included several

menaquinol synthesis pathways. Menaquinols are the reduced form

of menaquinones (vitamin K2), which facilitate electron transfer

and oxidative phosphorylation in bacterial cell membranes (Collins

and Jones, 1981). Increased menaquinol synthesis during enteric

infection is plausible, as these compounds reduce harmful

inflammatory effects and protect bacterial cell membranes from

oxidation. Because enteric infection often results in inflammation,

which increases luminal oxygen (Zeng et al., 2017), the elevated

number of menaquinol synthesis pathways that enhance survival in

these conditions is logical.

Cases also had an increased number of glycolysis, pyruvate

dehydrogenase, tricarboxylic acid cycle, and glyoxylate bypass

superpathways relative to the follow-ups. Accordingly, proteins

for these metabolic pathways were enhanced in individuals

treated with antibiotics in a prior study (Perez-Cobas et al., 2013),
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suggesting that microbial communities respond to fluctuating

nutrient supply and stress by overcompensating in carbohydrate

metabolism. The increased prevalence of glyoxylate bypass is

particularly relevant, as this pathway enables microbes to

consume a variety of substrates for central carbon metabolism

including fatty acids, alcohols, esters, alkenes, and other

compounds (Cronan and Laporte, 2005). Since antibiotic

treatment causes comparable disturbances in gut microbial

communities (Zeng et al., 2017), a similar effect is likely to occur

during enteric infection.

The application of untargeted metabolomics also revealed

distinct metabolome profiles among the case and follow-up

samples. Of note, a series of glycerophosphocholines, which were

assigned to at least six annotated molecules (Clusters 806, 318, 227,

259, 1337, and 6245) were variably present with 5/6 occurring more

frequently in cases. Our pathway prediction pipeline identified a

phosphatidyl choline acyl editing pathway, PWY-6803, to be more

abundant in cases along with an overall enhanced capacity for lipid

and fatty acid metabolism (Supplementary Figure S16). Indeed,

glycerophosphocholines are required in the synthesis of

phosphatidylcholine, an abundant phospholipid that plays an

important role in lipid metabolism (van der Veen et al., 2017).

While choline is an essential nutrient that assists with healthy brain

function, cell signaling, lipid movement, and metabolism (Goh

et al., 2021), it can also be metabolized by anaerobic bacteria in

the gut, resulting in the generation of trimethylamine (TMA)

(Wright, 2019). TMA can be metabolized by the host to form
B

C D

A

FIGURE 8

Molecular network and MS2 spectra for three clusters related to tomatidine that are prevalent in follow-ups. (A) The molecular network constructed
in GNPS (top, left) shows the interrelatedness of multiple metabolite clusters. Nodes are labeled with their cluster index (black) and edges are labeled
with the associated mass difference between two connected nodes (blue); directionality of the mass difference is indicated by the direction of the
arrow. Pie-charts on each node indicate the proportion of that node that was found in cases (green) and follow-ups (purple). The MS2 spectra for
Clusters 326 (B), 7558 (C), and 1593 (D) are shown; each was found to be important indicators of follow-ups. Notably, this molecular network
contained metabolites related to tomatidine (Cluster 6105) designated with a star.
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trimethylamine N-oxide (TMAO), a compound that has been

linked to disease. Although TMA and TMAO were not directly

detected in the samples, two trimethyl-ammonium-related products

were identified in the polar metabolite analysis. One of these

products, 3-hydroxy-2-(tetracosa-11.13.15)octadecyl (2-

(trimethylammonio)ethyl) phosphate (Cluster 806), was elevated

in cases and the other, [2-hexadecanamido-3-hydroxyoctadec-4-en-

1-yl]oxy[2-(trimethylazaniumyl) ethoxy]phosphinic acid (Cluster

313), was observed to differentiate the cases from follow-ups. Since

Cluster 313 was detected in most case samples (n=58; 95.1%),

characterization of this compound is needed to determine its role in

TMA(O) metabolism during acute infection.

Among follow-ups, Clusters 326, 7558, and 5193 were found in

66% of the samples with elevated average relative intensity

compared to the cases (0.048% vs. 0.0017%, respectively). These

compounds are related to a distant cluster that was annotated as

tomatidine, which is the aglycon form of tomatine, a steroidal

glycoalkaloid produced by members of the Solanaceae plant family

(Boulanger et al., 2015). This compound is known for its benefits to

human health and was shown to have anti-inflammatory and

antimicrobial effects. Moreover, tomatidine is structurally similar

to taurochenodeoxycholic acid (TCDCA), a conjugated bile acid

with antimicrobial activity in the gut (Guthrie et al., 2019),

hypothesized to acidify bacterial cells. Although the overall

impact of tomatidine in the gut following an enteric infection is
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not known, its presence in recovered patients is intriguing and may

indicate a role in a healthy, homeostatic gut environment.

Detection of the uncharacterized Cluster 2756 in follow-up

samples is also intriguing, as it has connections to Clusters 2739

and 4512, identified as chenodeoxycholic acid (CDCA), a naturally

occurring primary bile acid that assists with cholesterol breakdown

(Iser and Sali, 1981). Gut microbes are known to facilitate important

biotransformations of bile acids (Ridlon et al., 2006). Patients with

irritable bowel syndrome (IBS), for instance, had increased

abundance of E. coli and significantly more primary bile acids than

their healthy counterparts, emphasizing the importance of microbial

conversion of primary to secondary bile acids on gut health (Duboc

et al., 2012). While lithocholic acid was slightly more common in the

follow-up samples (data not shown), our findings do not clearly

illustrate a predominance of secondary bile acids in the recovered

samples. This discrepancy may be due to the variable timing for

collecting the follow-up samples across patients, which ranged from 1

week to 29 weeks after acute infection.

It is important to note that studies utilizing untargeted

metabolomics via LC/MS are limited by the uncharacterized nature

of many polar and nonpolar compounds detected (Johnson and

Gonzalez, 2012). While the lack of annotation limits our ability to

make biologically sound conclusions, observing compositional

differences among infected and recovered metabolomes is still

meaningful. Each compound isolated in this study registered
B
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FIGURE 9

Molecular network and MS2 spectra for Cluster 2756 and related Cluster 2739, which were greatly increased in follow-ups. A molecular network
constructed in GNPS (A) shows the interrelatedness of multiple metabolite clusters. Nodes are labeled with their cluster index (black) and edges are
labeled with the associated mass difference between two connected nodes (blue); directionality of the mass difference is indicated by the direction
of the arrow. Pie-charts on each node indicate the proportion of that node that was found in cases (green) and follow-ups (purple). The MS2 spectra
for Cluster 2756 (B) and a closely related cluster, 2739 (C), are shown. Clusters 2739 and 4512 (spectra not shown) were successfully annotated in
GNPS as chenodeoxycholic acid; the structure for this compound was generated in ChemDraw 20.1 (D).
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unique MS2 spectra and may lead to future characterization as

metabolite databases improve. Additionally, defining the

relationship between known metabolites and the unknown

compounds via FBMN analysis allows us to generate hypotheses

about their contribution to metabolic functions, as they may serve as

precursors or intermediates in known pathways. Although we may

not know the identities of metabolites that are changing in

abundance, we can confidently assert that infection does play an

important role in dictating the metabolic capacity of the gut.

While functional prediction of microbial metagenomes allows

us to visualize metabolic capacities among gut microbes, untargeted

metabolomics captures the entire metabolic chemistry of the gut

environment, microbially related or not. Because untargeted

metabolomics considers human-, drug- and food-derived

compounds in addition to microbial-derived molecules, this

method will inherently provide different results from a microbial

metagenome analysis. Yet, the comparison of functional prediction

with known metabolite signatures enables us to further characterize

the relative importance of these microbial functions in the gut

metabolome. While direct comparison of our predictive and

quantitative methods is challenging, we performed a preliminary

analysis to identify microbially-produced metabolites in the

untargeted metabolomics dataset by comparing characterized

metabolic hits in the Microbial Metabolites Database (MiMeDB)

(Wishart et al., 2023). In total, just 59 characterized metabolites (35

polar, 24 nonpolar) were identified to be of microbial origin

(Supplementary Table S8). Potential KEGG pathways related to

these microbially-produced metabolites include amino acid

synthesis and degradation pathways and nucleotide metabolism,

demonstrating concordance with our predicted pathway pipeline.

Regardless, more rigorous methods for identifying microbially

produced polar and nonpolar metabolites from untargeted

metabolomics are needed. Future work could include use of a

taxonomically-informed mass spectrometry (MS) search tool such

as microbeMASST (Zuffa et al., 2024), in conjunction with GNPS

analysis to more confidently assert whether metabolites

(characterized or not) are microbial in origin. In addition to

highl ight ing the importance of compar ing mul t ip le

characterization methods, these observed differences also indicate

that enhanced diversity of host-derived metabolites is important for

human health.

Further investigation of these data is encouraged, and an

important future direction will be performing targeted

metabolomics to confirm metabolites of interest identified

through the study. Another analysis that should be pursued is

direct integration of microbiome data with the metabolomics data

described. Prior studies have demonstrated that individuals with

differing microbiome compositions shared a majority of metabolic

pathways identified (The Human Microbiome Project Consortium,

2012) and have described associations between various microbial

taxa, predicted pathways, and fecal metabolite frequency (Visconti

et al., 2019). Indeed, integrating these two ‘omics techniques

(metagenomics and metabolomics) can provide a comprehensive

understanding of the human gut environment. Clarifying the links

between microbial composition, metabolic pathway prediction, and

metabolite abundance provides a more comprehensive
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understanding of the changes taking place in the gut environment

related to enteric infection and dysbiosis.
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