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Influenza A virus replicates
productively in primary human
kidney cells and induces factors
and mechanisms related to
regulated cell death and renal
pathology observed in virus-
infected patients
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Giessen, Germany, 5Institute for Biochemistry II, Goethe University Frankfurt, Frankfurt am
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Frankfurt am Main, Germany, 7Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt am
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Introduction: Influenza A virus (IAV) infection can cause the often-lethal acute

respiratory distress syndrome (ARDS) of the lung. Concomitantly, acute kidney

injury (AKI) is frequently noticed during IAV infection, correlating with an

increased mortality. The aim of this study was to elucidate the interaction of

IAV with human kidney cells and, thereby, to assess the mechanisms underlying

IAV-mediated AKI.

Methods: To investigate IAV effects on nephron cells we performed infectivity

assays with human IAV, as well as with human isolates of either low or highly

pathogenic avian IAV. Also, transcriptome and proteome analysis of IAV-infected

primary human distal tubular kidney cells (DTC) was performed. Furthermore, the

DTC transcriptome was compared to existing transcriptomic data from IAV-

infected lung and trachea cells.

Results: We demonstrate productive replication of all tested IAV strains on

primary and immortalized nephron cells. Comparison of our transcriptome and

proteome analysis of H1N1-type IAV-infected human primary distal tubular cells

(DTC) with existing data from H1N1-type IAV-infected lung and primary trachea
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cells revealed enrichment of specific factors responsible for regulated cell death

in primary DTC, which could be targeted by specific inhibitors.

Discussion: IAV not only infects, but also productively replicates on different

human nephron cells. Importantly, multi-omics analysis revealed regulated cell

death as potential contributing factor for the clinically observed kidney pathology

in influenza.
KEYWORDS

influenza A virus, acute kidney injury, distal tubular cells, transcriptomics, proteomics,
regulated cell death
1 Introduction

Influenza A viruses (IAV) have a single-stranded and

segmented RNA genome of negative polarity ((−)ssRNA). In

humans, IAV has a predominant tropism for epithelial cells in

the respiratory tract (Ibricevic et al., 2006) and is responsible for

seasonal local, epidemic, and pandemic outbreaks. Clinical

manifestations of IAV infection can vary between aggravated

common cold symptoms and severe complications, including a

frequently lethal acute respiratory distress syndrome (ARDS). In the

United States of America (USA), seasonal human influenza results

in approximately 14.5 million medical visits annually (Matias et al.,

2016), about 700,000 hospitalizations, and up to 80,000 influenza-

related deaths (Rolfes et al., 2018). The influenza case fatality rate

(CFR) is usually low (Taubenberger and Morens, 2006), but because

of widespread infection, even seasonal influenza-associated

respiratory deaths are estimated to account for more than 500,000

deaths per year globally (Iuliano et al., 2018). Infections of a largely

immunologically naïve human population with antigenically new

IAV variants were associated with an increased CFR. Thus, for

example, in 1918, about 500 million people (one-third of the world

human populat ion at the t ime) were infected by an
02
immunogenically new and more pathogenic H1N1 IAV, resulting

in an estimated 50–100 million deaths (Johnson and Mueller, 2002;

Morens and Taubenberger, 2018).

In humans, the clinical outcome of IAV infections is related to

specific features of the viral genome, patient age, pre-existing

comorbidities, viral load, and spread to the lower airways and

lung, resulting in viral pneumonia (Siefkes et al., 2015). The

particular importance of IAV-related respiratory failure (IAV-

ARDS) is well known and mainly based on the infection and lysis

of alveolar epithelial and endothelial cells, as well as the resulting

inflammation, activation of macrophages, hypercytokinemia, and

bacterial co- or superinfections (Short et al., 2014). In addition,

extrapulmonary complications result in increased morbidity as well

as mortality (Lee et al., 2011), and there is evidence to suggest a link

to IAV viremia (Kaji et al., 1959; Zhadanov, 1960; Khakpour et al.,

1969; Yawn et al., 1971; Jong et al., 2006; Tse et al., 2011).

Notably, human and avian IAV receptors are present in human

kidney cells (Ulloa and Real, 2001; Yao et al., 2008), and—in

addition to liver, spleen, heart, and muscle—infectious IAV has

been isolated from kidney tissue in human autopsies (Kaji et al.,

1959; Gamboa et al., 1979). Furthermore, IAV could be detected in

the urine of patients during several pandemic outbreaks (Figure 1)
FIGURE 1

IAV strains detected in renal tissue reflect the dominant circulating strains. IAV pandemic outbreaks and currently cocirculating H1N1, H3N2, and
H5Nx strains are indicated. PCR detection or isolation of infectious IAV from renal tissue/urine is illustrated in yellow boxes. (*PCR-confirmed
IAV strains).
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(Zakstel’, 1953; Khakpour and Nik-Akhtar, 1977; Abdulkader et al.,

2010; To et al., 2010; Ho et al., 2013). A recent meta-analysis

showed that the rate of positive urine tests for IAV was 58% in

patients infected with IAV (Lowry et al., 2023). Importantly, the

2009 pandemic was associated with significant extrapulmonary

complications (Lee et al., 2011), among which IAV-induced acute

kidney injury (IAV-AKI) was related to increased mortality

(Abdulkader et al., 2010; Martin-Loeches et al., 2011; Nin et al.,

2011a; Thakkar and Golestaneh, 2021), and this trend is continuing

in IAV-AKI (Ersoy et al., 2021; Hsu et al., 2022; Jamoussi et al.,

2022). Yet, the pathophysiology of IAV-AKI is incompletely

understood (Joannidis and Forni, 2011; Watanabe, 2013).

Intriguingly, in many lethal cases of human IAV infections, acute

tubular necrosis (ATN) of distal tubular cells (DTC) (Beswick and

Finlayson, 1959) and viral antigen in DTC and glomerular cells was

demonstrated (Zinserling et al., 1983; Nin et al., 2011b). Therefore,

the aim of the present study was to assess IAV replication in distinct

cells of the kidney, to study alterations of the transcriptome and

proteome responses of these cells after IAV infection with the goal

of identifying signaling pathway alterations in IAV-AKI, and to

compare them to those from IAV-infected lung and primary

trachea cells.
2 Materials and methods

2.1 Cells

Proximal tubular cells (PTC) and DTC were isolated from

human kidney tissue provided by Rita Schmitt-Prokopp and

Michael Lein (Department of Urology, Sana Hospital, Offenbach,

Germany) using magnetic cell separation technology as described

previously (Baer et al., 1997). For the isolation of PTC, a

monoclonal antibody (mAb) against aminopeptidase N/M (CD13,

Cat. No. sc-18899, Santa Cruz, Dallas, Texas, USA, RRID :

AB_626895) was used, specific for the proximal tubule. DTC was

isolated using a mAb recognizing Tamm Horsfall glycoprotein

(THG, clonotype No. 109, purified supernatant from hybridoma

provided by Prof. Juergen Scherberich, Munich), a specific

antigen of the thick ascending limb of Henle’s loop and the early

distal convoluted tubule. DTC was maintained in M199 medium

(Sigma-Aldrich, Steinheim, Germany) supplemented with 10%

fetal bovine serum (FBS, Biochrom, Berlin, Germany).

Conditionally immortalized human glomerular endothelial

(CiGEnC, RRID : CVCL_W185), human mesangial (K29-Mes,

RRID : CVCL_W168), and human podocyte (Ly8 + 13, RRID :

CVCL_W186) cell lines were kindly provided by Simon C. Satchell

and Moin A. Saleem (both Bristol Renal, University of Bristol, UK)

and maintained according to previously established cell culture

protocols (Saleem et al., 2002; Satchell et al., 2006; Sarrab et al.,

2011). Briefly, CiGEnC was cultured using EGM-2MV medium +

Bullet Kit (No. CC-3202, Lonza, Walkersville, MD, USA). Until

90% confluence, cells were kept at 33°C to allow proliferation.

Thereafter, the temperature was switched to 37°C for 10 days to

initiate differentiation (all conditions in a 5% CO2 atmosphere).

K29-Mes and Ly8 + 13 cells were grown at 33°C with RPMI-1640
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(ThermoFisher, Germany), 10% FBS, and insulin–transferrin–

selenium (ITS, Sigma, No. 1884, final concentration (fconc.) I = 5

µg/ml; T = 5 µg/ml; S = 5ng/ml). After reaching confluence (~80%–

90%), they were differentiated at 37°C for 14 days (all conditions in

a 5% CO2 atmosphere). Madin–Darby canine kidney cells II

(MDCK.2, RRID : CVCL_0424) were acquired originally from

ATCC and were passaged in DMEM (ThermoFisher, Germany)

supplemented with 5%–10% FBS, 100 IU penicillin, and 100 µg

streptomycin (P/S)/ml at 37°C in a 5% CO2 atmosphere.
2.2 Viruses

Human influenza viruses A/Giessen/6/09 H1N1 (H1N1pdm09)

(Mostafa et al., 2013) and A/Victoria/3/75 H3N2 (H3N2Victoria)

were obtained from the virus collection of the Institute of Medical

Virology, Justus Liebig University Giessen, Germany. The human

isolates of a highly pathogenic avian influenza virus (HPAIV), A/

Egypt/MOH-NRC-7305/2014 H5N1 (H5N1MOH-NRC), and A/

Anhui/1/2013 H7N9 (H7N9Anhui/1) were kindly provided by M.A.

Ali (National Research Center, Cairo, Egypt) and T. Wolff (Robert

Koch-Institute, Berlin, Germany), respectively. Stocks of

H1N1pdm09, H3N2Victoria, H5N1MOH-NRC, and H7N9Anhui/1 were

generated on MDCK-II monolayers in the presence of TPCK-

treated trypsin as previously described (Pleschka et al., 2016).

Briefly, virus stocks were prepared as clarified cell-free

supernatants by centrifugation at 800×g for 5 min, aliquoted, and

stored at −80°C.

To achieve a sufficiently high H1N1pdm09 concentration for

omics experiments, one-half of the clarified cell-free supernatant of

the H1N1pdm0 9 v i ru s was fu r the r concen t ra t ed by

ultracentrifugation as previously described (Pleschka et al., 2016).

Briefly, virus particles in the cell-free supernatant of H1N1pdm09

were pelleted through a sucrose cushion. A volume of 30 ml of the

virus preparation was carefully pipetted on top of a 20% sucrose

solution (12 ml) and then centrifuged using a Beckman SW28 rotor

at 28,000 r.p.m. for 2 h at 4°C. The pellet was resuspended in 500 µl

of PBS. A virus titer of 6 × 107 focus-forming units (FFU)/ml was

determined by focus formation assay, and the preparation was

stored at −80°C.
2.3 Focus formation assay

Virus titers were determined using a focus formation assay as

described earlier (Ma et al., 2009). Briefly, 90% confluent MDCK-II

cells grown in 96-well plates were washed with PBS++ (PBS

containing 1 mM MgCl2 and 0.9 mM CaCl2). Subsequently, 50 µl

of virus-containing supernatant in a 10-fold dilution in PBS/BSA/P/

S (PBS++ containing 0.2% BSA; P/S) was added. After 1 h of viral

adsorption at room temperature (rt), the virus inoculum was

replaced by 150 µl of titration medium (10% of 10× MEM, 33%

ddH2O, P/S, 1% of 30% BSA, 50% of 1.25% Avicel (DuPont

Nutrition Biosciences, Braband, Denmark), 1% DEAE-Dextran,

4% of 7.5% NaHCO3, and 2 µg/ml of TPCK-treated trypsin

(all tested IAV strains require TPCK-treated trypsin except
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H5N1MOH-NRC). After 24 h postinfection (hpi) at 37°C, the cells

were fixed and permeabilized with 330 ml fixing solution (PBS++

containing 4% paraformaldehyde (PFA) and 1% Triton X-100),

stored at 4°C for 60 min followed by three washes with PBS/Tween

(PBS containing 0.05% Tween 20) and were then incubated for 1 h

at rt with 50 µl of first antibody (mouse anti-influenza A

nucleoprotein mAb, hybridoma supernatant provided by Prof.

Stephan Ludwig, University Muenster, Germany) diluted 1:100 in

PBS/BSA (PBS containing 3% BSA). Cells were then washed three

times with PBS/Tween and incubated with a second antibody

(antimouse HRP antibody, SantaCruz sc2005, RRID :

AB_631736) diluted 1:100 in PBS/BSA at rt for 60 min. To detect

foci, the washed cells were incubated with 40 µl/well of AEC

staining solution (Sigma-Aldrich, USA). For analysis, the 96-well

plates were scanned and analyzed using the Photoshop software

package (Adobe Systems, San Jose, CA, USA). All titrations were

performed in duplicate.
2.4 Growth kinetics

PTC, DTC, CiGEnC, CiMes, and CiPod were plated in six-well

plates at a density of 4 × 105 cells per well for the infection experiments.

Infections with H1N1pdm09, H3N2Victoria, H5N1MOH-NRC, and

H7N9Anhui/1 were carried out in triplicates at a multiplicity of

infection (MOI) of 0.1 and incubated at 37°C in the appropriate

medium containing TPCK-treated trypsin (except for H5N1MOH-NRC).

Cell culture supernatants from infected and control animals were

harvested at 12 hpi, 24 hpi, 36 hpi, and 48 hpi. The virus titers were

determined by focus formation assay (FFU/ml) using MDCK-II cells.
2.5 Infections and sample collection

PTC, DTC, CiGEnC, CiMes, and CiPod were plated in six-well

plates at a density of 4 × 105 cells per well. Infections for OMIC analysis

were carried out with H1N1pdm09 (MOI = 1). For gene expression

analysis, infected DTC were collected in RLT+b-mercaptoethanol lysis

buffer (Qiagen, Hilden, Germany) at the indicated time points hpi. For

mass spectrometry, DTC monolayers were washed twice with PBS++,

scratched off, and collected in 1 ml of PBS. The cells were then pelleted

by centrifugation for 30 s at 13,000×g at 4°C. The supernatant was

discarded, and cell pellets were lysed on ice for 10min using lysis buffer

(TLB: 25 mM Tris, pH 8.0; 137 mM NaCl; 10% glycerol; 0.1% sodium

dodecyl sulfate; 0.5% sodium deoxycholate; 1% NP-40; 2 mM EDTA,

pH 8.0; 0.2 mM pefablock; 5 µg/ml aprotinin; 5 µg/ml leupeptin; 1 mM

Na-vanadate; and 5 mM benzamidine). Subsequently, the samples

were centrifuged at 13,000×g at 4°C for 30 min, and the supernatants

were collected for subsequent analyses.
2.6 RT-qPCR analysis

Relative expression levels of selected mRNAs were quantified

following infection with DTC (MOI = 1). Total RNA was extracted

using the RNeasy Maxi Kit (Qiagen, Hilden, Germany), including on-
Frontiers in Cellular and Infection Microbiology 04
column removal of DNA by digestion with rDNase for 15 min at rt,

and cDNA for quantitative real-time RT-PCR (qPCR) was synthesized

using 1,000 ng RNA in a 15-ml reaction volume. qPCR reactions were

set up to a final volume of 20 ml using the HOT FIREPol® EvaGreen®

qPCR Supermix (Solis Biodyne, Tartu, Estonia) and primers for ß-

ACTIN (FWD 5′-ACTGGAACGGTGAAGGGTGAC-3′, REV 5′-
AGAGAAGTGGGGTGGCTTTT-3′, product size: 169 bp), MLKL

(FWD 5 ′-AAGAAGGTGGAAGAGCGAGC-3 ′ , REV 5 ′-
TCCTTGGTCCTGGAGCATCT-3′, product size: 186 bp), and

ZBP1 (FWD 5′-ACCTTCTGGACATGGATGAGCA-3′, REV 5′-
AGGCTGACTTTGCTCTTCTTCC-3′, product size: 81 bp). The

qPCR reaction was run on an ABI PRISM 7900HT Fast Real-Time

PCR Systemwith Sequence Detection System SDS 2.4.1 software (both

Applied Biosystems, Waltham, MA, USA), using 40 cycles of the

following program: 95°C for 15 s, 63°C for 15 s, and 72°C for 20 s (SDS

2.4.1. settings: automatic baseline, threshold 0.2). To exclude artifacts

resulting from primer dimer formation, melting curve analysis was

performed using the sequence 95°C for 15 s, 60°C for 15 s, 95°C for

1 min, and 37°C for 30 s. The results shown represent the mean of

three independent experiments. Relative expression of the mRNA

target was assessed using the DDCt method (Pfaffl, 2001), with b-actin
as calibrator, and levels of target gene expression were estimated by 2

−DDCt. Statistical significance was determined by GraphPad Prism

software version 9.0 for OS X (GraphPad Software Inc., La Jolla, CA,

USA) with a two-way ANOVA and t-test.
2.7 Transcriptome analysis

Six biological replicates of DTC grown in six-well plates were

either left uninfected or infected with H1N1pdm09 at a MOI = 1. Two

replicates of each set were analyzed for transcript expression changes

by RNAseq, while the remaining replicates were used for verification

of RNAseq results by qPCR (RT-qPCR for ZBP1 and MLKL,

Supplementary Figure S1). Briefly, total RNA was extracted 12 hpi

of the H1N1pdm09-infected/noninfected DTC by Qiagen RNeasyMaxi

Kit (Qiagen, Germany), including on-column removal of DNA by

digestion with rDNase for 15 min at rt. For library preparation, 500 ng

of RNA (each showing a RIN score from > 9) was used. Second to

depletion of ribosomal RNA (QIAseq FastSelect RNA Removal Kit,

Qiagen, Germany), directional libraries were prepared with a

NEBNext® UltraTM Directional RNA Library Prep Kit for

Illumina® sequencing (No. E7420S, New England Biolabs, Ipswich,

MA, USA). Sequencing was performed by an Illumina NextSeq500®

using a NextSeq® 500/550 High Output Kit v2 (75 cycles, No. FC-404-

2005, Illumina, San Diego, CA, USA). Illumina BCL files were

converted to FASTQ by bcl-convert (Illumina, San Diego, CA,

USA), quality controlled by FastQC (Babraham Institute,

Cambridge, UK, http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) and Illumina adapters trimmed by Trimmomatic v0.40

(Bolger et al., 2014). Quantification of transcript expression was

performed by “kallisto” software (Bray et al., 2016) (version 0.46.1)

with standard configurations using a kallisto index build from the

hg38 assembly (GRCh38.p12 cDNA). “sleuth” (Pimentel et al., 2017)

software (version 0.30.0) was used for differential expression analysis

with the Wald test setting for comparison of the two groups. Raw
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(FASTQ), kallisto, and sleuth data are available from NCBI Gene

Expression Omnibus (GEO), https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE189735. DTC transcriptome data were

supplemented by existing GEO datasets of IAV-infected cells. The

FASTQ datasets (GSE103604, GSE89008) from H1N1A/PR/8/1934-

infected adenocarcinomic human alveolar basal epithelial (A549)

cells (Zhao et al., 2018) as well as from H1N1A/California/04/09-infected

human bronchial tracheal epithelial (HBTE) cells (Heinz et al., 2018),

compared to mock control at 12 hpi, were reanalyzed by kallisto and

sleuth software in order to create a homogenous basis for the

comparison with the data gained from the H1N1pdm09-infected

DTCs. All results were investigated for pathway over-representation

at the gene level (cut off: at least 2 genes in pathway annotation and

p < 0.01) by ConsensusPathDB (Kamburov et al., 2011) (http://

cpdb.molgen.mpg.de/, Release 35, database = 05.06.2021) employing

“Kyoto Encyclopedia of Genes and Genomes (KEGG)” (Kanehisa,

2000), Reactome (Vastrik et al., 2007), and Wikipathways (Pico et al.,

2008). GO analysis was performed by ShinyGO v0.77 (Ge et al., 2019).

MA plots, heatmaps, and KEGG enrichment/mapping were done by

the “R package iDEP” (version 1.0) and “pathview” software (version

1.38) (Luo and Brouwer, 2013; Ge et al., 2018). Network analysis of

differentially regulated coding genes using the Ensembl gene set

(“ENSG”) was performed by “STRING v11.0” (Mering et al., 2003)

software (https://string-db.org) using standard parameters. Next, the

network was imported into “Cytoscape 3.8.0” software (https://

cytoscape.org) (Shannon et al., 2003), and centrality analysis (top 10

nodes ranked by degree scores) was performed using the “Cytoscape

plugin CytoHubba v0.1” (Chin et al., 2014). For Venn (overlap)

analysis, BioTools.fr (http://biotools.fr/misc/venny) was utilized.
2.8 Sample preparation for LC-MS

Lysates were precipitated using volumes of ice-cold methanol/

chloroform/ddH2O (3:1:2.5). After centrifugation at 14,000×g for

45 min at 4°C, the upper aqueous phase was aspirated, and 3

volumes of ice-cold methanol was added. Samples were mixed, and

proteins were pelleted by centrifugation at 14,000×g for 5 min at 4°C.

The supernatant was discarded, and the pellets were washed one

additional time with ice-cold methanol. Protein pellets were dried at

rt for further use. Proteins were resuspended in 8 M urea, 10 mM

EPPS at pH 8.2, and 1 mM CaCl2, and protein concentration was

determined using a BCA assay (No. 23235, ThermoFisher Scientific,

Waltham, MA, USA). Samples were then diluted to 2 M urea using

digestion buffer (10 mMEPPS at pH 8.2, 1 mMCaCl2) and incubated

with LysC (Wako Chemicals, Osaka, Japan) at a 1:50 (w/w) ratio

overnight at 37°C. The next day, digestion reactions were further

diluted to 1 M urea using digestion buffer and incubated at a 1:100

(w/w) ratio of trypsin (No. V5113, Promega, Madison, WI, USA) for

an additional 6 h at 37°C. Digests were acidified using trifluoroacetic

acid (TFA) to a pH of 2–3, and peptides were purified using Sep-Pak

C18 columns (No. WAT054955, Waters, Milford, MA, USA)

according to the manufacturer’s protocol. The eluates were dried

and stored for further processing. Peptides were resuspended in

TMT-labeling buffer (0.2 M EPPS at pH 8.2, 10% acetonitrile), and

peptide concentration was determined by BCA assay. Peptides were
Frontiers in Cellular and Infection Microbiology 05
mixed with TMT reagents (No. 90111, No. A37724, No. 90061,

ThermoFisher Scientific, USA) in a 1:2 (w/w) ratio (2 mg TMT

reagent per 1 mg peptide). Reactions were incubated for 1 h at rt and

subsequently quenched by the addition of hydroxylamine to a final

concentration of 0.5% at rt for 15 min. Samples were pooled in

equimolar ratio, acidified, and dried for further processing. Before MS

analysis, peptide samples were purified using Empore C18

(Octadecyl) resin material (3 M Empore, St. Paul, MN, USA). The

material was activated by incubation with methanol for 5 min,

followed by one wash each with 70% acetonitrile/0.1% TFA and

5% acetonitrile/0.1% TFA. Samples were resuspended in 5%

acetonitrile/0.1% TFA and loaded onto the resin material. Peptides

were washed with 5% acetonitrile/0.1% TFA and eluted with 70%

acetonitrile (ACN). Samples were dried and resuspended in 0.1%

formic acid (FA) for LC-MS2/3.
2.9 High-pH reverse phase fractionation

Peptides were either fractionated using a Dionex Ultimate 3000

analytical HPLC or a high-pH reversed-phase fractionation kit

(ThermoFisher Scientific, USA). The latter was used according to

the manufacturer’s instructions. For high pH reversed-phase

fractionation on the Dionex HPLC, 500 mg of pooled and

purified TMT-labeled samples were resuspended in 10 mM

ammonium bicarbonate (ABC), 5% ACN, and separated on a

250-mm-long C18 column (Aeris Peptide XB-C18, 4.6 mm ID,

2.6 mm particle size; Phenomenex, Torrance, CA, USA) using a

multistep gradient from 100% solvent A (5% ACN, 10 mM ABC in

water) to 60% solvent B (90% ACN, 10 mM ABC in water) over

70 min. Eluting peptides were collected every 45 s into fractions,

which were cross-concatenated and dried for further processing.
2.10 Mass spectrometry

Peptides were resuspended in 0.1% FA and separated on an

Easy nLC 1200 (ThermoFisher Scientific, USA) and a 22-cm-long,

75-mm ID fused-silica column, which had been packed in-house

with 1.9 mm C18 particles (ReproSil-Pur, Dr. Maisch, Germany),

and kept at 45°C using an integrated column oven (Sonation,

Biberach, Germany). Peptides were eluted by a nonlinear gradient

from 5% to 38% acetonitrile over 120 min and directly sprayed into

a QExactive HF mass spectrometer equipped with a nanoFlex ion

source (ThermoFisher Scientific, USA) at a spray voltage of 2.3 kV.

Full-scan MS spectra (350–1,400 m/z) were acquired at a resolution

of 120,000 at m/z 200, a maximum injection time of 100 ms, and an

AGC target value of 33,106. Up to 20 most intense peptides per full

scan were isolated using a 1-Th window and fragmented using

higher-energy collisional dissociation (normalized collision energy

of 35). MS/MS spectra were acquired with a resolution of 45,000 at

m/z 200, a maximum injection time of 80 ms, and an AGC target

value of 13,105. Ions with charge states of 1 and > 6, as well as ions

with unassigned charge states, were not considered for

fragmentation. Dynamic exclusion was set to 20 s to minimize

repeated sequencing of already-acquired precursors.
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2.11 Processing of proteomics raw files and
data analysis

Raw files were analyzed using Proteome Discoverer (PD) 2.2

software (ThermoFisher Scientific, USA). Files were recalibrated

using the Homo sapiens SwissProt database (TaxID:9606, version

2017-06-07). Spectra were selected using default settings, and

database searches were performed using the SequestHT node in

PD. Database searches were performed against trypsin-digested

Homo sapiens SwissProt database and FASTA files of common

contaminants (“contaminants.fasta” provided with MaxQuant)

for quality control. The results were then exported to Excel files for

further processing. Log2 fold changes were calculated by log2

transformation of the ratio between the mean of the replicates of

treated samples versus the control samples. Significance was assessed

by unpaired, two-sided Student’s t-test. p-values were adjusted by a

Benjamini–Hochberg FDR correction. Adjusted p-values (q-values)

lower than 0.05 were considered significant. n represents the number

of independent replicates. Data are available via https://www.ebi.ac.

uk/pride/archive with identifier PXD030093.
2.12 Cell viability and viral inhibition assays

Confluent layers of DTC in 96-well plates were infected with

H1N1pdm09 or H3N2Victoria at a MOI of 0.1. One hour after infection,

emricasan (EM, No. HY-10396, MedChemExpress, Monmouth

Junction, NJ, USA) and necrosulfonamide (NSA, No. HY-100573,

MedChemExpress, USA) were added at different concentrations (EM:

10 µM, NSA: 5 µM, or EM: 10 µM +NSA 5 µM) and cells incubated at

37°C for 24 hpi in M199 (containing 0.2% bovine serum albumin

(BSA) (Sigma, Germany) and 1 µg/ml of TPCK-treated trypsin.

Cytopathogenic effects/viability was assessed using CellTox™ Green

Cytotoxicity Assay (No. G8741, Promega, USA) and RealTime-Glo™

Extracellular ATP Assay (No. GA5010, Promega, USA). Data for each

condition were collected for at least three biological replicates using a

Spark 10Mmultimode microplate reader (Tecan, Zurich, Switzerland).

Epithelial protection was calculated as a relative reduction of viability

loss compared to uninfected controls. The cytotoxicity of the different

inhibitors was determined using the tetrazolium derivate XTT (XTT

Cell Viability Kit, Biotium, Hayward, CA, USA) according to the

manufacturer’s protocol. Briefly, DTC was seeded in 96-well plates and

incubated for 24 h with the agent to be tested at the indicated final

concentrations. Next, activated XTT was added, and after 5 h of

incubation at 37°C, the absorbance was measured by a microplate

reader (LB 911 Apollo-1, Berthold Technologies, Bad Wildbad,

Germany) at 450 nm.
2.13 Quantification and statistical analysis

Results were expressed as the mean ± standard deviation (SD).

Error bars represent the mean ± SD of at least three independent
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experiments. The difference between the two mean values was

analyzed using Dunnett’s multiple comparison test or Student’s t-

test using GraphPad Prism software version 9.0 for OS X (GraphPad

Software Inc., USA). The difference was considered statistically

significant when p < 0.05. Constitutive gene expression was

assumed within a log2 fold change (log2FC) of ± 0.25.
2.14 Biosafety

All experiments with infectious viruses were performed

according to German regulations for the propagation of IAV. All

experiments involving HPAIV were performed in a biosafety level 3

(BSL3) containment laboratory approved for such use by the local

authorities (RP, Giessen, Germany).
2.15 Ethics approval statement

The authors have no ethical conflicts to disclose. The

procurement procedure for human PTC and DTC isolation was

approved by the ethics committee of the Goethe-University

Hospital Frankfurt, Germany, file number UGO 03/10–4/09.
3 Results

3.1 Human and avian IAV can infect and
replicate in human kidney cells in vitro

To investigate whether IAV can infect and replicate

productively in human kidney cells, primary proximal (PTC) and

distal tubular cells (DTC), as well as immortalized glomerular

endothelial (CiGEnC), mesangial (K29-Mes), and podocyte

(Ly8 + 13) human cell lines, were used as an in vitro model. Cells

were infected with H1N1pdm09 and IAV H3N2Victoria human IAVs,

as well as with human isolates of either low-pathogenic avian

influenza virus (LPAIV) H7N9Anhui/1 or highly pathogenic avian

influenza virus (HPAIV) H5N1MOH-NRC. The analysis of IAV titers

in supernatants collected from these infected cells revealed

remarkable differences in replication efficiency depending on the

cell type and IAV strain used (Figure 2). Generally, primary tubular

cells (DTC, PTC, Figure 2A) allowed replication of all IAV strains

(Figures 2B, C). However, H5N1MOH-NRC and H1N1pdm09 did not

replicate in glomerular endothelial cells (CiGEnC, Figure 2D), and

H1N1pdm09 also did not replicate in mesangial cells (K29-Mes,

Figure 2E) within 36 hpi and only late and with low titers on the

podocyte cell line (Ly8 + 13, Figure 2F). In contrast to other IAV

isolates, H3N2Victoria and H7N9Anhui/1 replicated well on all cell

types included in this analysis (Figures 2B–F). In conclusion, all

investigated IAV strains replicated well on primary tubular cells.

Given the in vitro data, it is possible that the different IAV strains

may have different effects on renal pathology in vivo.
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3.2 Transcriptome and proteome analysis
of H1N1pdm09-infected DTC

Based on these initial findings and because of the dominant DTC

pathology observed in autopsies of H1N1-infected patients (Kuskow,

1895; Winternitz et al., 1920; Beswick and Finlayson, 1959; Zinserling

et al., 1983; Nin et al., 2011a), we subsequently infected DTC for

further mechanistical analyses. As IAV infection results in the specific

inhibition of cellular mRNA processing and translation (“host-cell

shut-off”) (Bercovich-Kinori et al., 2016; Levene and Gaglia, 2018),

analyses of both the transcriptome and proteome were performed at

12 hpi (Supplementary Tables S1, S2). Inoculation of DTC with

H1N1pdm09 resulted in highly significant transcriptional fold changes

(Figures 3C, D) and protein abundances (Figures 4C, D) as compared

to mock-infected DTC. To identify networks between cellular

proteins, we employed STRING-DB network analysis. As this is

based on protein/protein interactions, noncoding transcripts were

excluded, and we restricted this analysis to those affected 1,753

protein-coding transcripts.

3.2.1 Transcriptome and proteome analysis of
upregulated genes in H1N1pdm09-infected DTC
reveals a strong antiviral defense response

Among these 1,753 protein-coding transcripts, the top

upregulated ones (Supplementary Table S1) are dominantly coding

for interferon-induced proteins, like the antiviral-acting IFIT2, the
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double-stranded RNA sensor IFIH1, the inhibitors of viral endosomal

fusion NCOA7 (219 aa isoform) and IFITM3, as well as the viral

restriction factor MX1. Network analysis of upregulated protein-

encoding transcripts in IAV-infected DTC (699) indicated 587

nodes (Figure 3A), of which the top 10 nodes (identified by

centrality analysis) all include significantly upregulated transcripts

coding for interacting factors involved in antiviral defense (Figure 3B).

KEGG pathway analysis of differentially regulated genes (Figure 3D;

Supplementary Table S3) highlighted factors known to be enriched in

several viral infections—including IAV, as well as NOD-like- and

RIG-I-like receptor signaling pathways, necroptosis, and the JAK-

STAT signaling pathway (Figure 3E). Furthermore, KEGG mapping

of upregulated transcripts in IAV-infected DTC highlighted most

factors within the known KEGG-pattern of IAV infection

(Supplementary Figure S2). In conclusion, transcriptome analysis

emphasized the activation of IAV infection-specific KEGG-patterns,

a strong induction of anti-viral defense, and necroptosis on the

transcript level in IAV-infected DTC. As IAV infection results in

“host-cell shut-off”, we also analyzed the proteome of H1N1pdm09-

infected DTC at 12 hpi (Figure 4). Interestingly, as with the

transcriptome, the proteomic network analysis—based on known

interactions/functions and KEGG pathway analysis (Figure 4E) of

differentially regulated proteins (Figures 4C, D)—also demonstrated

that the upregulated proteins with the highest fold-change

(Supplementary Table S2) were related to antiviral defense. Among

these proteins are RSAD2, IFIT1, IFIT2, IFIT3, OASL, DDX60L,
A B
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C

FIGURE 2

IAV replication on human kidney cells. Human primary (PTC, DTC) or immortalized (K29-Mes, CiGEnC, Ly8 + 13) kidney cells were infected with IAV
H1N1pdm09, H3N2Victoria, H5N1MOH-NRC, and H7N9Anhui/1, and viral titers were determined by focus-forming assay (FFU/ml) at the indicated time
points (error bars indicate standard deviations (SD) of the data obtained from three biological replicates at each time point). (A) A renal functional
unit (nephron), loop of Henle omitted. (B) Human primary proximal tubular cells (PTC). (C) Human primary distal tubular cells (DTC). (D) Human
conditionally immortalized glomerular endothelial cells (CiGEnC). (E) Human conditionally immortalized mesangial cells (K29-Mes). (F) Human
conditionally immortalized podocytes (Ly8 + 13).
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ISG20, and IRF9 (emphasized by centrality analysis, Figure 4B), as well

as the MAP kinase MAP3K11 and the ubiquitin ligase HERC6. Taken

together, interrogation of both upregulated transcriptome and

proteome reveals a strong antiviral defense response in IAV-infected

DTC (Figures 3A–E, 4A–E; Supplementary Tables S1–S3).

3.2.2 Transcriptome and proteome analysis of
downregulated genes in H1N1pdm09-infected
DTC highlights factors regulated to translation,
p53, and TGF-ß signaling

Next, the downregulated transcripts and proteins of IAV-

infected DTC were investigated. Among the downregulated

protein-coding transcripts, the p53 regulator MDM4, the central

player in translation initiation EIF4G3, and the cytokine storm and
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mortality-associated Poly(rC)-binding protein 2 (PCBP2), known

to be targeted by the H5N1 IAV-encoded miR-HA-3p (Li et al.,

2018), were found within the top downregulated factors

(Supplementary Table S1). Additionally, cell proliferation,

androgen receptor (AR)-mediated signaling, and ubiquitination

were pointed out by network analysis (Figures 3F, G). Pathway

analysis of downregulated transcripts highlighted signaling by Rho

GTPases, NRF2-ARE regulation, and Wnt signaling/pluripotency

among the most significantly over-represented pathways

(Supplementary Table S3). Taken together, transcripts of genes

related to inhibitors of cytokine production and inflammation, as

well as Rho GTPases, NRF2-ARE regulation, and Wnt signaling/

pluripotency are predominant among downregulated transcripts in

IAV-infected DTC (based on differential gene expression and
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FIGURE 3

DTC transcriptomics. (A) Network of upregulated coding transcripts (587 nodes). (B) Network/centrality analysis for top 10 node interactions of
proteins coded by upregulated transcripts (colored/dark red represents the highest centrality score). (C) MA plot of transcript expression changes
12 h after infection of DTC with H1N1pdm09, showing significant changes in red (upregulated) and blue (downregulated). (D) Heatmap of differentially
expressed genes (H1N1pdm09-infected DTC vs. mock DTC, blue = downregulated, red = upregulated). (E) Enrichment tree of differentially regulated
KEGG pathways from Figure 3D. The dot size represents the q-value (low q-value = large dot). (F) Network of downregulated coding transcripts (969
nodes). (G) Network/centrality analysis restricted to top 10 node interactions of proteins coded by downregulated transcripts (colored/dark blue
represents the highest centrality score).
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pathway analysis). Compared to the number of upregulated

proteins (71), the number of downregulated proteins with

significant changes was almost double (128), which might be due

to the IAV-induced “host-cell shutoff” and/or virus-induced

repression of certain factors regulating transcription. Importantly,

antiviral-acting proteins like the p53-interacting NME1 (Feng et al.,

2018) as well as RPS27 (Li, 2019) were found among the most

strongly downregulated proteins (Supplementary Table S2).

Network analysis (top 10 nodes) underlined IAV-induced

negative effects on transcription, translation, SMAD/TGF-ß

signaling, cell cycle, intracellular transport, and alternative

splicing (Figure 4G). Pathway analysis of all downregulated
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proteins included TGF-beta receptor signaling, endocytosis, FoxO

signaling, and energy metabolism (Supplementary Table S3).

Overall, the analysis of the top downregulated protein-encoding

transcripts and expressed proteins revealed strong repression of

cellular gene expression regarding antiviral acting proteins, the

TP53 network, TGF-ß signaling, ubiquitination, transcription,

translation, and alternative splicing.

3.2.3 Coregulated transcripts and proteins in IAV-
infected DTC

Next, we aimed to identify a reliable core set of IAV-induced

gene expression changes coinciding with the transcript and protein
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FIGURE 4

DTC proteomics. (A) Network of upregulated proteins (41 nodes). (B) Network/centrality analysis for top 10 node interactions of proteins (colored/
dark red represents the highest centrality score). (C) MA plot of protein changes 12 h after infection of DTC with H1N1pdm09, showing significant
changes in red (upregulated) and blue (downregulated). (D) Heatmap of differentially regulated proteins in H1N1pdm09-infected DTC vs. mock DTC
(blue = downregulated, red = upregulated). (E) Enrichment tree of differentially regulated KEGG pathways from Figure 5D. The dot size represents
the q-value (low q-value = large dot). (F) Network of downregulated proteins (84 nodes). (G) Network/centrality analysis restricted for the top 10
node interactions of downregulated proteins (colored/dark blue represents the highest centrality score).
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level in IAV-infected DTC at a late stage of infection (12 hpi).

Pathway analysis of 27 mutually upregulated genes and their

correlated proteins (Figures 5A, B; Supplementary Table S4)

exposed, especially interferon signaling, members of the IAV

infection-related KEGG pattern, regulation of and necroptotic cell

death (mixed lineage kinase domain-like pseudokinase (MLKL) as

well as TNFSF10 (TRAIL), and ISG15 antiviral mechanism to be

significantly over-represented (Figure 5A; Supplementary Table
Frontiers in Cellular and Infection Microbiology 10
S4). Furthermore, network analysis highlighted factors of the

antiviral defense as core nodes, including interferon response

genes like IFIH1, IFIT3, RSAD2, IRF9, OASL, and IFIT1/2

(Figure 5C). The shared set of combined downregulated

transcripts and proteins (12) analyzed by pathway analysis

(Supplementary Table S4) pointed out neovascularization

processes and Notch signaling. In addition, the shared set of

downregulated transcripts and proteins investigated by GO
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FIGURE 5

Venn, Network, and GO pathway analyses of common upregulated transcripts and proteins after IAV infection of DTC and upregulated transcripts of
IAV-infected DTC, A549, and HBTE cells (dark red depicts pathways directly implicated in PANoptosis; grey shows PANoptosis assisting pathways).
(A) Pathway analysis of 27 shared upregulated genes (y-axis sorted by p-value, lowest on top; the x-axis shows the count of elements in each
pathway). (B) Venn analysis of regulated genes in transcriptome and proteome in DTC, separated by up- and downregulation. More proteins (128)
and protein-coding transcripts (1,753) are downregulated after IAV infection. (C) Core interactions of 27 shared upregulated genes (network/
centrality analysis; red represents the highest centrality score). (D) Pathway analysis of 390 genes only upregulated in DTC (y-axis sorted by p-value,
lowest on top; the x-axis shows the count of elements in each pathway). (E) Venn analysis of upregulated genes in DTC, HBTE, and A549 cells 12 h
after IAV infection. (F) Pathway analysis of 488 genes only upregulated in HBTE (y-axis sorted by p-value, lowest on top; the x-axis shows the count
of elements in each pathway). (G) Core interactions of proteins coded by 390 only upregulated transcripts in DTC (network/centrality analysis; red
represents the highest centrality score). (H) Pathway analysis of 79 shared upregulated genes in DTC, HBTE, and A549 cells (y-axis sorted by p-value,
lowest on top; the x-axis shows the count of elements in each pathway). (I) Core interactions of proteins coded by 79 shared upregulated genes in
DTC, HBTE, and A549 cells (network/centrality analysis; red represents the highest centrality score).
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analysis highlights mesenchymal cell differentiation and kidney

epithelium development, among others (Supplementary Table

S4). In conclusion, pathway analysis of coregulated transcripts

and proteins revealed induction of especially interferon responses

and necroptotic cell death, as well as a downregulation of kidney

epithelium development, among others.
3.3 Comparison of transcriptomic data
from H1N1 IAV-infected DTC, A549, and
HBTE cells highlights activation of
necroptosis, pyroptosis, and apoptosis

In order to identify a pathology-related gene set dominant in

IAV-infected DTC, a comparison with available gene expression

omnibus (GEO) data from H1N1-type IAV-infected human A549

alveolar and primary HBTE cells (Heinz et al., 2018; Zhao et al.,

2018) was performed (Figures 5D–F; Supplementary Table S5).

Here, we identified 79 shared upregulated (Figures 5E, H, I;

Supplementary Table S6) and 134 shared downregulated genes

across all three H1N1 IAV-infected cell lines (Supplementary

Table S6). Furthermore, the analysis of genes only upregulated in

infected DTC revealed members of highly specific pathways

(Figure 5D; Supplementary Table S7), such as activation of

complement C3 and C5, the NOD-like receptor (NLR) signaling

pathway, regulation of TNFR1 signaling, caspase activation via

death receptors, and several pathways involved in regulated cell

death, among others (Figure 5D; Supplementary Table S7). In

addition, network analysis of genes only upregulated in infected

DTC centered factors important in apoptosis, inflammation, the

complement system, and ubiquitination (Figure 5G). Furthermore,

gasdermin B (GSDMB) and caspase-1 (CASP1), which represent

essential factors in pyroptosis (Chen et al., 2018; Tsuchiya et al.,

2019; Feng et al., 2022), were upregulated only in infected DTC

(Supplementary Table S6). However, evidence for regulated cell

death was also present in primary human HBTE and A549 cells

(Figures 5E, H; Supplementary Table S6). Although no regulated

cell death pathways were among the top 20 pathways (Figure 5F),

IL-17 signaling was enriched in HBTE cells compared to DTC and

A549 cells (Figure 5F). Notably, the infection-induced proteotoxic

stress response was also among the highly enriched pathways in

upregulated genes from IAV-infected DTC, HBTE-, and A549 cells

(Figure 5H), while network analysis reiterated the ISG15 antiviral

response (Figure 5I). Crucially, up-regulation of necroptosis and

pyroptosis-associated proteins such as MLKL, TNSF10, IRF9,

STAT2, and GBP4 were also identified in the proteome analysis

of IAV-infected DTC (Figure 5B; Supplementary Figure S3;

Supplementary Tables S2, S3). For the downregulated gene set in

DTC, pathway analysis identified regulation of androgen receptor

activity, ephrin signaling, and the RHO GTPase cycle, among others

(Supplementary Table S7). Taken together, a significant

inflammatory response (CCL2, IL6, RELA, JAK2), along with

factors of pathogen detection (NLR pathway), upregulation of

complement (C3, C5), as well as necroptosis, pyroptosis, and

apoptosis indicated by transcripts of pore-forming proteins
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(MLKL, GSDMD, GSDMB, among others) and caspases

(Figure 5E; Supplementary Figures S3, S4; Supplementary Tables

S6, S7) are prominent features of IAV-infected primary DTC.
3.4 Inhibition of regulated cell death
decreases viral-induced cytopathic effects
and viral titer

Next, the effect of regulated cell death inhibition in H1N1pdm09-

and H3N2Victoria-infected DTC was investigated (Figure 6). To this

end, the viral titer as well as the cellular viability with and without

emricasan, (EM, a known apoptosis and pyroptosis inhibitor

(Natori et al., 2003; Doerflinger et al., 2020)) or/and the

necroptosis inhibitor necrosulfonamide (NSA) were studied. The

inhibitors alone or in combination had no cytotoxic effect on DTC

at the evaluated concentrations (Supplementary Figure S5).

Notably, both inhibitors resulted in a significant reduction in viral

titer at 24 hpi (Figures 6A, D), while the most substantial effect was

achieved by a combined application of EM and NSA in H1N1pdm09-

infected DTC. In contrast, their effects in H3N2Victoria-infected

DTC were less pronounced (Figures 6A, D). Furthermore,

treatment with EM and NSA preserved cellular integrity, while

IAV infection in the absence of the inhibitors resulted in a

significant cytopathogenic effect (CPE, Figures 6B, E).

Accordingly, cellular ATP levels demonstrated stronger tubular

epithelial cell protection by the combination of EM and NSA

(Figures 6C, F).
4 Discussion

Here, we demonstrate that human IAV as well as human isolates

of avian IAV have the capacity to infect (and propagate in) different

human kidney cell types. Furthermore, by transcriptome and

proteome analyses, we revealed induction of regulated cell death

in H1N1pdm09-infected primary human DTC, correlating with the

observed kidney pathology in autopsies taken from deceased IAV

patients. Up to now, IAV-AKI is not entirely understood. Systemic

inflammation, shock, and rhabdomyolysis have been proposed to be

the main drivers for AKI and ATN in influenza (Joannidis and

Forni, 2011; Watanabe, 2013). Yet, several significant observations

have been made, for example: (i) the first detailed ATN description

in autopsies of influenza victims dating back to 1895 (Kuskow,

1895); (ii) reports on pathologic swelling of tubular kidney epithelia

and acute necrosis of especially DTC in human autopsies (Kuskow,

1895; Lucke et al., 1919; Winternitz et al., 1920); (iii) the isolation of

infectious IAV from human renal tissue (Kaji et al., 1959) and urine

in the twentieth century (Zakstel’, 1953; Zhadanov, 1960; Khakpour

and Nik-Akhtar, 1977) or, more recently, the detection of viral RNA

(by RT-PCR) in urine (Abdulkader et al., 2010; To et al., 2010; Ho

et al., 2013) and kidney tissue (Gao et al., 2016) of IAV-infected

patients; (iv) the detection of viral antigen (by serum-based

immunofluorescence) in necrotic DTC from a large autopsy

cohort in 1983 (Zinserling et al., 1983); and (v) the detection of
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IAV nucleoprotein in DTC (autopsies from 2009) indicative of an

ongoing IAV replication in these cells (Nin et al., 2011a). In addition

to the tubular lumen, a recent study has demonstrated the

susceptibility of DTC to IAV infection from a simulated

microcirculation at the basal area (Huangfu et al., 2023).

Considering the diameter of IAV (80–120 nm (Noda, 2012) and

the renal slit diaphragm width of 20–50 nm (Ruotsalainen et al.,

1999), it is therefore plausible that IAV might disseminate to DTC

via peritubular capillaries.

In our analyses, all used IAV-infected DTC and PTC

demonstrated productive viral replication, while endothelial and

glomerular cells displayed strain-dependent results. In IAV-infected

DTC transcripts related to necroptosis, apoptosis and pyroptosis

were enriched in comparison to the transcriptome of A549 and

HBTE cells. Regulated cell death has been identified as a crucial

factor in AKI (Linkermann et al., 2014; Miao et al., 2019; Priante

et al., 2019) but is also implicated in lung injury in fatal IAV

infection (Sauler et al., 2018; Faust and Mangalmurti, 2020). These

results, revealing upregulation of factors important in pyroptosis,

apoptosis, and necroptosis, could be integrated into the recently

proposed model of pyroptosis, apoptosis, and necroptosis

(PANoptosis) (Samir et al., 2020; Place et al., 2021). Accordingly,

infection or cellular stressors can lead to cell death by the
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combinatory crosstalk of pyroptotic, apoptotic, and necroptotic

molecules (like ZBP1, RIPK1, RIPK3, CASP1, CASP8, and

NLRP3, MLKL, and GSMDs) to effectively control pathogenic

invasion (Christgen et al., 2020). However, there is also the risk of

an excessive inflammatory response, resulting in impaired crucial

tissue functions (Balachandran and Rall, 2020). Therefore, we

investigated the effects of regulated cell death inhibition in IAV-

infected DTC by the pan-caspase inhibitor EM (Hoglen et al., 2004)

and the necroptosis inhibitor NSA. The combination of these

inhibitors has previously been studied only in IAV-infected

monocytes, showing monocyte protection only when used in

combination, while effects on epithelial cells or viral titers were

not reported (Lee et al., 2019). In our experiments, both EM and

NSA resulted in a significant reduction in viral titer at 24 hpi, which

was potentiated by the combined application of EM and NSA in

H1N1pdm09-infected DTC. Importantly, the analysis of tubular

viability indicated a preservation of cellular integrity by EM or

NSA in H1N1-type and H3N2-type infected DTC.

Regarding the analysis of the downregulated patterns in DTC

(shared between transcriptome and proteome), we could detect

Notch signaling, while androgen receptor (AR) and Ephrin

signaling were enriched for downregulated transcripts in

H1N1pdm09-infected DTC in comparison to H1N1 IAV-infected
A B

D E F

C

FIGURE 6

Inhibition of IAV replication and IAV-induced epithelial cell toxicity. EM and NSA inhibitors, alone or in combination, were used to assess their ability
to inhibit IAV-induced epithelial cell toxicity (each assay: n = 4; *p < 0.05; **p < 0.01; ***p < 0.001). (A) Viral titer of H1N1pdm09-infected human DTC
at 24 hpi and the effect of inhibitors. (B) Analysis of H1N1pdm09-induced cytotoxicity and inhibitor effects. The influx of a DNA dye was measured,
indicating the membrane integrity’s state. (C) Analysis of H1N1pdm09-induced CPE and inhibitor effects, measured by ATP levels, indicating viable
cells. (D) Viral titer of H3N2Victoria-infected DTC at 24 hpi and the effect of inhibitors. (E) Analysis of H3N2Victoria-induced cytotoxicity and inhibitor
effects. The influx of a DNA dye was measured, indicating the membrane integrity’s state. (F) Analysis of H3N2Victoria-induced CPE and inhibitor
effects, measured by ATP levels.
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HBTE or A549 cells. Notably, AR signaling limits lung inflammation

in an IAV mouse model (Steeg et al., 2020), whereas Ephrin signaling

is important for tubular cell cytoarchitecture and survival (Ogawa

et al., 2006; Weiss and Kispert, 2016). Moreover, Notch is necessary

for the formation of all nephron segments in renal organogenesis

(Chung et al., 2017), and alveolar regeneration by epithelial

progenitor cells requires Notch to initiate repair (Vaughan et al.,

2015). Therefore, it is conceivable that kidney epithelia regeneration

is impaired in IAV-infected DTC.

However, this study has limitations. Because we wanted to

closely mimic the human environment, the main experiments

were done with primary human instead of mouse or canine cells.

Thus, we simulated the epithelial aspect of a human tubule, but the

effects of pyroptosis/apoptosis inhibition on other cell types than

IAV-infected renal cells need to be studied, as other outcomes on

virus replication and cellular survival cannot be ruled out.

Moreover, as the passage number for primary DTC is limited

before they become senescent and the dilution factor is only 1:3,

enough primary DTC for either transcriptomic or proteomic

analysis could only be gained from two subsequent cell passages.

Therefore, we could only relate the shared up- and downregulated

transcript and protein levels from two subsequent experiments.

Nevertheless, the IAV-induced host-cell shut-off (which is known

to target transcription and translation) (Vreede and Fodor, 2010)

was reflected in the DTC transcriptome and proteome analysis of

these two experiments by the significantly higher number of

downregulated transcripts and proteins at 12 hpi. The

discrepancy between the number and types of downregulated

proteins and the number and types of downregulated transcripts

might be explained by posttranslational protein modifications.

In conclusion, IAV can productively replicate on human primary

and immortalized nephron cells, and our multiomics analysis of IAV-

infected primary human DTC revealed enrichment of multiple

programmed cell death pathways (pyroptosis, apoptosis, and

necroptosis) with high relevance for IAV- and AKI-related

pathology, correlating with the observed kidney pathology in

autopsies taken from deceased IAV patients. Consequently, it

seems likely that besides classically approved causes like systemic

inflammation, shock, and rhabdomyolysis, direct IAV infection of

tubular cells can contribute to ATN in IAV-AKI.
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