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Introduction: Staphylococcus aureus, is a pathogen commonly encountered in

both community and hospital settings. Patients receiving hemodialysis treatment

face an elevated risk of vascular access infections (VAIs) particularly

Staphylococcus aureus, infection. This heightened risk is attributed to the

characteristics of Staphylococcus aureus, , enabling it to adhere to suitable

surfaces and form biofilms, thereby rendering it resistant to external interventions

and complicating treatment efforts.

Methods: Therefore this study utilized PCR and microtiter dish biofilm formation

assay to determine the difference in the virulence genes and biofilm formation

among in our study collected of 103 Staphylococcus aureus, isolates from

hemodialysis patients utilizing arteriovenous grafts (AVGs), tunneled cuffed

catheters (TCCs), and arteriovenous fistulas (AVFs) during November 2013 to

December 2021.

Results: Our findings revealed that both MRSA and MSSA isolates exhibited

strong biofilm production capabilities. Additionally, we confirmed the presence

of agr types and virulence genes through PCR analysis. The majority of the

collected isolates were identified as agr type I. However, agr type II isolates

displayed a higher average number of virulence genes, with MRSA isolates

exhibiting a variety of virulence genes. Notably, combinations of biofilm-

associated genes, such as eno−clfA−clfB−fib−icaA−icaD and eno−clfA−clfB−fib

−fnbB−icaA−icaD, were prevalent among Staphylococcus aureus, isolates

obtained from vascular access infections.
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Discussion: These insights contribute to a better understanding of the molecular

characteristics associated with Staphylococcus aureus, infections in

hemodialysis patients and provided more targeted and effective treatment

approaches.
KEYWORDS

vascular access infections (VAIs), Staphylococcus aureus, Agr typing, virulence genes,
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1 Introduction

Staphylococcus aureus, a gram-positive bacterium, represents a

significant source of infection in both communities and medical

institutions. It has developed resistance to a diverse range of

antibacterial drugs, giving rise to multi-drug strains such as

MRSA (Methicillin-Resistant Staphylococcus aureus), presenting

considerable challenges in treatment (Lowy, 1998; Taylor and

Unakal, 2022). S. aureus can colonize various parts of the human

body, including the skin, nasal cavity, and more. Upon the onset of

wounds, the bacteria invade, leading to skin and soft tissue

infections, osteomyelitis, pneumonia, septic arthritis, bacteremia,

and endocarditis. Notably, Staphylococcus aureus stands as a

primary cause of vascular access infection and bacteremia in

dialysis patients (Winstel et al., 2019).

Hemodialysis (HD), a life-supporting treatment for individuals

with compromised kidney function (Sockrider and Shanawani, 2017),

involves three types of vascular access: arteriovenous fistulas (AVFs),

arteriovenous grafts (AVGs), and central venous catheters (CVCs)

(Maya and Allon, 2008). Despite its life-saving nature, hemodialysis is

associated with a heightened risk of morbidity and mortality

(LaFrance et al., 2008). During dialysis, patients face an increased

risk of intermittent or persistent carriage of S. aureus. Moreover,

hemodialysis patients with S. aureus exhibit a 1.8−4.7 fold higher risk

of vascular access infections and bacteremia compared to non-S.

aureus carriers (Vandecasteele et al., 2009).

Bacterial biofilms, intricate aggregations of bacteria embedded

in an extracellular matrix (ECM), pose formidable challenges due to

their resistance to mechanical interference, innate and acquired

host defenses, and antibiotic treatments. These biofilms contribute

significantly to chronic infections, particularly in hospital settings

(Costerton et al., 1999). Staphylococcus aureus, known for its

biofilm-forming capabilities, is notorious for causing chronic

infections by resisting therapeutic interventions, especially on

indwelling medical devices such as implanted artificial heart

valves, catheters, and joint prosthetics (Ribeiro et al., 2012;

Moormeier and Bayles, 2017).

Pathogenic S. aureus actively engages in the host-pathogen

interaction by expressing various virulence genes, which facilitate

colonization and infection. These virulence factors, regulated by the

accessory gene regulator (agr) locus, categorize S. aureus into four
02
groups: type I−IV. These factors not only enable pathogens to enter

host tissues, evade immune responses, and attach to host cells but

also induce tissue damage through the secretion of exoenzymes and

toxins (Kadkhoda et al., 2020; Derakhshan et al., 2021). Microbial

surface components recognizing adhesive matrix molecules

(MSCRAMMs) on the surface of S. aureus play a crucial role in

mediating adhesion between bacteria and the host, facilitating

essential steps in infection, including clumping factors A, B;

fibronectin binding proteins A, B; fibrinogen binding protein;

laminin binding protein; collagen binding protein; elastin binding

protein; bone sialo-protein binding protein, and ica (intercellular

adhesion) operon, mediating cell adhesion and biofilm formation.

Additionally, other virulence factors, such as Panton-Valentine

leucocidin (PVL), staphylococcal enterotoxins (SEs; SEA to SEE),

exfoliative toxins (ETs: ETA and ETB), or toxic shock syndrome

toxin-1, are regulated by corresponding genes and contribute to

infectious diseases (Mehrotra et al., 2000; Ghasemian et al., 2015;

Pakbaz et al., 2017; Idrees et al., 2021; Koosha et al., 2014).

In summary, this study aims to discern the profile of virulence

−associated genes, agr types, and biofilm formation ability in

hemodialysis patients with different dialysis vascular access.
2 Methods and materials

2.1 Bacterial isolation, collection,
and identification

This study was conducted at Chiayi Chang Gung Memorial

Hospital in Chiayi, Taiwan. A total of 103 Staphylococcus aureus

isolates were collected from hemodialysis patients experiencing

vascular access infections, including arteriovenous fistulas (AVFs),

prosthetic arteriovenous grafts (AVGs), and tunneled–cuffed

catheters (TCCs), spanning the period from November 2013 to

December 2021. The bacterial isolates were obtained from

abscesses, blood, Hickman catheter tips, pus, tissue, and wounds,

and cultured on blood agar plates (BAP). Initial identification was

accomplished through standard biochemical tests, including catalase

and coagulase tests until 2019, with a transition to matrix–assisted

laser desorption/ionization time–of–flight mass spectrometry

(MALDI–TOF) thereafter. Routine cultivation adhered to
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laboratory standards on tryptic soy agar and tryptic soy broth, and all

isolates were preserved in a 15% glycerol stock at −80°C.
2.2 Genomic DNA extraction

A single colony of S. aureus was inoculated in Tryptone Soy

Broth (TSB) for 16 hours. The overnight culture was centrifuged,

and the pellet was resuspended in 1 ml of ultrapure water, heated at

100°C for 15 min, and the supernatant containing DNA was stored

at 4°C for subsequent use.
2.3 Polymerase chain reaction

PCR amplification, performed in a 25ml reaction mixture,

included 1ml of each primer, 2 ml of DNA template, and 12ml of 2x
KAPA2G Fast HotStart ReadyMix with dye (Roche, USA). After

amplification, the samples were analyzed on a 1.5% agarose gel via

electrophoresis, and DNA fragments were visualized using UV light.
2.4 Identification of methicillin−resistant
S. aureus

Isolates were identified as MRSA based on oxacillin resistance

and the presence of the mecA gene, detected using PCR with

previously described primers (Pournajaf et al., 2014). It’s

important to note that we classified oxacillin–sensitive mecA–

positive isolates in this study as MRSA base on a previous study

(Hososaka et al., 2007).
2.5 Detection of agr types and
virulence−associated genes

Amplified agr genes were categorized into agr types (I−IV)

using multiplex PCR (Bibalan et al., 2014). For virulence gene

identification, two sets of primers were utilized for multiplex PCR,

PCR1 to amplify bbp, cna, ebpS, and eno and PCR2 to amplify fnbA,

fnbB, fib, clfA, and clfB (Tristan et al., 2003)., with an additional set

designed to amplify sea, seb, sec, sed, see, eta, etb, tst, and PVL

(Mehrotra et al., 2000; Mcclure et al., 2006). PCR methods for icaA

and icaD genes were also employed (Vasudevan et al., 2003).
2.6 Biofilm production ability

The biofilm formation assay followed a previously established

protocol (Stepanović et al., 2000). A colony of S. aureus was isolated

from a tryptone soy agar (TSA) plate and inoculated into tryptone soy

broth, then incubated for 12–16 hours at 37°C. The culture was diluted

in tryptone soy broth with 0.25% glucose and added to 96 flat–bottom

polystyrene wells, followed by incubation for 24 hours at 37°C.

Subsequently, the planktonic cells were aspirated, and the plate

was washed twice with sterile saline water to remove non–adherent
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bacterial cells. The attached bacteria were fixed with 99% methanol

for 15 minutes, then the plates were emptied and air–dried. Next,

0.1% crystal violet was added to each well, and after 15 minutes, the

excess crystal violet was removed by washing the plate twice with

water and air–drying.

Finally, the cell–bound crystal violet was dissolved in 99%

ethanol and allowed to stand for 15 minutes. Optical density

(OD) of the isolates was monitored by measuring absorbance at

570 nm using a microplate reader (Perkin Elmer Enspire 2300,

Perkin Elmer, USA). The negative control consisted of only broth,

while the biofilm‐forming S. aureus reference strain, ATCC 29213,

was used as the positive control.

The adherence capabilities of the tested isolates were classified

into four categories following the method described by previous

research (Christensen et al., 1985). The cut–off value (ODc) was

established as three standard deviations (SD) above the mean OD of

the negative control: ODc = average OD of negative control + (3 ×

SD of negative control).

Strains were classified into the following categories:
OD ≤ ODc = no biofilm producer,

ODc < OD ≤ 2 × ODc = weak biofilm producer,

2 × ODc < OD ≤ 4 × ODc = moderate biofilm producer,

4 × ODc < OD = strong biofilm producer.
3 Results

3.1 The ratio of methicillin−resistant
S. aureus and methicillin−sensitive
S. aureus from different vascular
access infections

A total of 103 Staphylococcus aureus isolates were collected from

three types of vascular access infections (Figure 1). The majority of
FIGURE 1

Distribution of Staphylococcus aureus isolates from vascular access
infections. AVF, arteriovenous fistulas, AVG, prosthetic arteriovenous
grafts, TCC, tunneled–cuffed catheters, MRSA, methicillin–resistant
S. aureus, MSSA, methicillin–sensitive S. aureus.
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isolates were TCC–MRSA and AVG–MRSA, constituting 31.1% (32/

103) and 27.2% (28/103), respectively. Following were 24.3% (25/103)

AVG–MSSA and 15.5% (16/103) TCC–MSSA, with AVF–MRSA

being less prevalent at only 1.9% (2/103). Some of the isolates,

collected from different sites among the 103 S. aureus isolates, belong

to the same patients, therefore, they were be considered as individual

isolates. Furthermore, the age range of patients was predominantly

between 40 and 90 years old. Females more than males, and AVG−S.

aureus isolates were predominantly from female patients. Regarding

specimens, the majority of AVF and AVG−S. aureus isolates were
Frontiers in Cellular and Infection Microbiology 04
found in blood, pus, and wound samples, whereas TCC−S. aureus

isolates were primarily from tip. This disparity could be associated with

the pattern of dialysis access (Table 1).
3.2 Distribution of agr types of S. aureus
isolates from vascular access infections

Through multiplex PCR, four agr types were investigated

among the 103 S. aureus isolates (Figure 2). A small number of
TABLE 1 The characteristics of S. aureus isolates from hemodialysis patients.

AVF–MRSA
(2) (%)

AVG–MRSA
(28) (%)

AVG–MSSA
(25) (%)

TCC–MRSA
(32) (%)

TCC–MSSA
(16) (%)

Age

0~10

11~20

21~30

31~40 1

41~50 1 3 2

51~60 6 4 4 2

61~70 1 5 10 7 8

71~80 6 3 5 1

81~90 2 2 2 2

91~100 2

Sex
male 0 5 5 12 9

female 1 14 15 12 6

Isolation

blood 1 (50) 4 (14.3) 5 (20) 7 (21.9) 0 (0)

abscess 0 (0) 3 (10.7) 0 (0) 0 (0) 0 (0)

pus 0 (0) 9 (32.1) 6 (24) 3 (9.4) 2 (12.5)

tip 0 (0) 1 (3.6) 2 (8) 20 (62.5) 14 (87.5)

tissue 0 (0) 2 (7.1) 4 (16) 0 (0) 0 (0)

wound 1 (50) 9 (32.1) 8 (32) 2 (6.3) 0 (0)
FIGURE 2

The profile of agr types among methicillin–resistant S. aureus (MRSA) and methicillin–sensitive S. aureus (MSSA) isolates from different vascular
access infections.
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MRSA isolates, specifically 7.1% (2/28) AVG–MRSA and 9.4% (3/

32) TCC–MRSA, were non–typeable for the agr locus, labeled as

agr–negative isolates. Agr I was prevalent in AVG–MRSA, TCC–

MRSA, AVF–MRSA, AVG–MSSA, and TCC–MSSA, constituting

78.6% (22/28), 71.9% (23/32), 100% (2/2), 48% (12/25), and 62.5%

(10/16), respectively. Agr II was the secondary prevalent type in

MSSA isolates, with AVG–MSSA harboring 44.0% (11/25) and

TCC–MSSA harboring 31.3% (5/16). Agr III was the following

prevalent type in MRSA isolates, constituting 10.7% (3/28) AVG–

MRSA and 9.4% (3/32) TCC–MRSA. Agr IV was only detected in

TCC–MRSA at 3.1% (1/32).
3.3 The prevalence of virulence−associated
genes among S. aureus isolates from
different vascular access infections

Using PCR to detect 20 virulence−associated genes, eno (100%),

clfA (100%), clfB (100%), and icaD (100%) genes were prevalent in

all S. aureus isolates from different vascular access infections.

Following were fib (68.9%), and icaA (81.5%) genes. fnbA, sed,

see, and etb genes were not observed in S. aureus isolates (Figure 3).

The variety of virulence genes was more pronounced among AVG–

MRSA and TCC–MRSA than MSSA isolates. Furthermore, it is

evident that eno, clfA, and clfB genes were prevalent in S. aureus

isolates from blood and other sites, followed by fib genes. However,

except for the bbp genes, which were only detected in S. aureus
Frontiers in Cellular and Infection Microbiology 05
isolates from other sites, the quantity of virulence genes in S. aureus

isolates showed minimal differences between blood sites and other

sites (Table 2).
3.4 Distribution of the average number of
virulence−associated genes among S.
aureus isolates from vascular access
infections in different agr types

The average number of virulence−associated genes was

investigated according to agr genotype, calculated as the total

number of genes in each agr type with different vascular access

infections divided by the total number of isolates in each agr type

with different vascular access infections. The average number of

virulence genes was 7.23 in all S. aureus isolates. Among MRSA

isolates, agr I and II was harbored most average number of virulence

gene (I: 7.45 for AVG−MRSA, 8 for AVF−MRSA, II: 8.5 for

TCC−MRSA), in MSSA isolates, agr II and III had most average

number of virulence gene (II: 7.2 for TCC−MSSA and III: 8 for

AVG−MSSA). A lower average number of virulence genes was

detected in agr−negative isolates compared to agr−positive isolates

among TCC–MRSA (Figure 4A). In all S. aureus isolates, the

content of virulence−associated genes, agr II isolates had the

highest average number of virulence genes (averaging 7.37),

whereas agr−negative isolates had the lowest average number of

virulence genes (averaging 6.8) (Figure 4B).
FIGURE 3

Heatmap indicating the prevalence of virulence genes among methicillin–resistant S. aureus (MRSA) and methicillin–sensitive S. aureus (MSSA)
isolates from different vascular access infections.
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3.5 Biofilm production ability of S. aureus
isolates from vascular access infections

Biofilm production ability was analyzed, and all S. aureus

isolates from vascular access infections were able to produce

biofilm (Figure 5). Over 75% of MRSA and MSSA isolates

exhibited a strong biofilm production ability after 24 hours of
Frontiers in Cellular and Infection Microbiology 06
incubation, including 78.6% (22/28) AVG–MRSA, 90.6% (29/32)

TCC–MRSA, 88.0% (22/25) AVG–MSSA, and 87.5% (14/16)

TCC–MSSA. All AVF–MRSA isolates produced a moderate

biofilm ability. The results indicated no significant difference in

biofilm production ability between MRSA and MSSA, with

most MRSA and MSSA demonstrating strong biofilm–

forming capabilities.
TABLE 2 The profile of virulence genes in S. aureus isolates from blood and others specimen site.

MRSA MSSA All MRSA MSSA All

Blood (12) (%) Blood (5) (%) Blood (17) (%) Others (50) (%) Others (36) (%) Others (86) (%)

bbp 0 (0) 0 (0) 0 (0) 6 (12) 1 (2.8) 7 (8.1)

cna 7 (58.3) 0 (0) 7 (41.2) 12 (24) 11 (30.6) 23 (26.7)

ebpS 6 (50) 0 (0) 6 (35.3) 15 (30) 7 (19.4) 22 (25.6)

eno 12 (100) 5 (100) 17 (100) 50 (100) 36 (100) 86 (100)

clfA 12 (100) 5 (100) 17 (100) 50 (100) 36 (100) 86 (100)

clfB 12 (100) 5 (100) 17 (100) 50 (100) 36 (100) 86 (100)

fib 7 (58.3) 5 (100) 12 (70.6) 31 (62) 28 (77.8) 59 (68.6)

fnbA 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

fnbB 2 (16.7) 3 (60) 5 (29.4) 10 (20) 13 (36.1) 23 (26.7)

pvl 2 (16.7) 0 (0) 2 (11.8) 14 (28) 1 (2.8) 15 (17.4)

sea 2 (16.7) 0 (0) 2 (11.8) 13 (26) 7 (19.4) 20 (23.3)

seb 2 (16.7) 1 (20) 3 (17.6) 13 (26) 8 (22.2) 21 (24.4)

sec 4 (33.3) 0 (0) 4 (23.5) 7 (14) 2 (5.6) 9 (10.5)

sed 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

see 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

eta 0 (0) 1 (20) 1 (5.9) 0 (0) 0 (0) 0 (0)

etb 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

tst 1 (8.3) 0 (0) 1 (5.9) 3 (6) 0 (0) 3 (3.5)

icaA 10 (83.3) 4 (80) 14 (82.4) 41 (82) 29 (80.6) 70 (81.4)

icaD 12 (100) 5 (100) 17 (100) 50 (100) 36 (100) 86 (100)
A B

FIGURE 4

The virulence−associated gene content of methicillin–resistant S. aureus (MRSA) and methicillin–sensitive S. aureus (MSSA) isolates in different agr
types. (A) The average number of virulence genes from S. aureus with different vascular access infections. (B) The average number of virulence
genes in the agr− positive and negative isolates among all S. aureus isolates.
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3.6 The correlation of agr types and biofilm
production ability

Both agr–positive and agr–negative isolates exhibited strong

biofilm formation ability. Agr type II isolates collected were all

strong biofilm producers, while agr type III isolates collected, except

AVG–MRSA, were all strong biofilm producers. Agr type I isolates

with strong biofilm production ability also demonstrated moderate

and weak biofilm production ability among all S. aureus

isolates (Table 3).
3.7 The correlation between biofilm–
related gene combinations and biofilm
production ability among S. aureus isolates

A comprehensive analysis was conducted to examine the

relationship between 18 combinations of biofilm−related genes

and their association with biofilm production capacity among S.

aureus isolates (Table 4). The most prevalent gene patterns

contributing to strong biofilm production were eno−clfA−clfB−fib

−icaA−icaD (18.4%, 19/103) and eno−clfA−clfB−fib−fnbB−icaA

−icaD (18.4%, 19/103). These patterns were observed in isolates

encompassing AVG–MRSA, TCC–MRSA, AVG–MSSA, and TCC–

MSSA. Secondary patterns of virulence genes, such as

cna−ebpS−eno−clfA−clfB−icaA−icaD (11.6%, 12/103), were

primarily found in MRSA isolates, correlating with both moderate

and weak biofilm production capabilities.
4 Discussion

Staphylococcus aureus carriage is a pivotal factor in

Staphylococcus aureus infections among dialysis patients,

contributing to increased morbidity and mortality in both

hemodialysis and peritoneal dialysis settings. Carriage of

Staphylococcus aureus in the anterior nasal cavity emerges as a

significant risk factor for infections. Prior investigations have

revealed that 40%−60% of hemodialysis patients harbor
Frontiers in Cellular and Infection Microbiology 07
Staphylococcus aureus in the anterior nasal cavity, with a carriage

rate and infection risk double that of healthy controls. Molecular

typing of strains carried by individuals has shown that strains from

the nasal cavity, skin, and infection sites match, indicating bacterial

transmission from the nose to hands and subsequently to the skin,

causing infections through foreign bodies such as grafts (introduced

through venipuncture) or dialysis catheters (HD or PD). The entry

of catheters may result in contamination during catheter insertion

or through the tunnel at the exit site, leading to access site infections

(Kirmani, 1978; Piraino, 2000; Balaban et al., 2003). In this study,

we collected 145 Staphylococcus aureus isolates, of which 71% (103/

145) were sourced from vascular access infections. The ratio of

infections from arteriovenous grafts (AVG) to tunneled–cuffed

catheters (TCC) infections was approximately 1:1, with sporadic

isolates from arteriovenous fistula (AVF) infections.

Biofilm formation is a critical adaptive and survival strategy

employed by bacteria, occurring on both biotic and abiotic surfaces

in various environments, including healthcare settings.

Extracellular polymeric substances (EPS) produced during biofilm

formation protect bacteria from adverse environmental factors and

immune responses (Kostakioti et al., 2013; Tan et al., 2014). Bacteria

enclosed in biofilms can adhere to wounds, hindering the healing

process of chronic wounds and producing toxins that impede

wound healing or confer resistance to antibiotics (Rajpaul, 2015).

Previous studies have implicated biofilm formation as a risk factor

for bacterial infections in hemodialysis patients, with

Staphylococcus aureus identified as a great biofilm producer

(Marques et al., 2017; Kwiecinski et al., 2019). Our study

confirms that all Staphylococcus aureus isolates from vascular

access infections demonstrated biofilm formation ability, with

84.5% (87/103) classified as strong biofilm producers. Among

these, MRSA isolates (58.6%, 51/87) exhibited a higher prevalence

of strong biofilm production compared to MSSA isolates (41.4%,

36/87), particularly TCC–MRSA, with 33.3% (29/87) of strong

biofilm isolates.

Biofilm formation involves microbial cell attachment to surfaces

and subsequent accumulation, a key factor in infection

development. Adhesion formation, a major virulence factor of

Staphylococcus aureus, is correlated with various genes, including

bbp, cna, ebpS, eno, clfA, clfB, fib, fnbA, fnbB, and the ica group

genes. Previous studies have identified clfA, clfB, fib, eno, icaA, and

icaD genes as prevalent in Staphylococcus aureus isolates (Atshan

et al., 2012; Ghasemian et al., 2015; Xu et al., 2021). Our study

yielded similar results, with all MRSA and MSSA isolates harboring

eno, clfA, clfB, and icaD genes, followed by fib and icaA genes.

However, fnbA genes were not detected in any isolates, diverging

from previous research. Staphylococcus aureus infections are also

associated with various virulence genes, including Panton–

Valentine leukocidin (PVL), toxic shock syndrome toxin–1

(TSST–1), exfoliative toxins (ETs), and staphylococcal

enterotoxins (SEs). Although PVL is linked to leukocyte cytolysis,

and SEs and TSST–1 primarily cause food poisoning and toxic

shock syndrome, our study identified a low frequency of pvl, tst, eta,

etb, sea, seb, sec, sed, and see genes in all Staphylococcus aureus

isolates, with eta, etb, tst, sed, and see genes nearly absent, aligning

with previous reports (Wang et al., 2021).
FIGURE 5

The biofilm production ability of methicillin–resistant S. aureus
(MRSA) and methicillin–sensitive S. aureus (MSSA) isolates from
different vascular access infections.
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Patients infected with Staphylococcus aureus may experience

various illnesses, including sepsis, pneumonia, septic arthritis,

osteomyelitis, toxic shock syndrome following surgery, folliculitis,

endocarditis, and urinary tract infections. The accessory gene

regulator (agr) system plays a crucial role in controlling and

regulating the expression of virulence genes in Staphylococcus

aureus. This system classifies S. aureus isolates into four groups

(type I, II, III, IV) based on amino acid polymorphisms of AgrB,

AgrD, and AgrC. Several studies have associated specific diseases

with different agr groups, such as invasive infections linked to agr

group I strains and non−invasive infections to agr group III strains.

Notably, agr group I predominates among S. aureus isolates

(Bibalan et al., 2014; Javdan et al., 2019; Tan et al., 2022). Our

study observed a prevalence of agr type I (67%, 69/103) in S. aureus

isolates from vascular access infections, particularly in MRSA

isolates. Calculations of the average number of virulence genes in
Frontiers in Cellular and Infection Microbiology 08
each agr type revealed that agr II isolates had the highest average

number of virulence genes, consistent with previous studies (Zhang

et al., 2018). Additionally, MRSA isolates exhibited a slightly higher

average number of virulence genes (8.1, 502/62) than MSSA isolates

(7.9, 324/41).

Correlations between agr group and biofilm formation, as

well as between virulence genes and biofilm formation, were

explored. Previous studies have identified agr groups II and III

as the primary biofilm producers among the four types, with agr

type II in MRSA exhibiting superior biofilm formation ability

(Tan et al., 2018). Our study corroborates these findings,

revealing that agr group II constituted strong biofi lm

producers among collected S. aureus isolates from various

vascular infections. The prevalence of biofilm−associated

genes, specifically the combination of fib−eno−clfA−clfB−

ebpS−icaA−icaD (Kaźmierczak et al., 2021), aligns with
TABLE 3 The relationship between different types of agr and biofilm formation ability among methicillin–resistant S. aureus (MRSA) and methicillin–
sensitive S. aureus (MSSA) isolates from vascular access infections.

Biofilm production ability

agr types Weak (%) Moderate (%) Strong (%) NO.

MRSA

AVG
(n=28)

I 1 (4.5) 4 (18.2) 17 (77.3) 22

II 0 (0) 0 (0) 1 (100) 1

III 0 (0) 1 (33.3) 2 (66.7) 3

IV 0 (0) 0 (0) 0 (0) 0

negative 0 (0) 0 (0) 2 (100) 2

TCC
(n=32)

I 0 (0) 1 (4.3) 22 (95.7) 23

II 0 (0) 0 (0) 2 (100) 2

III 0 (0) 0 (0) 3 (100) 3

IV 0 (0) 1 (100) 0 (0) 1

negative 1 (33.3) 0 (0) 2 (66.7) 3

AVF
(n=2)

I 0 (0) 2 (100) 0 (0) 2

II 0 (0) 0 (0) 0 (0) 0

III 0 (0) 0 (0) 0 (0) 0

IV 0 (0) 0 (0) 0 (0) 0

negative 0 (0) 0 (0) 0 (0) 0

MSSA

AVG
(n=25)

I 1 (8.3) 2 (16.7) 9 (75) 12

II 0 (0) 0 (0) 11 (100) 11

III 0 (0) 0 (0) 2 (100) 2

IV 0 (0) 0 (0) 0 (0) 0

negative 0 (0) 0 (0) 0 (0) 0

TCC
(n=16)

I 0 (0) 2 (20) 8 (80) 10

II 0 (0) 0 (0) 5 (100) 5

III 0 (0) 0 (0) 1 (100) 1

IV 0 (0) 0 (0) 0 (0) 0

negative 0 (0) 0 (0) 0 (0) 0
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previous reports, with eno−clfA−clfB−fib−icaA−icaD and eno−

clfA−clfB−fib−fnbB−icaA−icaD being prevalent gene patterns in

our study. The following pattern, cna−ebpS−eno−clfA−clfB−

icaA−icaD, was also observed. Thus, eno, clfA, clfB, icaA, and

icaD genes appear more frequently in biofilm–producing

isolates of Staphylococcus aureus.

While this study investigated the molecular, phenotypic, and

genotypic characteristics of S. aureus isolates from different vascular

access infections, it has limitations. Conducted over an 8–year

period at a single institution, the varying frequencies of isolates

collected each year and the small sample size may introduce bias.
5 Conclusion

All the MRSA and MSSA isolates obtained from vascular access

infections (VAIs) in our study exhibited biofilm–forming

capabilities, particularly demonstrating strong biofilm capacity.

Subsequent PCR identification confirmed that the majority of

Staphylococcus aureus isolates belonged to agr type I.

Additionally, the analysis of virulence genes revealed that AVG−

MRSA and TCC−MRSA isolates displayed the most diverse array of
Frontiers in Cellular and Infection Microbiology 09
virulence genes. Molecular testing of Staphylococcus aureus in the

context of vascular access infections is crucial for advancing

infection management and developing effective treatment strategies.
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