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Editorial on the Research Topic

The ever so elusive pathogen-harboring biofilms on abiotic surfaces in
the food and clinical sectors: the good, the bad and the slimy
Biofilms are communities of microorganisms adhered to surfaces. These are enclosed in

sticky substances called extracellular polymeric substances (EPS), forming higher

multicellular structures that allow microorganisms to resist adverse environmental

conditions, such as nutrient absence, drought, pH extremes, host immune responses,

and many other antimicrobial interventions (Ciofu et al., 2022; Pai et al., 2023). Biofilms

also containing pathogenic microorganisms can develop on a wide range of abiotic surfaces,

such as those encountered in food processing and medical sectors, allowing the enclosed

microorganisms to persist even after regular cleaning and disinfection procedures, possibly

leading to cross-contamination of foods, foodborne disease outbreaks and hard to treat

infections (Charron et al., 2023). As editors of this Research Topic on pathogen-harboring

biofilm on abiotic surfaces in the food and clinical sectors, we were delighted to receive and

review some fascinating research articles within this field. This editorial briefly reports the

main findings, conclusions, and perspectives of each accepted article.

Dairy processing plants offer an ideal environment for biofilm development due to milk

residue enriched in carbohydrates, proteins, and fats (Yuan et al., 2023). Of the many

biofilm-forming organisms that thrive in such environments, Bacillus spp. survive even

after pasteurization due to their ability to be differentiated in heat resistant spores (Shemesh

and Ostrov, 2020). Their presence is, therefore, of significant concern for the dairy industry

because these bacteria can continuously contaminate food processing streams, ultimately

affecting the safety of dairy products and causing their spoilage. The work carried out by

Catania et al. demonstrated that B. subtilis and B. cereus isolates from processed cheese

products that survived heat treatments could easily form biofilms on common food contact
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surfaces. While species-specific biofilm-forming variations were

observed between the isolates, their biofilm-forming phenotype

was linked to the presence of biofilm-related determinants in

their genomes and their cell surface properties. Scanning electron

microscopy (SEM) analysis revealed a complex biofilm structural

architecture and an extracellular matrix covering and embedding

bacterial cells. Given the fact that biofilm-forming Bacillus spp.

organisms are more challenging to eradicate, also showing

resistance to standard sanitization practices applied in dairy

plants, their presence on dairy processing equipment surely poses

a significant issue. Hence, it is crucial to expand our knowledge on

biofilm formation by these and other heat-resistant microorganisms

by investigating their molecular characteristics and biofilm-forming

mechanisms under relevant food processing conditions. Such

research could help devise new strategies for mitigating risk in

food processing plants.

Multi-species biofilms cause problems in various environments,

especially food processing ones. Compared to single-species

biofilms, mixed-species ones are usually more resistant to various

physicochemical stresses, including antimicrobials such as

disinfectants (Kim et al., 2022). The knowledge of the

microbiome composition and diversity in such biofilms found in

food processing environments and their metabolic potential could

assist in developing more powerful intervention techniques to

combat pathogens in these environments. The research conducted

by Palanisamy et al. aimed to determine biofilm composition,

diversity, and functional potential in the beef processing industry.

For this, the authors analyzed, through metagenomic sequencing,

75 biofilm drain samples collected from five different locations in

three beef-processing plants at two different time points. Core

microbiome analysis revealed that Pseudomonas, Psychrobacter,

and Acinetobacter were the three most prevalent genera among

the plants and locations, with a high microbiome diversity always

present. Functional analysis unveiled the microbial communitys

high metabolic potential with abundant genes related to

metabolism, cell adhesion, motility, and quorum sensing (QS).

Alarmingly, genes conferring resistance to quaternary ammonium

compounds (QACs), which are common sanitizers in the food

industry, were also detected. The presence of some other multi-

functional genes and mobile genetic elements highlighted the

dynamic nature of those microbial communities, which seem to

be able to protect themselves against various environmental stresses

through multiple defense mechanisms. Such studies, offering

comprehensive snapshots of the microbial profiles of biofilms

found in the food industry and elsewhere, contribute to gaining

insights into the factors related to biofilm formation and

persistence. This can ultimately help the development of more

effective intervention strategies to control unwanted biofilm

formation in many areas.

Nowadays, antimicrobial resistance (AMR) is one of the leading

health issues humanity faces, with millions of lives being lost

annually due to infectious diseases (de la Fuente-Nunez et al.,

2023). Worldwide, methicillin-resistant Staphylococcus aureus

(MRSA) is a serious and life-threatening bacterial pathogen

presenting multidrug resistance (MDR) to the common beta-

lactam antibiotics category and causing serious community,
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nosocomial, animal, and foodborne infections (Chalmers and

Wylam, 2020). The problem has been recently further intensified

with the emergence of vancomycin-resistant S. aureus (VRSA),

given that vancomycin is still used as one of the first-line drugs for

treating MRSA infections (Cong et al., 2019). Therefore, novel

antimicrobials are urgently required to treat such severe

infections efficiently. The work reported by Abd El-Hamid et al.

aimed to develop and assess a novel nanocarrier system based on

mesoporous silica nanoparticles (MPS-NPs) for free berberine (BR)

as a plant-derived natural antimicrobial alkaloid against strong

biofilm-producing and multi-virulent VRSA strains using in vitro

and in vivo models. For this, the authors examined 95 S. aureus

isolates from either milk samples collected from cows with mastitis

or human pus samples. All isolates were confirmed as MRSA and

they were resistant to both oxacillin and cefoxitin. Notably,

vancomycin resistance was observed in 13.7% of these isolates,

while 69.2% of VRSA isolates were also proven to be strong biofilm

producers (n = 9). 44.4% of the latter isolates harbored all five

virulence genes tested (icaA, tst, clfA, hla, and pvl), and 88.9% were

also multi-virulent. The BR-loaded MPS-NPs were found to present

excellent in vitro antimicrobial and antibiofilm properties.

Significant downregulation of virulence and agr genes was also

displayed in all strong biofilm-producing and multi-virulent VRSA

strains following their exposure to BR-loaded MPS-NPs in both in

vitro and in vivo mice models. In addition, the treatment of VRSA-

infected mice with BR-loaded MPS-NPs attenuated the upregulated

expression of pro-inflammatory cytokines genes and, in parallel,

significantly reduced apoptosis via downregulation of pro-apoptotic

genes. Overall, the results of this study seem important since they

advocate for the promising application of BR-loaded MPS-NPs as

an efficient therapeutic alternative for controlling multi-virulent

VRSA strains. Such studies could help tackle AMR’s nightmare

problem early and effectively.

While earlier work on antibiofilm strategies has primarily focused

on inhibiting biofilm formation, more recent studies have explored

the mechanisms of bacterial dispersion from biofilms as a potential

target for antimicrobial design by focusing on inducing sessile cells

back into planktonic states, thereby causing the cells to become again

more susceptible to antimicrobial exposure (Wille and Coenye, 2020).

The work conducted by Wang et al. studied biofilm dispersal in

Pseudomonas aeruginosa, a significant biofilm-forming pathogen

responsible for acute and chronic infections in humans and

animals. Various strategies have been employed to counteract P.

aeruginosa biofilms, including QS regulators, bioactive molecules,

bacteriophages, antimicrobial peptides (AMPs), and plant extracts.

AMPs are increasingly viewed as potential antibiotic alternatives due

to rising antibiotic resistance. Although research on biofilm

dispersion induced by AMPs is still limited, several AMPs have

demonstrated efficacy in inhibiting biofilm formation and eliminating

established biofilms. Based on the authors previous study showing the

dispersal efficacy of a mouse antimicrobial peptide CRAMP-34 using

multi-omics approaches, their most recent work scrutinized the

extracellular metabolic profiles of P. aeruginosa biofilms following

CRAMP-34 exposure to further elucidate its biofilm-dispersing

mechanism. Their current results substantiated the biofilm-

dispersing effect of CRAMP-34, marked by significant shifts in
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some extracellular metabolites such as glutamate, succinate,

myoinositol, palmitic acid, and oleic acid. Moreover, combining

CRAMP-34 with an antibiotic exhibited enhanced efficacy against

dispersed bacteria and concurrently delayed the development of

antibiotic resistance. These insights underscore the potential of

leveraging CRAMP-34 as a biofilm dispersant, while its use in

parallel with antibiotics may offer an innovative therapeutic

strategy for mitigating biofilm-associated infections.

In the last years, an increasing interest has been focused on the

potential impact of biocides, which are multi-targeted molecules that

are daily and massively used in various environments, on cross-

resistance to a variety of antimicrobials, including antibiotics

(Maillard, 2018). Microorganisms mostly live within biofilms, and

such collective and structured lifestyles greatly influence the way

these adapt to stress. Therefore, understanding the potential interplay

between biocide exposure, biofilm adaptation, and the emergence of

AMR and cross-resistance is crucial to better controlling the burden

of pathogenic microorganisms. The work conducted by Charron et al.

showed that exposure to a biocidal active substance, the

polyhexamethylene biguanide (PHMB), led to an increase in

adaptive gentamicin cross-resistance in Escherichia coli biofilms.

That adaptive cross-resistance was associated with an induction of

gene expression associated with biofilm matrix production, stress

responses, and membrane transport. This was also related to the

modulation of biofilm architecture in response to biocide stress with

the appearance of dense cellular clusters, altering gradients and

microenvironmental conditions in the biological edifice and playing

a role in the emergence of adaptive cross-resistance to the studied

antibiotic. Overall, this work provided original data on the adaptive

strategies of bacteria in biofilms exposed to biocidal stress and

highlighted the potential side effects on AMR. Further, such

intriguing studies should be dedicated to deeply understanding

collective biofilm adaptation to biocides and antimicrobial cross-

resistance emergence, focusing on various combinations of biocidal

active substances and bacterial species.

In conclusion, articles published in this Research Topic “The

ever so elusive pathogen-harboring biofilms on abiotic surfaces in the
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food and clinical sectors: the good, the bad and the slimy” emphasize

the importance of biofilm collective behavior and ecological

interactions in bacterial adaptive processes and survival to stress,

including AMR. These also highlight some promising innovative

anti-biofilm strategies to better control biofilm development by

widespread bacterial pathogens. Future research on this topic will

hopefully allow us to delve even deeper into the functioning of

biofilms and better conceive the positive and negative properties of

these complex biological structures, progressing always for the

benefit of the health of humans, animals, and the environment.
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