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In China, porcine reproductive and respiratory syndrome virus (PRRSV) vaccines

are widely used. These vaccines, which contain inactivated and live attenuated

vaccines (LAVs), are produced by MARC-145 cells derived from the monkey

kidney cell line. However, some PRRSV strains in MARC-145 cells have a low

yield. Here, we used two type 2 PRRSV strains (CH-1R and HuN4) to identify the

genes responsible for virus yield in MARC-145 cells. Our findings indicate that the

two viruses have different spread patterns, which ultimately determine their yield.

By replacing the viral envelope genes with a reverse genetics system, we

discovered that the minor envelope proteins, from GP2a to GP4, play a crucial

role in determining the spread pattern and yield of type 2 PRRSV in MARC-145

cells. The cell-free transmission pattern of type 2 PRRSV appears to be more

efficient than the cell-to-cell transmission pattern. Overall, these findings

suggest that GP2a to GP4 contributes to the spread pattern and yield of type

2 PRRSV.
KEYWORDS

spread pattern, PRRSV, cell-to-cell, cell-free, yield
Introduction

Porcine reproductive and respiratory syndrome viruses (PRRSVs) are important swine

pathogens, and outbreaks of these viruses have significant economic impacts on the swine

industry (Meulenberg, 2000). PRRSVs are typically categorized into two species: PRRSV-1,

which is the type 1 genotype of European origin, and PRRSV-2, which is the type 2
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genotype of North American origin. PRRSV-1 and PRRSV-2 are

classified as arteriviruses and are in the order Nidovirales

(Gorbalenya et al., 2006). PRRSV exhibits highly restricted cell

tropism, specifically targeting differentiated and activated

monocyte/macrophage lineages (Duan et al., 1997). PRRSV-1 and

PRRSV-2 were successfully isolated from porcine alveolar

macrophages (PAMs) (Wensvoort et al., 1991; Yim-Im et al.,

2021). However, there are limitations to virus isolation and

propagation in PAMs. These limitations include the short lifespan

of primary cells, which require periodic preparation; variations in

quality; heterogeneity in cell populations; and a high risk of

contamination. Additionally, the procedures for PAM preparation

are laborious and technically challenging (Yim-Im et al., 2021).

MARC-145 cells, a subclone originating from the monkey kidney

cell line MA-104, have been shown to be permissive to PRRSV

replication (Kim et al., 1993). The MARC-145 cell line has become

the most commonly used cell line for PRRSV studies in most

laboratories. In China, most commercial PRRSV vaccines are

propagated in MARC-145 cells. Therefore, the yield of PRRSV in

MARC-145 cells is very important for vaccine development,

particularly for inactivated vaccines.

Enveloped viruses primarily infect target cells through two

pathways. The first pathway involves cell-free viruses attaching to

cellular receptors and being taken into cells through endocytosis.

Once inside the cell, the viral envelope fuses with the endosomal

membrane, releasing the viral capsid into the cytosol. The second

pathway involves the virus entering adjacent cells via a cell-to-cell

model, which mainly involves inducing membrane fusion between

infected and uninfected cells, allowing the viral genetic material to

enter the uninfected cell and complete replication (Zhong et al.,

2013; Yang et al., 2020; Yang et al., 2021). PRRSV was found to

transport viral RNA and proteins into adjacent cells via a cell-to-

cell pathway. This mode of viral transmission relies on the

interaction between certain viral proteins and cytoskeletal

proteins (Cafruny et al., 2006; Guo et al., 2016). However, which

gene(s) determine the spread pattern of cell-to-cell is unclear. In

the present study, we utilized two different strains of type 2

PRRSV to examine how the virus spreads and replicates in

MARC-145 cells. Using a viral reverse genetics platform, we

found that the minor envelope proteins, specifically GP2a to

GP4, are essential for determining the spread pattern and yield

of type 2 PRRSV in MARC-145 cells. This work will be helpful for

PRRSV vaccine development.
Materials and methods

Cells, viruses, and antibodies

MARC-145 cells were stored in our lab. The highly pathogenic

PRRSV strain HuN4 was rescued from the PRRSV HuN4 infectious

clone (PRRSV HuN4-F5) (Tang et al., 2016; Wang et al., 2019). The

PRRSV vaccine strain CH-1R was rescued from the PRRSV CH-1R

infectious clone constructed via the same strategy as the PRRSV

HuN4-F5 infectious clone. PRRSV N antibodies were prepared in

our laboratory.
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Chimeric PRRSV construction

CH-1R and HuN4 infectious clones were used as backbones to

construct chimeric PRRSVs as our previous work (Zhang

et al., 2018).
Growth kinetics

MARC-145 cells were infected with the indicated viruses at an

multiplicity of infection (MOI) of 0.01 at 4°C. After 2 hours, the

cells were washed three times with cold PBS to remove the unbound

viruses. Fresh medium supplemented with 2% FBS was added to the

cells. The medium supernatants were harvested and stored at -80°C

at the indicated times post infection. The virus samples were then

titrated on MARC-145 cells using the 50% tissue culture infective

dose (TCID50) method.
Immunofluorescence assay

The IFA was performed as described in our previous reports

(Zhang et al., 2021; Chen et al., 2022; Zhang et al., 2022). Briefly,

MARC-145 cells were infected with the indicated viruses and then

fixed with 4% paraformaldehyde (PFA). Then, the cells were

permeabilized with 0.5% Triton X-100. After that, the cells were

blocked with 2% bovine serum albumin (BSA) and then labeled

with antibodies. The cell nucleus was finally stained with 4’,6-

diamino-2-phenylindole (DAPI). The fluorescence signals were

then detected using a fluorescence microscope.
Viral load in cells and supernatant

MARC-145 cells were seeded on 6-cell plates and infected with the

indicated viruses at an MOI of 0.01. At 36 h post infection, the

supernatant was harvested, and the cells were scraped down with a cell

scraper and diluted to the same volume of medium as the supernatant.

Viral samples from the supernatants and intracellular fractions were

frozen and thawed once and subsequently stored at -80°C. The virus

samples were titrated on MARC-145 cells by TCID50.
Transwell coculture system

Cell-to-cell transmission assays were performed as described in

our recent work (Yang et al., 2020). MARC-145 cells were plated

onto permeable filters (Corning, 6.5 mm, pore size 0.4 µm) at a

density of 1 × 105 cells. When the cells grew to a tightly connected

state, they were infected with the indicated viruses at anMOI of 0.01

for 2 h at 4°C. These virus-infected cells were used as effector cells.

The filters were suspended in wells in a 24-well plate already

containing target cells. After 36 h, the effector cells and target

cells were fixed, permeabilized, and subjected to IFA.
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Statistical analysis

Statistical analysis was conducted using GraphPad Prism 8.0

software. The statistical significance of the differences was analyzed

using t tests. A P value < 0.05 was considered to indicate

statistical significance.
Results

The HuN4 and CH-1R strains exhibited
distinct spreading patterns and yields on
MARC-145 cells

CH-1R, a commercial live attenuated vaccine in China, was

developed by successive passaging on MARC-145 cells with CH-

1a for approximately 160 generations. HuN4 is a highly

pathogenic PRRSV strain isolated in China (Tong et al., 2007).

MARC-145 cells were infected with CH-1R or HuN4 (MOI=0.01).

The cell culture supernatants were collected and titrated at the

indicated time points post infection. The replicative growth curves

of CH-1R and HuN4 MARC-145 cells were analyzed (Figure 1A).

The yield of CH-1R on MARC-145 was significantly greater than

that on HuN4. Interestingly, by IFA, we found that the HuN4 and

CH-1R strains exhibited distinct spreading patterns (Figure 1B).

MARC-145 cells infected with the HuN4 strain are characterized

by the formation of infected cell clusters. This finding suggested

that cell-to-cell spread originated from a single PRRSV-infected

cell, which has also been reported by other groups (Cafruny et al.,

2006; Guo et al., 2016). However, for the CH-1R strain, the

infected cells were distributed in a scattered manner. Therefore,

we hypothesized that CH-1R may have a distinct spread pattern.

To verify this hypothesis, MARC-145 cells were infected with CH-

1R or HuN4 (MOI=0.01), and 36 h post infection, intracellular

and supernatant infectious viral particles were examined. The

percentage of viral titer in the cell and the supernatant was

calculated. We found that the percentage of viral particles in the

supernatants of cells infected with CH-1R was significantly greater

than that in the supernatants of cells infected with HuN4
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(Figure 1C). This result suggested that, compared to HuN4, CH-

1R is more favorable as a cell-free infection mode rather than a

cell-to-cell infection mode. To further confirm this, we used a

transwell coculture system, as illustrated in Figure 2A. The effector

cells were preinfected with HuN4 or CH-1R at an MOI of 0.01 and

cocultured with the target cells. At 36 h post infection, the effector

cells and target cells were fixed and subjected to IFA. We found

that a large number of MARC-145 cells in the CH-1R infection

group were infected with the target cells. However, for HuN4, only

sporadic virus-infected cells were able to be detected among the

target cells (Figure 2B). Overall, the HuN4 and CH-1R strains

exhibited distinct spreading patterns on MARC-145 cells.
Envelope proteins contribute to the yield
and spread pattern of MARC-145 cells

Viral yield and spread patterns are always determined by viral

envelope proteins. To determine which viral genes are responsible

for these patterns, we started by constructing chimeric PRRSV

recombinants and substituting the corresponding viral envelope

genes with those from CH-1R and HuN4 (Figure 3A). After CH-

(GP2-M) and HC-(GP2-M) were rescued, the MARC-145 cells

were infected with CH-1R, HuN4, CH-(GP2-M), or HC-(GP2-M)

at an MOI of 0.01. At 36 hours postinfection, the cells were fixed

and subjected to IFA. MARC-145 cells infected with HC-(GP2-M)

exhibited a spread pattern similar to that of CH-1R. In contrast,

the spread pattern of HC-(GP2-M) in MARC-145 cells was

comparable to that in cells infected with HuN4 (Figure 3B).

Next, we evaluated the yields of CH-(GP2-M) and HC-(GP2-M)

in MARC-145 cells. CH-1R and HuN4 were used as controls. We

found that at 24 hours postinfection, the viral titer of the HC-

(GP2-M) was significantly greater than that of the HuN4

individuals. In contrast, the viral growth of CH-(GP2-M) was

markedly reduced compared to that of CH-1R (Figure 3C). The

percentage of the viral load in the supernatant and cytoplasm was

also evaluated (Figure 3D). These results indicated that the

envelope proteins from GP2 to M determines the viral yield and

spread pattern of CH-1R and HuN4 on MARC-145 cells.
A B C

FIGURE 1

CH-1R and HuN4 exhibit distinct yields and spread patterns on MARC-145 cells. (A) MARC-145 cells were infected with CH-1R or HuN4 at an MOI of
0.01. At the indicated time post infection, the supernatant was harvested and titrated. An asterisk (*) indicates a significant difference between HuN4
and CH-1R (**p < 0.01; ***p < 0.001). (B) Infected cells at 36 hours post infection were detected via an immunofluorescence assay. Scale bars, 200
mm. (C) MARC-145 cells were infected with CH-1R or HuN4 at an MOI of 0.01. At 36 hours postinfection, the cells and supernatant were harvested
and titrated on MARC-145 cells. The percentage of the total viral load in the supernatant and cells was calculated.
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The minor envelope proteins GP2a to GP4
determine the viral yield and spread
pattern in MARC-145 cells

We next further investigated which viral proteins impact the

yield and spread pattern of PRRSV. CH-1R and HuN4 were

employed as the parental strains, with their genes being swapped

for major envelope proteins and minor envelope proteins,

respectively (Figure 4A). The chimeric viruses CH-(GP2-GP4),

CH-(GP5-M), HC-(GP2-GP4), and HC-(GP5-M) were

successfully rescued in MARC-145 cells. MARC-145 cells were

infected with these chimeric mutant viruses at an MOI of 0.01. At
Frontiers in Cellular and Infection Microbiology 04
36 h postinfection, the cells were fixed and subjected to IFA. We

found that MARC-145 cells infected with CH-(GP5-M) or HC-

(GP2-GP4) were scattered, which is in line with what has been

observed for CH-1R. Furthermore, MARC-145 cells were infected

with CH-(GP5-M) or HC-(GP2-GP4) were clustered, which was in

line with what was observed for HuN4 (Figure 4B). Furthermore,

compared with those of CH-1R, the viral yields of CH-(GP5-M)

were slightly impaired; however, the viral yields of CH-(GP2-GP4)

were significantly impaired compared to those of CH-1R.

Additionally, the HC-(GP2-GP4) produced more progeny from

MARC-145 cells than from HuN4 cells (Figure 4C). Finally, we

quantified the viral infectious particles in the supernatant and
A B

FIGURE 2

The spreading pattern of PRRSV was verified by a transwell coculture system. (A) Experimental design of a transwell coculture system. MARC-145
cells were seeded on transwell filters and preinfected with PRRSV as effector cells. Uninfected MARC-145 cells were seeded in 24-well plates as
target cells. (B) Effector cells were infected with CH-1R or HuN4 at an MOI of 0.01. At 36 hours postinfection, the cells were fixed, permeabilized,
and subjected to an immunofluorescence assay. Scale bars, 200 mm.
A B

C D

FIGURE 3

Envelope proteins determine the PRRSV spread pattern and yield. (A) Schematic diagram of chimeric PRRSV recombinants. (B) MARC-145 cells were
infected with indicated virus at an MOI of 0.01. At 36 hours postinfection, the infected cells were detected by IFA. Scale bars, 200 mm. (C) MARC-145
cells were infected with the indicated viruses at an MOI of 0.01. At the indicated time points postinfection, the cell culture supernatant was
harvested and titrated on MARC-145 cells. Asterisk (*) indicates a significant difference between CH-1R and CH-(GP2-M) (**p < 0.01; ***p < 0.001).
Pound (#) indicates a significant difference between HuN4 and HC-(GP2-M) (##p < 0.01; ###p < 0.001). (D) MARC-145 cells were infected with the
indicated viruses at an MOI of 0.01. At 36 hours post infection, the cells and culture supernatant were harvested, and titrated on MARC-145 cells.
The percentages of the total viral load in the supernatant and in the cytoplasm were calculated.
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cytoplasm (Figure 4D). The results showed that minor envelope

proteins from GP2a to GP4 were able to determine the pattern of

PRRSV spread in MARC-145 cells.
Discussion

In the MARC-145 cell line, PRRSV infection has been shown to

spread via cell-to-cell transmission (Cafruny et al., 2006).

Furthermore, subsequent studies have shown that PRRSV utilizes

the cytoskeletal machinery of host cells for efficient cell-to-cell

spread (Guo et al., 2016). Research has shown that PRRSV is

transmitted between cells via intercellular nanotubes that contain

filamentous actin (F-actin) and myosin-associated motor proteins.

The use of drugs that block actin polymerization or myosin IIA

activation prevents the formation of nanotubes and viral clusters in

infected cells (Guo et al., 2016). Furthermore, F-actin and myosin

IIA coprecipitated with PRRSV nsp1b, nsp2, nsp2TF, nsp4, nsp7-
nsp8, GP5, and N proteins (Guo et al., 2016). However, our research

indicated that the minor envelopment protein GP2a to GP4

contributes to the spread pattern of PRRSV. Therefore, further

investigations are needed to determine whether these viral

envelope proteins interact with or utilize the host cell cytoskeletal

machinery for efficient cell-to-cell spread. In fact, developing a safe

and effective PRRSV vaccine is an enormous challenge, especially

when faced with a heterogeneous virus (Thanawongnuwech et al.,

2010; Nan et al., 2017). Novel technologies used for other viruses

may be applied for the development of a PRRSV vaccine in the
Frontiers in Cellular and Infection Microbiology 05
future (Wang et al., 2022; Tang et al., 2023; Wang et al., 2023).

However, regardless of the technology used, the yield of the vaccine

was very important. In this study, we discovered that GP2a to GP4

contributes to the spread pattern of type 2 PRRSV. We did not

replace a single gene in this region because the genes in this region

overlapped. Therefore, we cannot delineate the phenotype or viral-

specific gene function. In our previous work, we also found that field

PRRSVs in MARC-145 cells were determined by variations in the

minor envelope protein GP2a-GP3 (Zhang et al., 2018). In fact,

identifying which specific gene contributes to the cell-to-cell spread

pattern is difficult (unpublished data). GP2, GP3, and GP4may form

a complex and may work together to determine the degree of viral

spread in MARC-145 cells. Due to the interaction of GP2 and GP4

with the PRRSV receptor CD163, we speculate that the cell-to-cell

spread pattern may also be correlated with their interaction with

CD163 (Welch and Calvert, 2010; Zhang and Yoo, 2015). The

abundance of CD163 may also be a determining factor for

the spread pattern of this disease (Wang et al., 2018). Taken

together, the results of this study revealed that GP2a to GP4

contributes to the spread pattern of type 2 PRRSV, determining its

cell-to-cell or cell-free transmission, and is correlated with virus

yield. GP5 and M also have an impact on viral yield, but not on the

spread pattern. In our study, the cell-free transmission pattern of

type 2 PRRSV appeared to be more efficient than the cell-to-cell

transmission pattern. However, it is important to further explore

whether other type 2 PRRSV strains also exhibit this phenomenon.

Overall, our findings provide new insight into the lifecycle of PRRSV

and a new way to increase the titer of PRRSV in MARC-145 cells.
A B

C D

FIGURE 4

The presence of minor viral envelope proteins ranging from GP2a to GP4 contributes to the yield and spread pattern of PRRSV. (A) Schematic
diagram of chimeric PRRSV recombinants. (B) MARC-145 cells were infected with indicated virus at an MOI of 0.01. At 36 hours postinfection, the
cells were subjected to IFA. Scale bars, 200 mm. (C) MARC-145 cells were infected with the indicated viruses at an MOI of 0.01. At the indicated time
points postinfection, the cell culture supernatant was harvested and titrated on MARC-145 cells. Asterisk (*) indicates a significant difference between
CH-1R and CH-(GP2-GP4) (**p < 0.01; ***p < 0.001). Pound (#) indicates a significant difference between HuN4 and HC-(GP2-GP4) (##p < 0.01;
###p < 0.001). Delta (d) indicates a significant difference between CH-1R and CH-(GP5-M) (dd: p < 0.01; ddd: p < 0.001). (D) MARC-145 cells were
infected with the indicated viruses at an MOI of 0.01. At 36 hours postinfection, the cells and cell culture supernatant were harvested, and titrated on
MARC-145 cells. The percentages of the total viral load in the supernatant and in the cytoplasm were calculated. ns, no significance.
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