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Background: Temporomandibular joint disorders (TMD) are highly prevalent

among people. Numerous investigations have revealed the impact of gut

microbiota in many diseases. However, the causal relationship between

Temporomandibular joint disorders and gut microbiota remains unclear.

Methods:Genome-Wide Association Studies (GWAS) refer to the identification of

sequence variations, namely single nucleotide polymorphisms (SNPs), existing

across the entire human genome. GWAS data were collected on gut microbiota

and TMD. Then, instrumental variables were screened through F-values and

removal of linkage disequilibrium. These SNPs underwent mendelian analysis

using five mathematical models. Sensitivity analysis was conducted to further

verify the stability of the results. Pathogenic factors of TMD mediate the causal

relationship between gut microbiota and TMDwere explored through a two-step

Mendelian randomization analysis. Finally, reverse mendelian analysis was

conducted to account for potential reverse effects.

Results: The analysis of the data in this article suggests that some gut microbiota,

including Coprobacter, Ruminococcus torques group, Catenibacterium,

Lachnospiraceae, Turicibacter, Victivallis, MollicutesRF9, Methanobacteriales,

Methanobacteriaceae, FamilyXI, Methanobacteria were identified as risk factors,

while Peptococcaceae provides protection for TMD.

Conclusion: The research reveals the relation of gut microbiota in TMD. These

findings provide insights into the underlying mechanisms and suggest potential

therapeutic strategy.
KEYWORDS

gut microbiota, temporomandibular joint disorder, Mendelian randomization, causal
inference, genetic variation
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1 Introduction

Temporomandibular joint disorders (TMD) are a collective

term for a group of conditions affecting the temporomandibular

joint and/or surrounding muscles, characterized by pain and

dysfunction (Scrivani et al., 2008; Andre et al., 2022; Thomas

et al., 2023). TMD are highly prevalent among people, with

children and adolescents also being susceptible to the condition

(Kopp et al., 2023). Approximately 5% to 12% of Americans are

affected by TMD, with annual total costs for treating TMD reaching

around $4 billion (Schiffman et al., 2014; Manrriquez et al., 2021).

Women have a higher risk of developing TMD, with prevalence

rates ranging from 25% to 40% in population (Murphy et al., 2013;

Calixtre et al., 2014; Valesan et al., 2021). Nearly half of individuals

diagnosed with TMD experience persistent or recurring symptoms,

often leading to a diminished quality of life (List and Axelsson,

2010; Maixner et al., 2011). Treating TMD poses many challenges.

Comorbidities are highly prevalent among TMD patients, including

headaches, widespread pain, fibromyalgia, neck and back pain, and

psychosocial disorders like stress, anxiety, depression (Aggarwal

et al., 2006). Prospective and risk assessment studies on oral and

facial pain support the biological psychological social model of

TMD, emphasizing the role of comprehensive treatment (Fillingim

et al., 2018). Traditionally, treatment methods for TMD include

cognitive–behavioral therapy, anti-inflammatory drug therapy,

splint therapy, minimally invasive, arthroscopic, or open surgery

(Manrriquez et al., 2021; Valesan et al., 2021). Despite the

availability of numerous treatments for TMD, they often fail to

prevent the occurrence or recurrence of the condition. The

etiological factors of TMD are still unclear.

The human gut harbors thousands of microbial species, forming

a complex ecological community, called the gut microbiome (Lagier

and Raoult, 2016). These microorganisms are major mediators of

body homeostasis, influencing various physiological activities such as

metabolism, barrier homeostasis, inflammation, and hematopoiesis

through intestinal and parenteral actions. Recently, the gut

microbiota has recently been classified as a “vital organ” due to its

establishment of multidirectional and communicative links or axes

with other organs through neural, endocrine, humoral, immune, and

metabolic pathways. Changes in the microbiome can lead to gut-

related problems, but also affects other organ-related diseases,

although the actual mechanisms of gut-organ interaction are not

fully understood. A recent study had revealed a correlation between

the occurrence of TMD and the deregulation of microbial metabolites

(Ma et al., 2020). Extensive research on the brain-gut axis underscores

the pivotal role of gut microbiota in adjusting the secretion of

inflammatory neurotransmitters, which could lead to the release of

diverse proinflammatory mediators in the process of TMD

(Shrivastava et al., 2021; Aburto and Cryan, 2024).

Widespread debate still exists regarding whether there is a

causal relationship between abnormal microbial communities

associated with diseases. The substitution of a nucleotide in the

genome can significantly alter the function of an organism. Single

nucleotide polymorphisms (SNPs) are commonly present in

microorganisms and can endow bacteria with antibiotic resistance
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or the ability to infect new host species. The diversity of SNPs may

reflect the correlation between host microbial interactions. Current

research lacks comprehensive evidence to confirm between gut

bacteria and TMD. Mendelian randomization (MR) is a crucial

instrument for exploring the potential causal relationship between

exposure and outcomes using instrumental variables (IV) (Davey

and Hemani, 2014; Swerdlow et al., 2016; Bowden and Holmes,

2019). This approach is based on the fair and random allocation of

alleles to the next generation, and has emerged as a powerful tool for

exploring the intricate connections between complex traits and

diseases (Bowden and Holmes, 2019). MR is currently widely used

in oncology, neuroscience, cardiovascular and genetics. Its

advantage in exploring causal relationships makes it have broad

prospects (Swerdlow et al., 2016; Bowden and Holmes, 2019;

Ouyang et al., 2022). With the continuous advancement of

technology and the ongoing refinement of research methods, such

as Genome-wide association studies, MR becomes an important

method in the biomedical fields. In this research, we aimed to

explore the causality between the intestinal microbiome and TMD

by Mendelian randomization.
2 Methods

2.1 Data sources

A summary of the GWAS data was originated from MiBioGen

(https://mibiogen.gcc.rug.nl/), which comprised 16S rRNA

sequencing and genotyped their participants with full-genome

SNP arrays. The sequencing of gut microbiota in the Mibiogen

database offered a comprehensive catalog of gene variations

associated with gut microbiota (Kurilshikov et al., 2021). These

variations were derived from 18,340 participants representing 24

countries, individuals from Asian, American, and African

populations. Currently, this database is recognized as the most

extensive and comprehensive among comparable database. The

database comprises an analysis of the variable regions V3, V4-V1,

and V2-V16 of the 16S rRNA gene from microorganisms. The

results are categorized into five levels: genus, family, order, class,

and phyla, encompassing a total of 211 species. Our outcomes

were sourced from the IEU Open GWAS database (https://

gwas.mrcieu.ac.uk/datasets), a comprehensive database (Zheng

et al., 2022b). This dataset includes a European population with a

comprehensive sample size of 134,280 individuals, including 2,730

diagnosed with TMD and 131,550 control individuals, providing a

total of 16,379,953 SNPs. All data in this study were derived from

public publications, thus ethical approval or patient consent is not

required for analysis.
2.2 Experimental design

GWAS refer to the identification of sequence variations, namely

SNPs, existing across the entire human genome. In order to

investigate the causal connection between gut microbiota and

TMD, we conducted a bidirectional dual-sample MR study utilizing
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this GWAS dataset (Figure 1). Individuals were grouped into different

genotype groups based on SNPs strongly associated with TMD. By

simulating random distribution of genetic information from parental

genomes to offspring, occurrence rates of TMD among different

genotype groups were compared. The IVs need to fit three main

assumptions (1): SNPs are closely related to the exposure (2); SNPs

are unrelated to the outcome (3); SNPs are unrelated to confounding

factors. For exposure SNPs, the pooling process is conducted

according to SNP loci with P < 1 × 10-5, while ensuring R2 <

0.001 and genetic distance of 10000 to eliminate linkage

disequilibrium (LD). After eliminating the SNPs of echo sequence,

the remaining SNPs were chosen. This step ensured that the IVs fits

assumption. Weak instrumental variables are genetic variations with

lower explanatory power for exposure. They are associated with

exposure, but the strength of this association is limited (Davey and

Hemani, 2014). According to literature reports, F > 10 was considered

to be the standard for excluding weak instrumental variable bias

(Burgess and Thompson, 2011; Zheng et al., 2022a). Next, the

screened SNPs were used as IVs to evaluate the relationship

between gut microbiota and TMD.

2.3 Statistical analysis

In this investigation, diverse statistical approaches were utilized

to assess the causal link between gut microbiota and TMD. These

methods encompassed inverse variance weighted (IVW), simple

mode, MR- Egger regression, weighted median (WM), and

weighted model (WME) (Hemani et al., 2018). The characteristic

of IVWmethod is that it does not consider the presence of intercept

terms during regression, and it uses the inverse of the outcome

variance (the square of the standard error) as weights for fitting.

IVW was seemed as the primary method, and the other methods as

Supplementary Methods to evaluate the relationship between

exposure and outcomes under various conditions (Carter et al.,

2021). If P < 0.05, the outcome was deemed statistically significant

and expressed in terms of odds ratio (OR) along with the

corresponding 95% confidence interval (95% CI).
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2.4 Sensitivity analysis

Sensitivity analysis was performed to validate the stability of

this findings and to assess potential biases and heterogeneity in

each IVs. Egger regression analysis is a type of weighted linear

regression where the standard normal deviation of the effect

value serves as the dependent variable, while its accuracy serves

as the independent variable. The MR-Egger method was

employed to assess the presence of horizontal pleiotropy.

Simultaneously, the Cochran Q test was applied to investigate

potential heterogeneity, with significance set at P<0.05. And

leave-one-out analysis was conducted, systematically removing

each exposure to evaluate results stability. Additionally, the MR-

PRESSO test was used to identify outliers and recompute the

results. The analyses were performed by R version 4.2.3, with the

“TwoSampleMR” and “MRPRESSO” software packages

(Burgess and Thompson, 2015).
2.5 Two-step mendelian randomization

The overall impact of exposure on the outcome can be

decomposed into direct effects and synergistic effects. In order to

detect the synergistic effect on TMD, two-step MR was used to

examine the mediating effects of other factors (Carter et al., 2021;

Zhao et al., 2022). Dentofacial anomalies was considered as TMD

influencing factors, serving as an intermediary factor of intestinal

flora affecting TMD. Maxillofacial deformities underwent

univariate Mendelian randomization, and significant intestinal

flora results were tested using the coefficient product method.
2.6 Reverse Mendelian randomization

Reverse Mendelian randomization also was conducted to assess

the stability of results.
FIGURE 1

Flowchart for the study of the association between gut microbiota and TMD. (1) SNPs are closely related to the exposure; (2) SNPs are unrelated to
the outcome; (3) SNPs are unrelated to confounding factors.
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3 Results

3.1 The screen of IVs

15 groups of unknown data from the gut microbiota were

excluded, while 196 data were entered statistical analysis. By

computing P values, LD, and conducting F-value tests, we

conducted screening on multiple SNPs within 196 genotypes. The

SNPs that passed the screening were considered to eliminate

instrumental bias and F>10 (Supplementary Table 1). All SNPs

which were screened would seem as instrumental variables for the

subsequent experiments.
3.2 Effect of IV in TMD

2601 SNPs were screened from 196 microbial samples. 11

microbial group that showed significant effect on the occurrence

of TMD, and the IVW outcomes consistently demonstrated

significant effects. The IVW results indicated that the following

microbial groups were associated with an increased risk of TMD:

genus Coprobacter (OR = 1.28, 95% CI (1.04-1.59), P = 0.035),

genus Ruminococcus torques group (OR = 1.49, 95% CI (1.04-2.15),

P = 0.031), genus Catenibacterium (OR = 1.28, 95% CI (1.04-1.59),

P = 0.023), genus LachnospiraceaeUCG010 (OR = 1.39, 95% CI

(1.02-1.90), P = 0.035), genus Turicibacter (OR = 1.42, 95% CI

(1.12-1.80), P = 0.004), genus Victivallis (OR = 1.20, 95% CI (1.02-

1.40), P = 0.016), order MollicutesRF9 (OR = 1.31, 95% CI (1.31-

1.67), P = 0.026), order Methanobacteriales (OR = 1.25, 95% CI

(1.05-1.49), P = 0.014), family Methanobacteriaceae (OR = 1.25,

95% CI (1.05-1.49), P = 0.014), family FamilyXI (OR = 1.24, 95% CI

(1.06-1.46), P = 0.008), class Methanobacteria (OR = 1.25, 95% CI

(1.05-1.49), P = 0.014). And one microbial group was demonstrated

a significant effect prevent the progression of TMD: family

Peptococcaceae (OR = 0.75, 95% CI (0.58-0.98), P = 0.036).

(Figure 2; Supplementary Table 2).
3.3 Sensitivity analyses

According to the results of the Cochran Q test, including both the

IVW and Egger methods, P values were not significant. Therefore, the

results seemed to be stable, indicating no apparent heterogeneity.

Additionally, tests for Leave-one-out demonstrated stable conclusions

(Figure 3). MR-Egger regression testing further confirmed the stability

of the results (Figure 4; Supplementary Table 3).
3.4 Two-step mendelian randomization

Malocclusion exhibited significant relationships with TMD

(Supplementary Figure 3). The results suggest that that the causal

relationship between the three bacteria (Turicibacter, Victivallis,
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Peptococcaceae) (Supplementary Figure 4) and TMD may be partly

mediated by maxillofacial deformities.
3.5 Reverse MR analysis

In order to test potential reverse causality influencing the

previous results, reverse MR analysis was performed to treating

significant gut microbiota as the outcome and TMD as the exposure

variables. Notably, the analysis of the data did not yield any

evidence supporting a reverse causal association between TMD

and the identified gut microbiome (Supplementary Figure 5).
4 Discussion

According to recent epidemiological, cellular biology, and

genomics research, a significant portion of the external influences

on the human body appears to mediated by the gut microbiota. The

gut microbiota, being the largest microbial community, exerts a

substantial influence on training host immunity, regulating

intestinal endocrine function, promoting neurotransmitter release,

modulating drug action and metabolism, eliminating toxins, and

producing numerous compounds that affect the host. Extensive

debate exists regarding whether abnormal microbial communities

associated with diseases are causally related to the diseases (i.e.,

susceptibility, initiation, or progression) (Davies et al., 2018; Fan

and Pedersen, 2021). An important finding is that the abundance of

Bacteroidetes and Lachnospiraceae in the gut of TMJ mice

significantly decreased (Ma et al., 2020). In another study, 16S

rRNA sequencing of TMJ mice revealed significant changes in

Bacteroidetes, TM7, Actinobacteria, Tenericutes, Verrucomicrobia,

Cyanobacteria, Spirochaetes, and Elusimicrobia (Shen et al., 2023).

Additionally, arthritis patients displayed an enrichment of genera

such as Anaerostipes, Bifidobacterium, Brachyspira, and Eggerthella,

while healthy controls had higher levels of genera such as

Faecalibacterium, Lachnoclostridium, Phascolarctobacterium, and

Paraprevotella (Jeyaraman et al., 2023). Using IVW estimation, a

statistical method that uses the reciprocal of the variance of the

results (square of standard error) as a weight for fitting is used to

evaluate the causal impact of 211 gut microbiota on TMD. The

analysis of the data in this article suggests that the abundance of 12

bacteria were found to have causal relationships with the

progression of TMD. Among them, 11 species of bacteria were

found to exacerbate TMD, while Peptococcaceae seemed to had a

protective effect. In subsequent stability tests, removing SNP loci

that influenced the results did not alter the stability of the outcomes.

Therefore, the relationship of the above microbial communities on

TMD to be stable and reliable. Reverse MR revealed no evidence of

causal effect of TMD on the on the identified gut microbiome.

The relationship between gut microbiota and TMD may be based

on the susceptibility to TMD caused by dysbiosis of gut microbiota, or

the microbiota and its metabolites acting as promoting factors for
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TMD. Increasing evidence suggested an association between the family

Lachnospiraceae and the genus Ruminococcus with inflammatory

diseases. Ruminococcus is a Gram-positive anaerobic bacterium

belonging to the phylum Firmicutes, and it is one of the 57 species

present in 90% of individuals at a median abundance of around 0.1%

(Aguilera et al., 2012; Crost et al., 2023). An increase in the abundance

of Ruminococcus has been observed in patients with ankylosing
Frontiers in Cellular and Infection Microbiology 05
spondylitis (Vereecke and Elewaut, 2017). Additionally, a correlation

exists between the prevalence of musculoskeletal pain (MSKP) in

elderly community members and Ruminococcus (Shmagel et al., 2018).

Costello et al. observed alterations in the composition of gut

microbiota from patients with ankylosing spondylitis (AS), where the

increased abundance of bacteria from the Lachnospiraceae,

Ruminococceae, Rikenellaceae, Porphyromonadae, and Bacteroideae
FIGURE 2

Forest plots for the association of gut microbiota and Temporomandibular joint disorder. OR, odds ratio; CI, confidence interval. P < 0.05.
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appeared at AS (Costello et al., 2015). This study similarly suggested

that Lachnospiraceae ucg-010 and the Ruminococcus may play a

promoting role in TMD.

In this study, Peptococcaceae may have a mitigating or

protective effect on the occurrence of TMD. This effect may be

associated with their impact on metabolic products. Wen et al.

confirmed the correlation of Peptococcaceae with various metabolic

pathways, including tryptophan and tyrosine, derived from

metabolomic and 16S rRNA gene sequencing analyses (Wen

et al., 2019).

The analysis of the data in this article also provides some new

insights into the effects of drugs in TMD treatment. TMD treatment

targets both pain relief and functional improvement. The reports

described that a large number of TMD patients had used

medication, including anti-inflammatory drugs, over-the-counter

painkillers, and even antidepressants, anti-anxiety drugs, and muscle

relaxants (Gauer and Semidey, 2015). Although the standard of drug
Frontiers in Cellular and Infection Microbiology 06
treatment for TMD still lacks evidence-based support, nonsteroidal

anti-inflammatory drugs are considered the first choice, and other

drugs mentioned above have also been used in combination (Ta and

Dionne, 2004). The differences in the abundance of intestinal

microorganisms among different populations may lead to different

responses to TMD drug treatment. Lachnospiracea, a diverse obligate

anaerobic bacteria, is abundant in the human gut. In rats administered

with low-dose aspirin, alterations in the Lachnospiracea family and its

interactions with the Ruminococcaceae family were observed (Chi et al.,

2021). When using medication to treat TMD, changes in the

aforementioned bacteria may be potential evaluation indication.

Some microbial communities may synergize with malocclusion.

Malocclusion is an important cause of TMD, resulting from multiple

factors such as genes, occlusal training, and nutritional factors that

affect growth and development (Masucci et al., 2020). The synthesis of

butyrate by human gut microbiota has significantly improve skeletal

muscle mass (Lv et al., 2021). Skeletal muscles, especially chewing
FIGURE 3

MR leave-one-out sensitivity analysis. (A) Leave-one-out sensitivity analysis of the effect of class. Methanobacteria on TMD; (B) Leave-one-out sensitivity
analysis of the effect of family. FamilyXI on TMD; (C) Leave-one-out sensitivity analysis of the effect of family. Methanobacteriaceae on TMD; (D) Leave-one-
out sensitivity analysis of the effect of family. Peptococcaceae on TMD; (E) Leave-one-out sensitivity analysis of the effect of order. Methanobacteriales on
TMD; (F) Leave-one-out sensitivity analysis of the effect of order.MollicutesRF9 on TMD; (G) Leave-one-out sensitivity analysis of the effect of genus.
Catenibacterium on TMD; (H) Leave-one-out sensitivity analysis of the effect of genus. Coprobacter on TMD; (I) Leave-one-out sensitivity analysis of the
effect of genus.Lachnospiraceaeucg010 on TMD; (J) Leave-one-out sensitivity analysis of the effect of genus. Ruminococcus torques group on TMD;
(K) Leave-one-out sensitivity analysis of the effect of genus. Turicibacter on TMD; (L) Leave-one-out sensitivity analysis of the effect of genus. Victivallis on
TMD. TMD, Temporomandibular joint disorder; MR, Mendelian randomization.
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muscles and some head and neck muscle groups, have a promoting or

inhibiting effect on the development of maxillofacial bones, which may

lead to excessive or insufficient development of the jawbone, further

leading to malocclusion (Rot et al., 2014). Peptococcaceae has been

demonstrated to enhance muscle strength through the synthesis of

butyric acid, and occlusal muscle strength is an important factor

affecting maxillofacial development (Joshi et al., 2014; Parada et al.,

2019; Leszczyszyn et al., 2021). The increase in the abundance of

Turicibacter may reduce the content of bile acids such as lithocholic

acid, which in turn leads to a decrease in the intestinal absorption of

vitamin D (Guida et al., 2020; Hao et al., 2022). Skeletal development is

another factor that affects malocclusion. This article suggests that

malocclusion played a partial mediating role in the effects of

Turcicactor, Victivalis, and Peptococcaceae on TMD. Regulating the

gut microbiota is expected to become a part of the precise therapy of

TMD, relying on reducing the inflammatory response around the

joints, and providing a suitable microenvironment for the regeneration

of surrounding chondrocytes.

This study focuses on exploring the causal relationship

between gut microbiota and TMD without delving into the

specific regulatory mechanisms. Given the complex interplay
Frontiers in Cellular and Infection Microbiology 07
among gut microbiota and the broad spectrum of pathogenic

factors associated with TMD, there may be intricate cross-

interactions among these factors. This underscores the necessity

for further comprehensive research to achieve precision in

treating TMD. Additionally, the study relies on GWAS data

grouped based on epidemiological surveys rather than specific

TMD pathology group, which hinders further research on the

pathogenic factors of different pathological states of TMD.

Therefore, the interpretation of the result still needs to be

cautious. Moreover, given that the majority of participant are

European descent, extending these research conclusions to other

populations requires broader data support.
5 Conclusions

In conclusion, this study represents a view in understanding the

connections between temporomandibular joint disorders and gut

microbiota. These identified microbial signatures associated with

TMD contribute to reveal the mechanistic and explore novel

therapeutic avenues for individuals precise therapy.
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FIGURE 4

MR Egger sensitivity analysis. (A) Egger sensitivity analysis of the effect of class.Methanobacteria on TMD; (B) Egger sensitivity analysis of the effect of
family.FamilyXI on TMD; (C) Egger sensitivity analysis of the effect of family. Methanobacteriaceae on TMD; (D) Egger sensitivity analysis of the effect
of family. Peptococcaceae on TMD; (E) Egger sensitivity analysis of the effect of order. Methanobacteriales on TMD; (F) Egger sensitivity analysis of
the effect of order.MollicutesRF9 on TMD; (G) Egger sensitivity analysis of the effect of genus. Catenibacterium on TMD; (H) Egger sensitivity analysis
of the effect of genus. Coprobacter on TMD; (I) Egger sensitivity analysis of the effect of genus.Lachnospiraceaeucg010 on TMD; (J) Egger sensitivity
analysis of the effect of genus. Ruminococcus torques group on TMD; (K) Egger sensitivity analysis of the effect of genus. Turicibacter on TMD;
(L) Egger sensitivity analysis of the effect of genus. Victivallis on TMD. TMD, Temporomandibular joint disorder; MR, Mendelian randomization.
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