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Introduction: Children have regional dynamics in the gut microbiota

development trajectory. Hitherto, the features and influencing factors of the

gut microbiota and fecal and plasma metabolites in children from Northwest

China remain unclear.

Methods: Shotgun metagenomic sequencing and untargeted metabolomics

were performed on 100 healthy volunteers aged 2-12 years.

Results: Age, body mass index (BMI), regular physical exercise (RPE), and delivery

mode (DM) significantly affect gut microbiota and metabolites. Lactobacillus,

Butyricimonas, Prevotella, Alistipes, and predicted pathway propanoate

production were significantly increased with age while Bifidobacterium breve,

B. animalis, B. pseudocatenulatum, Streptococcus infantis, and carbohydrate

degradation were decreased. Fecal metabolome revealed that the metabolism of

caffeine, amino acids, and lipid significantly increased with age while galactose

metabolism decreased. Noticeably, BMI was positively associated with

pathogens including Erysipelatoclostridium ramosum, Parabacteroides

distasonis, Ruminococcus gnavus, and amino acid metabolism but negatively

associated with beneficial Akkermansia muciniphila, Alistipes finegoldii,

Eubacterium ramulus, and caffeine metabolism. RPE has increased probiotic

Faecalibacterium prausnitzii and Anaerostipes hadrus, acetate and lactate

production, and major nutrient metabolism in gut and plasma, but decreased

pathobiont Bilophila wadsworthia, taurine degradation, and pentose phosphate

pathway. Interestingly, DM affects the gut microbiota and metabolites

throughout the whole childhood. Bifidobacterium animalis, Lactobacillus

mucosae, L. ruminis, primary bile acid, and neomycin biosynthesis were

enriched in eutocia, while anti-inflammatory Anaerofustis stercorihominis,

Agathobaculum butyriciproducens, Collinsella intestinalis, and pathogenic
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Streptococcus salivarius,Catabacter hongkongensis, and amino acidmetabolism

were enriched in Cesarean section children.

Discussion: Our results provided theoretical and data foundation for the gut

microbiota andmetabolites in preadolescent children’s growth and development

in Northwest China.
KEYWORDS

children in northwest China, gut microbiota, fecal and plasma metabolome, age, body
mass index, regular physical exercise, delivery mode
1 Introduction

The gut microbiome is constantly changing, from infancy to

childhood to adolescence (Wehrle et al., 2020). Several variables could

affect its development and colonization (Yang et al., 2021). Delivery

mode (DM) and feeding patterns are the initial influencing factors of

the gut microbiome (Wernroth et al., 2022). Neonatal microbial

colonization and maturation of the immune system are thought to

occur in parallel to influence intestinal physiology and regulation

against infections in early life (Sanidad and Zeng, 2020) and delayed

gut microbiota maturation was related to pediatric allergic disease

(Hoskinson et al., 2023). Then, the gut was dominated by

Bacteroidetes but a reduction in Proteobacteria species along with

the gradual increase in the gut microbial phylogenetic diversity

during the first 3 years of life (Niu et al., 2020). The gut microbiota

largely reaches a relatively stable adult-like composition by 3–5 years

of age (Guo et al., 2020) and was dominated by Firmicutes,

Bacteroidetes, Prevotella, Faecalibacterium, Bifidobacterium, and

Akkermansia muciniphila (Guo et al., 2020) (Deering et al., 2019).

Children suffering from diseases, including new-onset type 1 diabetes

(Yuan et al., 2022), systemic lupus erythematosus (Wen et al., 2021b),

Henoch-Schönlein Purpur (HSP) (Wen et al., 2021a), diarrhea

(Gallardo et al., 2020), and autism spectrum disorder (Zuffa et al.,

2023), were accompanied with dysbiosis and metabolic alterations of

the gut microbiota. Compared with adults, an overrepresentation of

the glycan degradation and vitamin B2/6/9 biosynthesis in the gut

microbiota were observed in children between 9 and 12 years

(Radjabzadeh et al., 2020). These lines of evidence reminded us of

the importance of studying the gut microbiota and metabolites in

children of all ages.

Appropriate physical activity can ensure the presence of a

functional physiological microbiota to maintain human health

(Wegierska et al., 2022) caused by a sedentary lifestyle, among

others. For children, exercise can not only increase food intake but

also enhance physical fitness. Childhood obesity has reached epidemic

proportions worldwide (Pihl et al., 2016), and exercise training could

modulate the gut microbiota profile and impairs inflammatory
02
signaling pathways in obese children (Quiroga et al., 2020). However,

the relationship between the gut microbiota and changes in body mass

index (BMI) or pediatric overweight in Chinese children, especially

from Northwest China, remains unclear.

Geographical factors showed the strongest associations with gut

microbiome for regional dietary and living habits (He et al., 2018).

The preadolescents from non-Western locations had higher a-
diversity and SCFA concentrations (Deering et al., 2019). In

children from South Africa, Firmicutes and Bacteroidetes

dominated after infancy and Prevotella was the most common

genus during the first 5 years of life (Nel et al., 2021). In a Chinese

study, children born and fed in Beijing had a higher abundance of

Enterococcaceae and Lachnospiraceae, while children from Shenzhen

had a higher abundance of Fusobacteriaceae (Niu et al., 2020) in the

first 3 years. Another study based on four regions of China revealed

that geography and age affect the gut microbiota, and Bifidobacterium

was enriched in children (Yang et al., 2020).

Taken together, the current studies on gut microbiota and

metabolites have obtained some achievements based on 16S

rRNA gene sequencing in diseased children. However, fecal

metabolome, a functional readout of the gut microbiome (Zierer

et al., 2018), and the blood metabolites, which can predict and

provide therapeutic targets for diseases (Chen et al., 2023), were

lacking in healthy children. China has given birth to rich and

unique ecosystems, species, and genetic diversity with its vast

territory, complex landscapes, diverse climates, and multi-ethnic

inhabitants. The gut microbiota of children from southeast coastal

and first-tier cities in China has been explored (Niu et al., 2020;

Yang et al., 2020). However, a gap exists in the gut microbiota and

microbial and blood metabolites in healthy children from

Northwest China. In this study, we aimed to elucidate the use of

shotgun metagenomic sequencing and untargeted metabolomics in

healthy children aged 2–12 years from Northwest China. Our study

would be of particular relevance to the gut microbiota and

metabolites in children’s development and health, providing

theoretical basis and important references for the healthcare of

Chinese children from Northwest regions.
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2 Materials and methods

2.1 Study design and ethics statement

This study was designed to investigate the composition and

function of the gut microbiota and fecal and blood metabolites in

healthy children from Northwest China using shotgun

metagenomic sequencing and untargeted metabolomics.

The study was conducted in accordance with the Declaration of

Helsinki and approved by the Ethics Committee of Lanzhou

University Second Hospital (protocol code 2022A-221, date of

approval: 2 March 2022).
2.2 Subject recruitment and
sample collection

The inclusion criteria of the subjects were as follows: (1) they

should be outwardly healthy and have no known diseases such as

chronic infection; (2) they should have a theoretical age between 3

and 12 years; (3) they should have had no antibiotics or other

medications that may affect the gut microbiota for nearly a month;

(4) they should have had no intake of fermented foods such as

pickles and yogurt in nearly 1 month; (5) they should have been

weaned; the diet is mainly based on rice, cooked wheaten food,

meat, and vegetables, and a daily intake of less than 300 mL of milk;

and (6) they should have complete information on samples

and phenotypes.

The basic information of the standard-compliant children was

collected using a designed questionnaire including age, sex, birth

weight and height, DM, current body weight and height, physical

exercise, and dietary intake (Supplementary Table S1A). Finally,

100 healthy Chinese children with complete phenotypic

information were recruited from Xigu District (Lanzhou, Gansu)

in this study.

Fresh fecal samples (5–10 g) were collected from participants

and stored at −80°C for shotgun metagenomics and metabolomics.

Overnight fasting venous blood was collected from each participant

to centrifuge at 3,000 rcf (×g) for 10 min to obtain plasma and

stored at −80°C for metabolomics.
2.3 Shotgun metagenomic sequencing and
data analysis

2.3.1 DNA extraction, quantification, sequencing,
and filtering

All fecal samples were transferred by dry ice in the laboratory to

extract DNA. Total DNA from each sample was extracted in

accordance with the protocol as described previously (Fang et al.,

2018). The quality and quantity of the DNA were measured using

NanoDrop Spectrophotometer ND-1000 (Thermo Fisher Scientific

Inc.). Metagenome library was constructed using the TruSeq DNA

PCR-Free Library Preparation Kit (Illumina), and the quantity of

each library was evaluated using a Qubit 2.0 fluorimeter
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(Invitrogen). Sequencing of metagenome libraries was conducted

at BGI-Shenzhen (Shenzhen, China) using BGI-Seq500 (150-bp

paired-end sequencing of ~ 350-bp inserts) (Fang et al., 2018).

The raw reads that had 50% low-quality bases (quality ≤ 20) or

more than five ambiguous bases were excluded using FASTP. The

remaining reads were mapped to human genome (hg19) by bowtie2

(-m 100- × 600 -v 7 -p 6 -l 30 -r 1 -M 4 -c 0.95), and the matching

reads were removed. The high-quality reads (clean reads) were used

for taxonomic and functional analysis.

2.3.2 Taxonomic profiling
Metagenomic Phylogenetic Analysis (MetaPhlAn, version 3.0, -

input_type fastq - ignore_viruses - nproc 6) as described in the

reference was used to generate phyla, genera, and species profiles

from the clean reads as previously reported (Beghini et al., 2021).

MetaPhlAn is a computational tool for profiling the composition of

microbial communities from metagenomic shotgun sequencing

data. MetaPhlAn relies on unique clade-specific marker genes

identified from ~17,000 reference genomes (~13,500 bacterial and

archaeal, ~3,500 viral, and ~110 eukaryotic), allowing up to 25,000

reads-per-second (on one CPU) analysis speed; unambiguous

taxonomic assignments as the MetaPhlAn markers are clade-

specific; accurate estimation of organismal relative abundance;

species-level resolution for bacteria, archaea, eukaryotes, and

viruses; and extensive validation of the profiling accuracy on

several synthetic datasets and on thousands of real metagenomes.

2.3.3 Functional profiling
The HMP Unified Metabolic Analysis Network (HUMAnN,

version 3.0, -i input_clean_data -o output –threads 10 –memory-

use maximum –remove-temp-output) is used for predicted

functional metagenome analysis as previously reported (Beghini

et al., 2021). HUMAnN is a method for efficiently and accurately

profiling the abundance of microbial metabolic pathways and other

molecular functions from metagenomic sequencing data.

2.3.4 Diversity analysis
a-Diversity [R 4.0.3 vegan: diversity (data, index = ‘ richness/

Shannon/Simpson/InSimpson’)] was calculated using the richness,

Shannon index, Simpson’s index, and Inverse Simpson’s index,

depending on the taxonomic profiles. b-Diversity [(R 4.0.3 ape: pcoa

(‘bray_curtis distance’, correction=“none”, rn=NULL)) between-sample

diversity, R 4.0.3 vegan: diversity (data, index = ‘bray_curtis distance’)]

was calculated using the Bray–Curtis distance depending on the

taxonomic profiles. Permutational Multivariate Analysis of Variance

[PERMANOVA; code: R 4.0.3: adonis (dist~phe, permutations =

1,000)] was performed based on the gut microbial species/genus

abundance profile to study the effect on the gut microbiome.

2.3.5 Partial correlation analysis
Partial correlation analysis involves studying the linear

relationship between two variables after excluding the effect of

one or more independent factors and was used for correlation

analysis between age and BMI and species, genera, phyla, and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways.
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2.3.6 Differential analysis
The significant species, genera, phyla, and KEGG pathways between

children with eutocia and Cesarean section (C-section), and children

with and without regular physical exercise (RPE) were analyzed.
2.4 Untargeted metabolomics

2.4.1 Sample preparation and extraction
Fecal and plasma samples were freeze-dried using a vacuum

freeze-dryer (Scientz-100F) and then were crushed in a mixer mill

(MM 400, Retsch) with zirconia bead for 1.5 min at 30 Hz. The

lyophilized powder (50 mg) was mixed in 1.2 mL of 70% methanol

solution and vortexed six times for 30 s every 30 min. After

centrifugation at 12,000 rcf (×g) for 3 min, the extracts were

filtered (SCAA-104, 0.22 mm pore size; ANPEL, Shanghai, China,

http://www.anpel.com.cn/) and then subjected to ultraperformance

liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).

2.4.2 UPLC conditions
The sample extracts were analyzed using a UPLC-ESI-MS/MS

system (UPLC, SHIMADZU Nexera X2; MS, Applied Biosystems

6500 Q TRAP). The analytical conditions were as follows. UPLC:

column, Agilent SB-C18 (1.8 µm, 2.1 mm × 100 mm). The mobile

phase consisted of solvent A (pure water with 0.1% formic acid) and

solvent B (acetonitrile with 0.1% formic acid). Sample

measurements followed a gradient program starting with 95% A

and 5% B. Within 9 min, a linear gradient transition of 5% A and

95% B was programmed, and was maintained for 1 min.

Subsequently, the composition was adjusted to 95% A and 5.0% B

within 1.1 min and maintained for 2.9 min. The flow velocity was

set to 0.35 mL per minute; The column oven temperature was set to

40°C, and the injection volume was 2 mL. The effluent was

alternately connected to an electrospray ionization triple

quadrupole linear ion trap (QTRAP)-MS system.

2.4.3 ESI-Q TRAP-MS/MS
The electrospray ionization (ESI) source operation parameters

were as follows: source temperature, 500°C; ion spray voltage (IS),

5,500 V (positive ion mode)/−4,500 V (negative ion mode); ion

source gas I (GSI), gas II (GSII), and curtain gas (CUR) set at 50, 60,

and 25 psi, respectively; and high collision-activated dissociation

(CAD). Instrument tuning and mass calibration were performed

using 10 and 100 mmol/L polypropylene glycol solutions in the QQQ

and LIT modes, respectively. QQQ scans were acquired in the MRM

experiments using a collision gas (nitrogen) set in the medium. The

declustering potential (DP) and collision energy (CE) for individual

MRM transitions were determined by DP and CE optimization. A

specific set of MRM transitions was monitored for each period

according to the metabolites eluted within this period.

2.4.4 Principal coordinate analysis of metabolites
Principal coordinate analysis (PCoA) was performed using the

ape comp statistical function in R (www.r-project.org) based on

Bray–Curtis distances of the fecal and plasma metabolites.
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2.4.5 Differential metabolites selected
Significantly differentially regulated metabolites between obese

and control mice were determined using the Wilcoxon rank-sum

test (P < 0.05).

2.4.6 KEGG annotation and enrichment analysis
Identified metabolites were annotated using the KEGG

compound database (http://www.kegg.jp/kegg/compound/) and

annotated metabolites were mapped to the KEGG Pathway

database (http://www.kegg.jp/kegg/pathway.html).
2.5 Statistical methods

PERMANOVA was used to study the effect of various

phenotypes on the gut microbiota and fecal and plasma

metabolites. Spearman’s rank correlation was used to analyze the

relationship between age and multiomics. Partial correlation

analysis was used for correlation analysis between BMI and

multiomics to adjust the effect of age and sex. Wilcoxon rank-

sum test was used to compare the difference of the species, genera,

phyla, KEGG pathways, and fecal and plasma metabolites between

eutocia and C-section, as well as with and without RPE, before

which partial correlation analysis was used to adjust the influence of

age, sex, and BMI. Spearman’s rank correlation analysis was used to

analyze the associations between multiomics under different

influencing factors.

All statistical analyses were based on R packages (Version 4.2.1).

PERMANOVA: vegan, adonis(t(otu1) ~ phe (,1), data = phe,

permutations = 999, na.rm = T). Wilcoxon rank-sum test: wilcox.test

(as.numeric(pr[i, f1]), as.numeric(pr[i, f2])). Heatmap: pheatmap(cmt,

scale = “none”,cluster_row = T, cluster_col = T,display_numbers =

pmt). Partial correlation analysis: ppcor, pcor.test(y.data (,1),y.data (,2),

y.data[,c(3:5)],method = “spearman”). P < 0.05 was considered

significant difference.
3 Results

3.1 Overview of the gut microbiota and
fecal and plasma metabolites

A total of 100 children aged between 2 and 12 years old with an

average age of 5.59 ± 2.26 years were recruited in this study. The

subjects were sex-matched, with 48 girls and 52 boys included in

the study.

MetaPhlAn 3.0 has revealed 11 phyla, 178 genus, and 501

species in the subjects. The a-diversity for species and genus was

evaluated by Shannon, Simpson, and Inverse Simpson indexes. The

Shannon, Simpson, and Inverse Simpson indexes for genus and

species were 2.35 ± 0.27, 0.84 ± 0.06, and 6.88 ± 2.30, and 2.92 ±

0.30, 0.90 ± 0.05, and 11.33 ± 3.79, respectively (Supplementary

Table S1B). Firmicutes , Bacteroidetes , Actinobacteria,

Proteobacteria, and Verrucomicrobia were the top five abundant

phyla (Figure 1A). Anaerostipes, Alistipes, Blautia, Ruminococcus,
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Eubacterium, Roseburia, Bifidobacterium, Faecalibacterium,

Bacteroides, and Lachnospiraceae_unclassified were the top 10

abundant genera (Figure 1B). Bacteroides dorei, Anaerostipes

hadrus , Eubacter ium sp . CAG:180, Roseburia faec i s ,

Bifidobacterium pseudocatenulatum, Eubacterium rectale,

Ruminococcus bromii, Bacteroides uniformis, Bacteroides vulgatus,

and Faecalibacterium prausnitzi were the top 10 abundant

species (Figure 1C).

HUMAnN 3.0 was used to profile the abundance of microbial

metabolic pathways from metagenomic sequencing data. A total of

486 predicted functional pathways were obtained. The top 10

abundant predicted pathways were starch degradation V,

adenosine ribonucleotides de novo biosynthesis, pyruvate

fermentation to isobutanol (engineered), dTDP-b L-rhamnose

biosynthesis, L-isoleucine biosynthesis I (from threonine), L-

valine biosynthesis, UMP biosynthesis I, glycolysis IV, UMP

biosynthesis I, and adenine and adenosine salvage III

(Supplementary Figure S1). Interestingly, F. prausnitzi has

participated in all the top 10 abundant predicted functional

pathways, suggesting the importance of this bacterium in children

from Northwest China.

For the fecal metabolism, 3,727 metabolites were detected and

1,652 metabolites were mapped with a compound ID in KEGG, in

which 635 metabolites were annotated to one or more KEGG map.

Cyclamic acid, FFA (18:2), D-Phenylalanine, Urobilin, FFA (16:0),

Isoetharine, and Cholic acid were the top abundant metabolites in

fecal samples. Fecal metabolites were mainly involved in amino acid

and its metabolites, bile acids, benzene and substituted derivatives,
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carbohydrates and its metabolites, nucleotide and its metabolites,

fatty acyl, glycerophospholipids, heterocyclic compounds,

hormones and hormone-related compounds, and organic acid

and its derivatives (Supplementary Figure S2).

For the blood metabolites, 1,538 metabolites were revealed and

711 metabolites were mapped with a KEGG compound ID, in

which 286 metabolites were annotated with the KEGG map. The

abundant blood metabolites were mainly involved in amino acid

and its metabolomics, benzene and substituted derivatives, organic

acid and its derivatives, glycerophospholipids, fatty acyl, etc.

(Supplementary Figure S3).

We analyzed the collected phenotypes including BMI, age, sex,

DM, and RPE on the gut microbiome and microbial and plasma

metabolites (Supplementary Table S1C). The results showed that

age could significantly affect the gut microbiome (p = 0.0344) and

fecal (p = 0.0186) and blood metabolites (p = 0.0099). BMI and DM

have an effect on the fecal metabolites (p = 0.0579 and 0.0055,

respectively). RPE has a significant effect on the blood metabolites

(p = 0.0047). We then explored the specific effects of these factors on

the gut microbiota and fecal and plasma metabolites.
3.2 The effect of age on gut microbiome
and fecal and plasma metabolites

Age showed a significant effect on the gut microbiome and fecal

and plasma metabolites. Phylum Actinobacteria was significantly

negatively correlated with age (Figure 2A). Of the 29 genera that

were significantly associated with age, 18 genera, including

Butyricimonas, Lactobacillus, Alistipes, Agrobacterium, Coprococcus,

Prevotella, Bilophila, and Parabacteroides, were positively associated

with age, whereas Bifidobacterium, Eggerthella, Erysipelatoclostridium,

Tyzzerella, Flavonifractor, Corynebacterium, Anaerostipes, Hungatella,

Gordonibacter, Anaerotruncus, and Blautia were negatively correlated

with age (Figure 2A). A total of 46 species including Bifidobacterium

dentium, B. adolescentis, Butyricimonas virosa, Lactobacillus mucosae,

L. ruminis, and L. gasseri were significantly positively correlated with

age, while 27 species including Bifidobacterium breve, B. animalis, B.

pseudocatenulatum, and B. bifidum were significantly negatively

correlated with age (Figure 2B). Microbial metabolic pathways

including pyruvate fermentation to propanoate were positively

correlated with age while succinate/pyruvate/acetyl-CoA

fermentation to butanoate, ketogenesis, glycogen degradation,

trehalose degradation, starch biosynthesis and degradation, and

glucose and glucose-1-phosphate degradation were negatively

correlated with age, suggesting a decrease in the capability of

butyrate production but an increase in that of propanoate (Figure 2C).

Fecal metabolites showed that 534 metabolites were significantly

correlated with age, in which 88 metabolites were annotated with

KEGG pathways. A total of 70 metabolites including hormones and

hormone-related compounds, ketones, oxidized lipids, and small

peptide were significantly positively associated with age, while 18

metabolites including 1-hydroxy vitamin D3, atrolactic acid, 3-

hydroxypyruvic acid, myoinositol, succinic acid, 3-indolebutyric acid,

2-(4-hydroxyphenyl) propionate, and 3-(3-hydroxyphenyl) propionate

were significantly negatively associated with age (Figure 3B).
A

B

C

FIGURE 1

The top 10 abundant phyla, genera, and species in the healthy
children. The top 10 phyla (A), genera (B), and species (C) in the gut
of the the healthy children.
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Consistently, KEGG pathways including D-amino acid metabolism,

caffeine metabolism, arginine biosynthesis, tryptophan metabolism,

steroid hormone biosynthesis, arachidonic acid metabolism,

biosynthesis of unsaturated fatty acids, fatty acid biosynthesis/

degradation/elongation, glycerophospholipid metabolism, steroid

biosynthesis, and glutathione metabolism were positively associated

with age, with the above abilities of the gut microbiota increasing along

with age. However, biosynthesis of cofactors, tyrosine metabolism,

galactose metabolism, cAMP signaling pathway, primary bile acid

biosynthesis, ascorbate and aldarate metabolism, glyoxylate and

dicarboxylate metabolism, inositol phosphate metabolism, sulfur

metabolism, TCA cycle, propanoate metabolism, pyruvate

metabolism, oxidative phosphorylation, folate biosynthesis, nicotinate

and nicotinamide metabolism, and lysosome, among others, were

significantly negatively associated with age, suggesting a decrease in

the energy and nutrient metabolism of the gut microbiota along with

age (Figure 3A).
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For the plasma metabolites, we have identified 97 significantly

age-related metabolites, of which 52 metabolites were annotated

with KEGG pathways (Figure 3D). Arginine and proline

metabolism; cysteine and methionine metabolism; phenylalanine,

tyrosine, and tryptophan biosynthesis; caffeine metabolism; TCA

cycle; glycolysis/gluconeogenesis; pyruvate metabolism; steroid

hormone biosynthesis; phosphonate and phosphinate metabolism;

protein digestion and absorption; and glucagon signaling pathway,

among others, were significantly increased along with age. In

contrast, bile secretion; primary bile acid biosynthesis; cholesterol

metabolism; vitamin digestion and absorption; ABC transporters;

neuroactive ligand–receptor interaction; tyrosine metabolism;

pantothenate and CoA biosynthesis; alanine, aspartate, and

glutamate metabolism; fatty acid biosynthesis; steroid

biosynthesis; riboflavin metabolism; thiamine metabolism;

vitamin B6 metabolism; mineral absorption; endocrine and other

factor-regulated calcium reabsorption; thyroid hormone signaling
A B

C

FIGURE 2

Gut microbiota and predicted functional metagenome analysis that were significantly correlated with age. (A, B) Show significantly correlated taxons
and their relative abundance. (C) Predicted pathways that were significantly associated with age.
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pathway; parathyroid hormone synthesis; and secretion and action,

among others, were decreased with age (Figure 3C).

Correlation analysis was performed between the significantly

age-associated gut microbiota and fecal and plasma metabolites.

The age negatively related fecal metabolites were significantly

positively correlated with age negatively related species; in

contrast, age positively related fecal metabolites were obviously
Frontiers in Cellular and Infection Microbiology 07
positively associated with age positively related species

(Supplementary Figure S4). The age negatively related blood

metabolites were significantly positively correlated with age

negatively related species. The same results were observed for age

positively correlated gut microbiota and blood metabolites

(Supplementary Figure S5). For the fecal and blood metabolites,

age negatively related fecal metabolites including sodium cholate
A B

C D

FIGURE 3

Fecal and plasma metabolites that significantly correlated with age. (A) KEGG pathways involved for the fecal metabolites. (B) Fecal metabolites that
were significantly correlated with age. (C) KEGG pathways involved for the plasma metabolites. (D) Plasma metabolites that were significantly
correlated with age.
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were significantly positively associated with age negatively related

blood metabolites; the same trends were observed for age positively

correlated fecal and blood metabolites (Supplementary Figure S6).
3.3 Effects of BMI on the gut microbiota
and metabolites

Bifidobacterium breve, Erysipelatoclostridium ramosum,

Parabac t e ro ide s d i s t a son i s , Phasco l a r c tobac t e r ium,

Phascolarctobacterium faecium, Ruminococcus gnavus, Tyzzerella,

Tyzzerella nexilis, and Enterococcus were significantly positively

associated with BMI, while Akkermansia, A. muciniphila, Alistipes

finegoldii, Eisenbergiella tayi, and Eubacterium ramulus were obviously

decreased with age (Figure 4A). Microbial metabolic pathways showed

that trehalose degradation V, superpathway of UDP-glucose-derived

O-antigen building blocks/ornithine degradation/lipopolysaccharide

biosynthesis, stearate biosynthesis, starch biosynthesis and

degradation, pyrimidine deoxyribonucleotides de novo biosynthesis,

NAD salvage pathway, isopropanol biosynthesis (engineered), glucose

and glucose-1-phosphate degradation, glycolysis I, glycolysis II, all-

trans-farnesol biosynthesis, D-xylose degradation IV, and glycogen

degradation I were significantly increased as BMI increases. However,

1,4-dihydroxy-6-naphthoate biosynthesis II, dTDP-3-acetamido-a-D-
fucose biosynthesis, and superpathway of menaquinol-8 biosynthesis II

were decreased along with BMI (Figure 4B).

For fecal metabolites, 1,091metabolites were significantly positively

associated with BMI, while 31 metabolites were significantly negatively

correlated with BMI (p < 0.05, |correlation coefficient| > 0.2), during

which 25 metabolites were annotated with the KEGG pathway

(Supplementary Figure S7A). Endocytosis; regulation of autophagy;

ABC transporters; Rap1 signaling pathway; Ras signaling pathway;

arginine and proline metabolism; cysteine andmethionine metabolism;

glycine, serine, and threonine metabolism; lysine degradation;
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phenylalanine metabolism; valine, leucine, and isoleucine

degradation; butirosin and neomycin biosynthesis; pantothenate and

CoA biosynthesis; beta-alanine metabolism; D-amino acid metabolism;

glutathione metabolism; purine metabolism; pyrimidine metabolism;

and protein digestion and absorption were significantly abundant along

with BMI increase, while caffeine metabolism, alpha-linolenic acid

metabolism, folate biosynthesis, and biosynthesis of cofactors were

decreased as BMI increases (Supplementary Figure S7C).

For plasma metabolites, 116 metabolites were significantly

positively associated with BMI while 42 metabolites were negatively

correlated with BMI (p < 0.05, |correlation coefficient| >0.2)

(Supplementary Figure S7B). Of the above differential metabolites,

20 have been annotated with the KEGG pathway. Ferroptosis, ABC

transporters, sulfur relay system, choline metabolism in cancer,

cysteine and methionine metabolism, tyrosine metabolism, sulfur

metabolism, glycerophospholipid metabolism, steroid hormone

biosynthesis, nicotinate and nicotinamide metabolism, porphyrin

and chlorophyll metabolism, ubiquinone and other terpenoid

−quinone biosynthesis, pyrimidine metabolism, biosynthesis of

cofactors, and protein digestion and absorption were significantly

increased along with BMI increase, whereas phosphatidylinositol

signaling system, arginine and proline metabolism, lysine

degradation, phenylalanine metabolism, inositol phosphate

metabolism, fatty acid biosynthesis, and D-amino acid metabolism

were decreased as BMI increases (Supplementary Figure S7D).

Association studies between the BMI significantly related gut

microbiota and fecal and plasma metabolites were performed. BMI

significantly positively related fecal metabolites and blood metabolites

were significantly negatively associated with BMI negatively

associated species including A. muciniphila, A. finegoldii, and E.

tayi (Supplementary Figures S8 and S9). For the fecal and blood

metabolites, the BMI negatively correlated fecal metabolites were

significantly positively associated with BMI negatively correlated

blood metabolites (Supplementary Figure S10).
A B

FIGURE 4

BMI significantly related taxons and predicted functional pathways. (A) Phyla, genera, and species that were significantly correlated with BMI. (B) The
predicted functional pathways that were obviously correlated with BMI.
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3.4 Effect of delivery mode on the gut
microbiota and fecal and
plasma metabolites

DM including eutocia and C-section was reported to significantly

affect the gut microbiota in newborn babies. In our study, we found that

DM could significantly affect the microbial metabolites (p < 0.05). No

significant differences were observed in a-diversity at both the species

and genus levels (Supplementary Figure S11A). Firmicutes, Bacteroidetes,

Actinobacteria, Proteobacteria, and Verrucomicrobia were the main

phyla between the two groups (Supplementary Figure S11B). Genera

including Bacteroides, Faecalibacterium, Bifidobacterium, Roseburia,

Eubacterium , and Ruminococcus, and species including

Faecalibacterium prausnitzii, Bacteroides vulgatus, Bacteroides

uniformis, Ruminococcus bromii, Eubacterium rectale, and

Bifidobacterium pseudocatenulatum were the main species in both

groups of children (Supplementary Figures S11C, D). Differential

analysis showed that Anaerofustis stercorihominis, Pseudoflavonifractor

capillosus, Eubacterium ventriosum, Streptococcus salivarius, Catabacter

hongkongensis, Agathobaculum butyriciproducens, Alistipes inops,

Clostridium lavalense, and Collinsella intestinalis were highly abundant

in C-section, while Streptococcus thermophilus, S. vestibularis,

Bifidobacterium animalis, Actinomyces massiliensis, Lactobacillus

mucosae, L. ruminis, Gemella asaccharolytica, and Granulicatella

elegans were significantly highly abundant in eutocia (Supplementary

Figure S12A). For the microbial metabolic pathways, phospholipases,

lipid IVA biosynthesis, gondoate biosynthesis, superpathway of

glycolysis and the Entner-Doudoroff pathway, L-rhamnose

degradation I, L-ornithine/L-arginine biosynthesis, superpathway of

putrescine biosynthesis, inosine 5-phosphate degradation, biotin

biosynthesis II, and TCA cycle I were significantly enriched in C-

section; however, only L-glutamate degradation was obviously enriched

in eutocia (Supplementary Figure S12B).

No significant differences were observed for the plasma

metabolites between two groups; however, the gut microbial

metabolites were significantly different between eutocia and C-

section (Figure 5A). A total of 52 metabolites including malvidin,

PGF2 ethyl amide, and methacycline were significantly enriched in

eutocia while 37 metabolites including diglycidyl-resorcinol and

mevalonate 5-phosphate were obviously abundant in C-section

(Figures 5B, C). KEGG pathways including primary bile acid

biosynthesis; phenylalanine and tyrosine metabolism; glycine,

serine, and threonine metabolism; glycerophospholipid

metabolism; nicotinate and nicotinamide metabolism;

phosphonate and phosphinate metabolism; and taurine and

hypotaurine metabolism were significantly abundant in eutocia

(Figure 5D). However, tryptophan metabolism; D-amino acid

metabolism; ABC transporters; neuroactive ligand–receptor

interaction; histidine metabolism; phenylalanine, tyrosine, and

tryptophan biosynthesis; valine, leucine, and isoleucine

biosynthesis and degradation; fructose and mannose metabolism;

linoleic acid metabolism; pantothenate and CoA biosynthesis;

pyrimidine metabolism; and biosynthesis of cofactors were

significantly abundant in C-section (Figure 5D). Correlation

analysis between the significantly different microbial metabolites
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and gut microbiota between eutocia and C-section showed that

eutocia-abundant species were positively associated with eutocia-

abundant fecal metabolites (Supplementary Figure S13).
3.5 Physical exercise affects the gut
microbiota and fecal and
plasma metabolites

Physical exercise has a significant effect on the gut microbiota and

metabolites. In our study, we have revealed that RPE could significantly

affect the blood metabolites (p = 0.0047). Differential analysis of the gut

microbiota showed that Dorea, Faecalibacterium, Veillonella,

Anaerostipes, F. prausnitzii, Veillonella parvula, and Anaerostipes

hadrus were highly abundant in children with RPE. However,

Pyramidobacter piscolens, Holdemanella biformis, Streptococcus

sobrinus, Clostridium spp., Allisonella histaminiformans,

Parasutterella excrementihominis, Bilophila wadsworthia, and

Anaerotruncus colihominis were evidently increased in children who

have no RPE (Figure 6A). The highly abundant phylum Synergistetes,

genera Faecalibacterium and Anaerostipes, and species F. prausnitzi

and Anaerostipes hadrus were significantly enriched in children with

RPE (Supplementary Figure S14). Microbial metabolic pathways

including pyruvate fermentation to acetate and lactate II,

superpathway of L-lysine, threonine and methionine biosynthesis I,

peptidoglycan biosynthesis, S-adenosyl-L-methionine salvage I, acetyl-

CoA fermentation to butanoate, Bifidobacterium shunt, L-lysine

biosynthesis I, and peptidoglycan biosynthesis IV were significantly

abundant in children with RPE. Interestingly, 1,4-dihydroxy-6-

naphthoate biosynthesis II and superpathway of taurine degradation

were significantly enriched in children without RPE (Figure 6B).

A total of 39 microbial metabolites were significantly higher in

children with RPE while 33 metabolites were obviously enriched in

children without RPE (Supplementary Figures S7A, B). Eighteen fecal

metabolites were annotated with KEGG pathways, in which ABC

transporters; galactose metabolism; taurine and hypotaurine

metabolism; arginine and proline metabolism; glycine, serine, and

threonine metabolism; phenylalanine, tyrosine, and tryptophan

biosynthesis; caffeine metabolism; amino sugar and nucleotide sugar

metabolism; fructose and mannose metabolism; primary bile acid

biosynthesis; D-amino acid metabolism; and glutathione metabolism

were significantly enriched in children with RPE. In contrast, alanine,

aspartate, and glutamate metabolism; lysine degradation; valine,

leucine, and isoleucine biosynthesis and degradation; pentose

phosphate pathway; biosynthesis of unsaturated fatty acids; linoleic

acid metabolism; and vitamin B6 metabolism were obviously higher in

children without RPE (Supplementary Figure S7C).

A total of 167 plasma metabolites were significantly higher in

children with RPE while 29 plasma metabolites were obviously

enriched in children without RPE (Figure 7B). Eighteen metabolites

were annotated with KEGG pathways. Primary bile acid biosynthesis,

bile secretion, biosynthesis of cofactors, cholesterol metabolism,

vitamin digestion and absorption, HIF-1 signaling pathway,

arginine and proline metabolism, lysine degradation, caffeine

metabolism, fatty acid biosynthesis, steroid hormone biosynthesis,
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A B

C D

FIGURE 5

Significantly different fecal metabolites between eutocia and Cesarean section. (A) PCoA showed significant differences of the fecal metabolites
between two groups. (B) Heatmap showed significantly different metabolites between two groups. (C) KEGG pathways involved for the fecal
metabolites. (D) Fecal metabolites that were significantly different between two groups.
A B

FIGURE 6

Significantly different gut microbiota and functional metabolites between with and without physical exercise. (A) Significantly different genera and
species and their relative abundance. (B) Significantly different functional pathways and their relative abundance.
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pantothenate and CoA biosynthesis, beta-alanine metabolism,

glutathione metabolism, fat digestion and absorption, and ovarian

steroidogenesis were highly abundant in children with RPE. Cysteine

and methionine metabolism, histidine metabolism, phenylalanine

metabolism, nicotinate and nicotinamide metabolism, purine

metabolism, pyrimidine metabolism, and taste transduction were

obviously higher in children without RPE (Figure 7A).

The correlation of the significantly different gut microbiota and

fecal and bloodmetabolites between the children with and without RPE

was analyzed. The RPE-abundant gut species were positively correlated

with the RPE-abundant fecal metabolites (Supplementary Figure S15)

and blood metabolites (Supplementary Figure S16). Metabolite

correlation showed that the RPE-abundant fecal metabolites were

positively correlated with those in blood (Supplementary Figure S17).
4 Discussion

Gut microbiota exerts considerable effects on the child’s

physical and mental development. This study was performed on

100 outwardly healthy children from Northwest China to

characterize their gut microbiota and microbial and plasma
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metabolites. Interestingly, we have revealed that age, BMI,

delivery type, and RPE could significantly alter gut microbiota

and metabolome in children from Northwest China.

Age was reported to affect the gut microbiota in early-life

children. Recently, the gut microbiome and metabolome in

children with autoimmune diseases including systemic lupus

erythematosus (Wen et al., 2021b), Henoch–Schönlein Purpura

(Wen et al., 2021a), new-onset type 1 diabetes (Yuan et al., 2022),

and diarrhea infected by diarrheagenic E. coli (Gallardo et al., 2020)

and full-scale intelligence (van de Wouw et al., 2023) were

investigated. In our study, several beneficial species of

Bifidobacteria such as B. pseudocatenulatum, B. breve, and B.

animalis ; Blautia wexlerae (Hosomi et al. , 2022); and

Flavonifractor plautii (Luo et al., 2023), as well as some emerging

pathogens such as Eggerthella lenta (Dong et al., 2022), E. ramosum

(Milosavljevic et al., 2021; Iadsee et al., 2023), and Clostridium

aldenense (Warren et al., 2006), were significantly decreased with

age in our observation. Interestingly, Lactobacillus spp. and

Prevotella spp.; SCFA producer Butyricimonas and Odoribacter

splanchnicus (Hiippala et al. , 2020); beneficial species

Christensenella minuta (Singh and Natraj, 2021) and Bilophila

wadsworthia (Natividad et al., 2018); anti-infectious Blautia
A B

FIGURE 7

Significantly different blood metabolites between with and without regular physical exercise. (A) The blood metabolites that were significantly abundant
in children with and without regular physical exercise. (B) The KEGG pathways that were involved for the significantly different blood metabolites.
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obeum (Hatziioanou et al., 2017); carbohydrate metabolism

promoting species Alistipes indistinctus, Alistipes onderdonkii, and

Alistipes putredinis (Takeuchi et al., 2023); gut nicotine degrading

bacteria Bacteroides xylanisolvens (Chen et al., 2022); saccharolytic

and therapeutic drug bioaccumulation-promoting species

Clostridium saccharolyticum (William and Murray, 1982); and

commensal species Coprobacter fastidiosus (Shkoporov et al.,

2013) were evidently increased with age in our study.

Consistently, metabolic pathways including pyruvate/succinate/

acetyl-CoA fermentation to butanoate, starch biosynthesis and

degradation, glucose and glucose-1-phosphate degradation, and

glycogen and trehalose degradation were significantly decreased

with age; however, pyruvate fermentation to propanoate and D-

xylose degradation were significantly increased along with age. For

fecal metabolome, the gut microbial ability of fatty acid and

glycerophospholipid metabolism and biosynthesis of unsaturated

fatty acids, caffeine metabolism, tryptophan metabolism, and

steroid and steroid hormone biosynthesis were significantly

enhanced along with age. Interestingly, galactose metabolism;

biosynthesis of cofactors; tyrosine metabolism; ABC transporters;

phenylalanine, tyrosine, and tryptophan biosynthesis; cAMP

signaling pathway; and taurine and hypotaurine metabolism were

decreased along with age. In blood, caffeine metabolism, steroid

hormone biosynthesis, and cysteine and methionine metabolism

were increased along with age, while bile secretion, primary bile acid

biosynthesis, cholesterol metabolism, vitamin digestion and

absorption, and neuroactive ligand–receptor interaction were

significantly decreased along with age. These results suggested

that functional changes in gut microbiota were consistent with

changes in their food, as microbiota participating in amino acid and

vitamin metabolism were enriched in young children, whereas

microbiota involved in lipid metabolism increased with age.

BMI is used to screen for potential weight and health-related

issues. Here, we calculated BMI using the Child & Teen BMI

Calculator (BMI Calculator Child and Teen | Healthy Weight |

CDC). Lower BMI was associated with a decrease in fecal

Tenericutes and an increase in Actinobacteria (Frenn et al., 2023).

In our study, we found significant differences in gut microbiota

bacterial composition and function along with BMI. Bifidobacterium

breve, E. ramosum, Parabacteroides distasonis, Phascolarctobacterium

faecium, Ruminococcus gnavus, and Tyzzerella nexilis were

significantly increased with BMI, while A. muciniphila, A.

finegoldii, E. tayi, and E. ramulus were significantly decreased with

BMI. Studies have indicated that obese-related gut microbiota were

reduced in Bifidobacterium and a-diversity but enriched in

Lactobacillus (Morgado et al., 2023). Functional analysis revealed

that superpathway of lipopolysaccharide biosynthesis, stearate

biosynthesis, and carbohydrate metabolism including trehalose

degradation, starch degradation, glycolysis, glycogen degradation,

glucose and glucose-1-phosphate degradation, and D-xylose

degradation were obviously increased along with BMI.

Accumulating evidence has demonstrated that the gut microbiome

and its metabolites play a crucial role in the onset and development of

obesity (Wu et al., 2021) as signaling molecules and substrates for

metabolic reactions (Krautkramer et al., 2021). We observed that

metabolites from sugars, lipids, and amino acids were increased in
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both faces and blood along with BMI, suggesting that children with

higher BMI have a greater ability to metabolize nutrients in their

gut microbiota.

DM is an important determinant of gut microbiota during the first

3 years of life. Studies showed that C-section could influence the

activation of intestinal epithelial cells and the development of the

immune system. The feces of vaginally delivered infants were

reported to have higher abundance of Bifidobacterium, Lactobacillus,

Bacteroides, and Parabacteroides while C-section delivered infants were

more enriched in Klebsiella, Enterococcus, trans-vaccenic acid, and cis-

aconitic acid (Reyman et al., 2019; Li et al., 2021) at 3 months of age.

Consistent with previous studies, we have revealed that Lactobacillus

mucosae, L. ruminis, Bifidobacterium animalis, and L-glutamate

degradation were enriched in eutocia children while Anaerofustis

stercorihominis, Pseudoflavonifractor capillosus, Catabacter

hongkongensis, Clostridium lavalense, Collinsella intestinalis, lipid IVA

biosynthesis, superpathway of glycolysis, L-rhamnose degradation, and

TCA cycle were abundant in C-section children, suggesting higher

energy metabolism in C-section children. No significant differences

were observed for plasma metabolites between eutocia and C-section

children in our study. However, significant differences were observed

for the microbial metabolome. Small peptides including Gly−Leu−Phe,

Ala−Glu−Lys−Ala, Gln−Leu, and Ser−Thr−OH were enriched in C-

section children. Conformably, KEGG pathways including tryptophan

metabolism, D-amino acid metabolism, ABC transporters, fructose and

mannose metabolism, and biosynthesis of cofactors were the main

metabolic pathways involved for these metabolites. In contrast, primary

bile acid biosynthesis; phenylalanine metabolism; tyrosine metabolism;

glycine, serine, and threonine metabolism; glycerophospholipid

metabolism; nicotinate and nicotinamide metabolism; phosphonate

and phosphinate metabolism; and taurine and hypotaurine

metabolism were the major metabolic pathways participated by

microbial metabolites in eutocia children, suggesting that the gut

microbiota and metabolites of different DMs might have a long effect

on the children’s development.

Physical activity was reported to improve the a-diversity and

beneficial bacteria linked to body weight loss in children (Morgado

et al., 2023). We have revealed that F. prausnitzii, Veillonella parvula,

and Anaerostipes hadrus were significantly enriched in children with

RPE, while Pyramidobacter piscolens, Holdemanella biformis,

Streptococcus sobrinus, Allisonella histaminiformans, Clostridium

citroniae, Parasutterella excrementihominis, Bilophila wadsworthia,

and Anaerotruncus colihominis were significantly abundant in

children without RPE. Tabone et al. have explored the effect of

acute moderate-intensity exercise on the gut microbiota and serum

and fecal metabolomes of cross-country endurance athletes, and

revealed that Romboutsia, Blautia, and Clostridium phoceensis were

modified after a controlled acute exercise session (Tabone et al.,

2021). In addition, functional analysis revealed that alanine, aspartate,

and glutamate metabolism, and the arginine and aminoacyl-tRNA

biosynthesis pathways were the most relevant altered pathways in

serum, whereas the phenylalanine, tyrosine, and tryptophan

biosynthesis pathway was the most relevant pathway changed in

feces (Tabone et al., 2021). Exercise was reported to reduce plasma

glucose levels and relative abundance of Proteobacteria, but increased

that of Blautia, Dialister, and Roseburia, and inhibited the activation
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of the obesity-associated NLRP3 signaling pathway in obese pediatric

patients (Quiroga et al., 2020). Irregular, exhausting, or long-lasting

training was found to have a negative impact on gut microbiota and

impair immune response in athletes (Wegierska et al., 2022).

Meanwhile, physical activity can modulate the production of key

metabolites from gut microbiota (Zhang et al., 2022) to improve body

metabolism and prevent diseases (Sohail et al., 2019). We have

revealed that histidine metabolism; galactose metabolism; arginine

and proline metabolism; glycine, serine, and threonine metabolism;

phenylalanine, tyrosine, and tryptophan biosynthesis; caffeine

metabolism; primary bile acid biosynthesis; D-amino acid

metabolism; and glutathione metabolism were increased in children

with RPE, while alanine, aspartate, and glutamate metabolism; lysine

degradation; valine, leucine, and isoleucine biosynthesis and

degradation; pentose phosphate pathway; and biosynthesis of

unsaturated fatty acids were enriched in children without RPE,

suggesting that RPE could increase the gut microbial metabolism of

nutrients and energy, as well as exogenous drugs and neurostimulants

such as caffeine. Consistently, pathways including primary bile acid

biosynthesis, bile secretion, cholesterol metabolism, fat digestion and

absorption, vitamin digestion and absorption, HIF-1 signaling

pathway, arginine and proline metabolism, lysine degradation,

caffeine metabolism, fatty acid biosynthesis, steroid hormone

biosynthesis, D-amino acid metabolism, and glutathione

metabolism were highly abundant in children with RPE while

cysteine and methionine metabolism, histidine metabolism,

phenylalanine metabolism, nicotinate and nicotinamide

metabolism, and purine and pyrimidine metabolism were enriched

in children without RPE. These results suggested that RPE could

induce changes in gut microbiota and fecal and plasma metabolites,

and vice versa, suggesting that RPE might lower inflammatory and

oxidative stress to relieve metabolic disorders.

To further analyze the correlation between the gut microbiota

and fecal and blood metabolites under the above affecting factors,

Spearman’s rank correlation analysis was performed. Interestingly,

for the continuous variables age and BMI, their positively correlated

species, fecal and plasma metabolites, showed positive associations

between each other. The same trends were observed for those

negatively correlated ones. For those differential variables

including eutocia/C-section and with/without RPE, the eutocia

enriched species and fecal and blood metabolites showed positive

associations between each other; the same was observed for C-

section and with/without RPE. These results suggested the

systematization of the gut microbiota and its metabolites with the

circulating metabolites, reminding us of the importance of

considering both the fecal and blood metabolites when studying

the human gut microbiome because of the communications and

cross-talk between microbial and plasma metabolites.

The advantages and limitations of the study are as follows: (1) The

study has revealed the gut microbiome and fecal and plasma

metabolites in Chinese children from Northwest China based on

shotgun metagenomic sequencing and untargeted metabolomics for

the first time, and fills the gap in the current lack of the related research;

(2) the study has revealed the effect of various phenotypes on the gut

microbiome and microbial and plasma metabolites; (3) all the subjects

come from Lanzhou, Gansu province; our future research will be
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extended to children in other northwestern cities, rural areas, and

different ethnic groups to comprehensively explore the gut microbial

and metabolomic characteristics of children fromNorthwestern China;

(4) a more detailed dietary intake should be recorded to explore the

effects of different dietary patterns on the gut microbiome and

microbial and plasma metabolites; and (5) the study narrows the age

gap, dividing the subjects into preschool (3–6 years old) and primary

school (6–12 years old) stages.
5 Conclusions

In conclusion, our findings identified the previously unknown

characteristics and the effect of various phenotypes on the gut

microbiota and microbial and circulating metabolites in children

from Northwest China, providing important references and laying a

foundation for future research on children’s gut microbiota and

diseases in Northwest China.
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