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Background: Hepatic encephalopathy (HE) is a neurological disorder resulting
from advanced liver injury. HE has a high mortality rate and poor prognosis. The
pathogenesis of HE is still unclear, which has led to the lack of a satisfactory
specific treatment method. There is increasing evidence that the intestinal flora
affects the communication between the gut and the brain in the pathogenesis of
HE. Adjusting the intestinal flora has had a beneficial effect on HE in recent
studies, and the Qingchang Ligan formula (QCLG) has been shown in previous
studies to regulate intestinal flora and metabolites. In this study, we established a
thioacetamide-induced HE mouse model to evaluate the protective effect of
QCLG on HE and explore its potential mechanism, which also demonstrated that
intestinal flora dysbiosis is involved in the pathogenesis of HE.

Methods: Mice were intraperitoneally injected with thioacetamide (TAA, 150 mg/
kg) to induce HE. Additionally, they were orally administered Qingchang Ligan
Formula (QCLG) at a dose of 6.725 g/kg-d for seven days, while control mice
received an equal volume of saline via gavage. Subsequently, samples were
subjected to 16S ribosomal ribonucleic acid (rRNA) gene sequencing, high-

Abbreviations: QCLG, Qingchang Ligan Formula; TAA, thioacetamide; 16S rRNA, 16S ribosomal
ribonucleic acid gene sequencing; LC-MS, liquid chromatography-mass spectrometry; NC, normal control;
ALT, alanine transaminase; AST, aspartate transaminase; GFAP, Astrocyte; Ibal, calcium-binding adapter
molecule 1; H-Score, higher histochemistry score; GABA, y-aminobutyric acid; PLU, Plumieride; HE, Hepatic
encephalopathy; MGB, microbiota-gut-brain; BCCAO, bilateral common carotid artery occlusion; ELISA,
Enzyme linked immunosorbent assay; CSV, comma-separated values; TMB, Tetramethyl Benzidine; RT-
qPCR, Real-Time Quantitative PCR; CT, Cycle threshold; PLS-DA, Partial least squares-discriminant
analysis; VIP, variable importance in the projection; CNS, central nervous system; ATGS5, autophagy-
related gene autophagy related 5 homolog; BBB, blood-brain barrier; FDR, false discovery rate; DAB,
Diaminobenzidine; TNF-0. tumor necrosis factor-o; IL-1, Interleukin-1f; IL-6, interleukin-6; SEM, standard
error of measurement; ANOVA, one-way analysis of variance; PCoA, Principal coordinate analysis; PCA,
Principal component analysis; ZO-1, zonulaoccludens-1; NF-kB, nuclear factor kappa-B; 5-MTP, 5-methoxy
tryptophan; miR-21, microRNA-21; MAPK, mitogen-activated protein kinase; ALP, alkaline phosphatase;
HPLC, High Performance Liquid Chromatography.
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performance liquid chromatography-mass spectrometry (LC-MS), and RNA-
sequencing (RNA-seq) analysis.

Result: QCLG improved weight loss, cognitive impairment, neurological function
scores, blood ammonia, and brain gene expression of interleukin-6 (TNF-o),
Interleukin-1B (IL-1B), and interleukin-6 (IL-6) induced by HE. Moreover, QCLG
increased the levels of liver function indicators, including alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and serum TNF-cq,
IL-1B, and IL-6. 16S RNA sequencing revealed increased Oscillibacter,
Colidextribacter, and Helicobacter in TAA-induced mouse fecal samples. Also,
the abundance of Bifidobacterium decreases TAA-induced mouse fecal samples.
In contrast, QCLG treatment significantly restored the gut microbial community.
Metabolomics indicated significant differences in some metabolites among the
normal control, treatment, and model groups, including 5-methoxytryptophan,
Daidzein, Stercobilin, and Plumieride (PLU).

Conclusion: QCLG can alleviate neuroinflammation and prevent HE caused by

liver injury by regulating intestinal flora in mouse models.
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Introduction

Hepatic encephalopathy (HE), also known as hepatic coma,
refers to a syndrome of central nervous system dysfunction
resulting from metabolic disorders caused by severe liver disease.
HE is a common and serious complication of chronic liver disease
and acute liver failure (Bloom et al, 2022). Primary research
directions for understanding HE pathogenesis involve theories
such as ammonia poisoning, pseudo neurotransmitter hypothesis,
intestinal flora, inflammatory response, and more (Baishuang et al.,
2021; Feng and Weiqun, 2023).

Research on the microbiota-gut-brain (MGB) has advanced
significantly in recent decades. A growing body of evidence
indicates the involvement of microbial communities in the
development of neurological diseases. Disruption of gut microbiota
may trigger low-level inflammation, including neuroinflammation.
Intestinal microflora is involved in the formation of nerves, the
immune system, or other basic processes in the process of growth.
During the development of HE, intestinal dysbiosis can not only
induce a chronic inflammatory state in the intestinal epithelium but
also increase neuroinflammation through the microbiota-gut-brain
axis. Persistent inflammation in the gastrointestinal tract associated
with dysbiosis can lead to the destruction of intestinal barrier
integrity and increased permeability. Subsequently, pro-
inflammatory microbial products such as lipopolysaccharide (LPS)
and cytokines will cross the damaged barrier and enter the blood
circulation, causing systemic inflammation. Subsequently, these pro-
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inflammatory molecules in systemic circulation may induce the
destruction of the blood-brain barrier (BBB) (Zhao et al., 2021;
Won et al., 2022). Studies have reported an increased number of
pathogenic bacteria in the intestinal tract of HE patients compared to
normal individuals, with an enhanced synergy among harmful
bacteria (Elsaid and Rustgi, 2020). Studies have shown
improvement in patients treated with Fecal Microbiota
Transplantation (FMT) (Bloom et al, 2021; Li et al, 2022).
Utilizing subjects with higher probiotic abundance, specifically
Lachnospiraceae and Ruminococcaceae, as donors for FMT
treatment in HE patients has demonstrated effective improvement
in cognitive dysfunction associated with HE (Afecto et al.,, 2021).

Additionally, a study assessed 127 HE patients through
cognitive testing. Notably, the FMT cohort showed improved
cognitive performance and maintained this improvement over
long-term follow-up (Tun et al, 2022). Overall, these reports
suggest a pivotal role of alterations in intestinal microbiota in the
pathogenesis of HE. However, the underlying mechanism requires
further exploration.

Currently, primary clinical treatment options consist of lactulose
and rifaximin, both of which exhibit obvious drawbacks (Jindal and
Jagdish, 2019); given the limited treatment options for HE,
discovering safe and effective drugs is highly beneficial. Qingchang
Ligan Formula (QCLG) is an intrahospital prescription at Beijing
Youwan Hospital and has been clinically used there for many years.
QCLG can reduce inflammation levels, ameliorate liver damage by
regulating intestinal flora and reducing alanine and aspartate
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aminotransferase (ALT and AST) (Yin et al., 2022). Traditional
Chinese medicine formulations are usually composed of various
components, which thus highlights their feature of possessing
multiple components and targets. Consequently, the impact of
QCLG may extend beyond the diseases that have previously been
identified. Against the background of the above information, our
study aimed to investigate the effects of QCLG on HE mice and
explore the correlation between changes in gut microbiota and
metabolites and HE.

Materials and methods
Reagents

QCLG was obtained from Beijing Tongrentang Drugstore. The
QCLG comprised 5 Chinese medicinal materials, including Rheum
palmatum L. [Polygonaceous; Rhea Radix Et Rhizomes.] Rehmannia
Radix [Scrophulariaceae; Rehmannia glutinosa Libosch.] Magnoliae
Officinalis Cortex [Magnoliaceae; Magnolia officinalis Read. et Wils.]
Aurantii Fructus [Rutaceae; Citrus aurantium L.] Taraxaci Herba
[Asteraceae; Taraxacum mongolicum Hand-Mazz.] The five raw
botanical drugs were combined in a ratio of 2:1:1: 1:1 and subjected
to two rounds of boiling with 10-fold deionized water (ddH,O, 124
w/v) for 1 hour each. Then, it is filtered to obtain the filtrate and
stored in aliquots at 10 mL 125 at 4 °C before use. Thioacetamide
(TAA) was obtained from Sigma-Aldrich (St. Louis, USA). The same
batch of QCLG was used throughout the experiment and was not
mixed with other products.

Animals

Thirty male C57BL/6 mice (Beijing HFK Bioscience Co., Ltd.)
weighing 20-25 g and specifically pathogen-free were used.

Experimental design

30 mice were divided into 5 groups of 6 mice each. These five
groups included normal control (NC), thioacetamide (TAA),
treatment, lactulose, and QCLG groups. NC group was gavage
with normal saline and injected intraperitoneally. The TAA group
was gavage with normal saline and injected intraperitoneally with
TAA. The Lactulose group was gavage with lactulose and injected
intraperitoneally with TAA. The treatment group was gavaged with
QCLG and injected intraperitoneally with TAA. The QCLG group
was gavaged with QCLG and injected intraperitoneally with normal
saline. The QCLG group was used to evaluate the effects of QCLG
on normal mice. The feeding conditions were as follows:
temperature 20~25°C, humidity 40%~60%, 12 hours of light per
day, free access to food and water, and standard feed. All rats were
adaptively reared for 1 week before experiments were conducted.
TAA is considered an alternative drug in the guidelines for
modeling HE (DeMorrow et al., 2021). Given the absence of a
specified dose in the guidelines, we injected 150 mg/kg
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intraperitoneally for two consecutive days in this experiment
following multiple screenings. Following a week of acclimatization
feeding, 5 groups were gavage and given the drug at the same time.
The treatment and QCLG group were given QCLG (6.725g/kg) for
7 days, the lactulose group was gavage with lactulose (167 mg/kg)
for 7 days, and the other two groups (TAA group and NC group)
were gavage with an equal amount of normal saline for 7 days. 24
hours after the intragastric administration, mice in the TAA group,
treatment group, and lactulose group were intraperitoneally
injected with TAA (150 mg/kg). The NC group and QCLG group
were intraperitoneally injected with an equal volume of normal
saline. After the final TAA injection, mice were anesthetized with
ether 24 hours later, and the ether concentration was maintained at
2%-4%. Blood samples were collected from the retro-orbital venous
plexus and underwent a 10-minute centrifugation at 1,800 g at 4°C
to obtain serum for measuring blood ammonia, ALT, AST, and
inflammatory factors. The mice were euthanized by cervical
dislocation. Partial liver tissues were fixed with 4%
paraformaldehyde for morphological analysis, and brain tissues
were fixed in a 3% glutaraldehyde solution. Additionally, some
brain tissues were frozen rapidly in liquid nitrogen for qPCR and
immunohistochemical analysis. Fecal samples were rapidly frozen
in liquid nitrogen for 16S rRNA and metabolomics analysis. All
tissues were adequately frozen during the experiment. Organ
coefficients were calculated according to the following standard:

Relative organ weight
= [organ weight(g)/body weight (g)] x 100 %

All procedures were performed by the Guide for the Care and
Use of Laboratory Animals established by the Beijing Municipal
Ethics Committee. Animal experiments were approved by the
Animal Welfare Committee of Capital Medical University
(Approval Number: AEEI-2022-228).

Open field tests

An open-field experiment is a method to evaluate the
autonomous behavior, inquiry behavior, and tension of
experimental animals in a new environment. It’s often used to
detect anxiety, exploratory behavior, and exercise ability in mice. In
this study, the behavior ability of mice was evaluated by an open-
field experiment. Open field tests were performed on four groups
(NC, TAA, treatment, and lactulose group) 12 hours after the last
TAA injection. The open field apparatus, measuring 50 cm x 50 cm
x 45 cm, included an image capture system and operational analysis
tools. It was placed in a well-lit, noise-free environment to test up to
four mice simultaneously. Mice were introduced one hour before
the experiment, ensuring appropriate lighting and a calm setting.
The experiment began by placing mice in the center of the square
arena for five minutes of unrestricted exploration, recorded by an
automated video tracking system. After each experiment, the arena
floor was cleaned to prevent potential chemical interference from
urine or feces. The assessment included measuring both distances
traveled and average speed.
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Assessment of brain function

The assessment of brain function consists of 10 evaluation
items, which can comprehensively evaluate the behavioral ability
of mice. the higher the score, the worse the behavioral ability.
Following the last TAA injection, brain function in four groups
(NG, TAA, QCLG, treatment, and lactulose) was assessed 12 hours
later. The evaluation utilized a 10-point system based on the
method outlined by Chen et al (Avraham et al., 2011), covering
criteria such as escaping from a circular ring, foraging behavior,
corneal reflex, straight-line walking, startle reflex, grasping reflex,
righting reflex, walking on a balance beam, placement reflex, and
climbing behavior. Abnormal reflexes or behaviors scored 1 point,
while normal behavior scored 0. Three individuals independently
scored the assessments without communication to avoid bias. The
equipment was cleaned after each experiment to prevent urine,
feces, or odor interference.

Serum biochemical analyses

The guidelines for animal models of hepatic encephalopathy
point out that the animal model of hepatic encephalopathy is based
on the presence of liver injury or failure and abnormal blood
ammonia. Serum was used to detect ALT, AST, and blood
ammonia levels in mice, and to evaluate liver injury, and blood
ammonia levels. Serum ALT and AST were quantified utilizing
Chemray 800 and Rayto, along with a fully automated Chinese
biochemical analyzer. Blood ammonia levels were determined using
the G0436W blood ammonia assay kit of Grace Biotechnology. All
protocols were executed as per the provided user manual.

Immunohistochemistry of glial fibrillary
acid protein, Ibl and y-aminobutyric acid in
brain tissues

Immunohistochemistry was used to detect the expression of
microglia, astrocytes, and GABA in brain tissue. The above
indicators were used to assess the degree of neuroinflammation in
mice with hepatic encephalopathy. Tissue sections were
deparaffinized and then incubated overnight at 4°C with anti-Ibl
mouse monoclonal antibody (Servicebio GB12105), anti-y-
aminobutyric acid (anti-GABA) A Receptor beta2/GABRB2
Rabbit polyclonal antibody (Servicebio GB114791), and anti-glial
fibrillary acid protein (anti-GFAP) Rabbit polyclonal antibody
(Servicebio GB11096) in a wet box. Subsequently, sections were
washed and incubated for 50 minutes at room temperature with
horseradish peroxidase (HRP)-labeled goat anti-mouse antibody
(Servicebio GB23301) and HRP-labeled goat anti-rabbit
immunoglobulin G (IgG, Servicebio GB23204). After additional
washing, the tissue sections were developed with Diaminobenzidine
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(DAB), counterstained with hematoxylin, and examined under a
bright-field microscope.

Histopathological examination of the liver

Liver histopathology to assess the extent of liver damage. Liver
and brain tissue samples were obtained from each mouse group.
Liver tissues were fixed in a 4% formaldehyde solution, while brain
tissues were fixed in a 3% glutaraldehyde solution. The severity of
liver damage was assessed using the histological activity index
(HAI) score. The prefrontal cortex was isolated from brain
tissues, and the extent of brain lesions was determined by
examining neuronal cell bodies and synapses.

16S rRNA gene sequencing

In this study 16S rRNA gene sequencing was used to investigate
the effect of QCLG on the Intestinal microflora of mice with HE.
Genomic deoxyribonucleic acid (DNA) was extracted from fecal
intestinal microbiota using the PF Mag-Bind Stool DNA Kit
(Omega Bio-Tek, USA). DNA concentration, integrity, and
quality were assessed using NanoDrop2000 and 1% agarose gel
electrophoresis. The V3-V4 region of the 16S rRNA gene was
amplified with 338F upstream and 806R downstream primers
(ACTCCTACGGGAGGCAGCAG and GGACTACHVGGG
TWTCTAAT). PCR products were purified using a PCR clean-up
kit. Subsequently, libraries were constructed using the NEXTFLEX
Rapid DNA-Seq Kit and sequenced with Illumina PE300
(Illumina, USA).

Metabolite analysis

Metabolite analysis was used to examine the effects of QCLG on
metabolites in mice with hepatic encephalopathy. In a 2 mL
centrifuge tube with a 50 mg fecal sample and a 6 mm diameter
grinding bead, 400 UL of extraction solution (methanol to water
ratio 4:1, v/v) with 0.02 mg/mL of internal standard (L-2-
chlorophenylalanine) was used. LC-MS/MS analysis was
performed on a Thermo Fisher Scientific UHPLC-Q Exactive HF-
X system provided by Shanghai Meiji Biomedical Technology Co.,
Ltd., using a Thermo UHPLC-Q Exactive HF-X system with an
ACQUITY HSS T3 column (100 mm x 2.1 mm i.d., 1.8 um; Waters,
USA) at Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai,
China). Progenesis QI software preprocessed LC/MS raw data
(Waters Corporation, Milford, USA), excluding internal standard
peaks and known false positives. Metabolite identification uses
databases like the Human Metabolome Database (HMDB, http://
www.hmdb.ca/) and Metlin (https://metlin.scripps.edu/).
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Enzyme-linked immunosorbent assay

Enzyme-linked immunosorbent assay was used to detect
inflammatory factors in mouse serum and to evaluate the effect of
QCLG on the inflammatory level in mice with HE. Enzyme-linked
immunosorbent assay (ELISA) kits (Servicebio 88-7013-88 for
Interleukin-1B (IL-1PB), Servicebio GEM0001-96T for interleukin-6
(IL-6), and ServicebioGEM0004-96T for tumor necrosis factor-o
(TNF-0)) were utilized for detection. After that, 100 pL of coating
buffer was added to each well of " Costar 9018 ELISA plates, which
were sealed at 4°C overnight. After the washing buffer was used for
washing, any remaining liquid was removed with absorbent paper,
and the plates were sealed with 200 pL of 1X ELISA dilution buffer.
After one hour of incubation at room temperature and washing, a
standard curve was generated. Next, 100 pL of the sample was
introduced into each well, and 100 pL of 1X ELISA dilution buffer
was introduced into blank wells, which were sealed at 4°C overnight.
By the same protocol, antibodies and Streptavidin-HRP were
prepared. In addition, 100 pg per well was added to all wells, which
were sealed for one hour at room temperature. Subsequently, each well
was added with 100 pg of 1X Tetramethyl Benzidine (TMB) Solution
at room temperature and underwent 15-minute incubation before the
addition of the stop solution. The enzyme immunoassay was
conducted at an absorbance of 450 nm, and the data were analyzed.

Real-time quantitative PCR

Real-Time Quantitative PCR was used to detect the levels of
inflammatory factors in mouse brain tissue and evaluate the effect of
QCLG on neuroinflammation. Total RNA was isolated from the
liver using TRIzol reagent (Catalog No. 15596018; ThermoFisher)
and then transcribed to cDNA using a Strand cDNA Synthesis Kit
(Catalog No. 6210A; Takara). Real-time quantitative PCR (RT-
qPCR) was performed with LightCycler 480 and technical
triplicates using TB Green reagent (Catalog No. RR420A; Takara).
The expression levels were calculated with the 2044“" method, and
the Cycle threshold (CT) values were normalized using GAPDH as
areference gene. The target genes were Thbs1 and Osginl (Table 1).

Statistical analysis

SPSS and GraphPad were used for statistical analysis and
plotting, respectively. Data were presented as mean + SEM. T-

TABLE 1 Sequences of primers used in real-time polymerase chain reactions.

Genes

GAPDH Forward primer GAPDH
Reverse primer
IL-1B Forward primer
IL-1pB Reverse primer
IL-6 Forward primer
IL-6 Reverse primer
TNF-o. Forward primer

TNF-o Reverse primer
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Sequences of primer

5-CAGTGGCAAAGTGGAGATTGTTG-3'
3'-CTCGCTCCTGGAAGATGGTGAT-5'
5-TTCAGGCAGGCAGTATCACTC-3'
3'-GAAGGTCCACGGGAAAGACAC-5'
5'-CTGCAAGAGACTTCCATCCAG-3'
3'-AGTGGTATAGACAGGTCTGTTGG-5'
5'-CAGGCGGTGCCTATGTCTC-3'
3-CGATCACCCCGAAGTTCAGTAG-5'

05

10.3389/fcimb.2024.1381209

tests or Wilcoxon rank-sum tests were used for between-group
comparisons and one-way ANOVA with Bonferroni correction for
multiple groups. Statistical significance was set at p < 0.05. PLS-DA
with VIP > 1 and P < 0.05 selected metabolites and pathway analysis
utilized the KEGG website (http://www.genome.jp/kegg/).

Result

Qingchang Ligan formula can improve the
effects of TAA-induced HE on mice’s body
and organ weights

Mice in the TAA group exhibited a significant reduction in
body weight compared to the NC group, while those in the
treatment and lactulose groups showed a significant increase
(Figure 1A). The liver and brain relative weights were notably
higher in the TAA group than in the NC group. In contrast, the
treatment and lactulose groups displayed a significant decrease in
relative weight compared to the TAA group (Figures 1B, C).

QCLG can improve the behavioral
abnormalities in HE mice

Individual open-field tests and cognitive assessments were
conducted on each mouse group to assess behavioral effects. The
TAA group significantly reduced total distance traveled, zone-
specific distance, and average speed compared to the NC group in
open field tests (Figures 2A-C). Conversely, lactulose and treatment
groups showed a significant increase in these parameters compared
to the TAA group. In cognitive assessments, the TAA group
exhibited a significant increase in scores compared to the NC
group. In contrast, lactulose and treatment groups significantly
decreased scores compared to the TAA group. There was no
significant difference between QCLG and NC groups (Figure 2D).

QCLG can protect against TAA-induced
liver damage and peripheral inflammation

Peripheral inflammation can worsen liver damage, influencing the
development of HE (DeMorrow et al., 2021). Serum levels of TNF-a,
IL-1B, and IL-6 were assessed in mice. The TAA group showed
significantly elevated TNF-o,, IL-1[3, and IL-6 levels compared to the

Annealing Tm (°C)

59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
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FIGURE 1

Qingchang Ligan Formula (QCLG) improves the effects of TAA-induced HE on body and organ weights. (A) Body weight was obtained 48 hours after
an intraperitoneal injection of TAA. (B) Brain weight and Relative organ weight of the brain. (C) liver weight and Relative organ weight of the liver.
NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan
Formula group. Data were presented as mean + SEM. (n = 5) *P < 0.05, **P < 0.01 and ***P < 0.001

NC group. In contrast, the treatment and lactulose groups exhibited
notable reductions in these inflammatory factors compared to TAA.
There was no significant difference between QCLG and NC groups
(Figure 3A). Image analysis revealed increased liver tissue bleeding and
irregular surfaces in the TAA group compared to the NC group, while
the treatment and lactulose groups displayed smoother liver surfaces.
There was no significant difference in the surface between the NC
group and the QCLG group. (Figure 3B).

ALT, AST, and blood ammonia levels, crucial indicators for
assessing HE severity and liver injury biomarkers, were assessed. The
TAA group showed a significant increase in ALT, AST, and blood
ammonia levels compared to the NC group. Conversely, the treatment
and lactulose groups exhibited a considerable reduction in ALT, AST,
and blood ammonia levels relative to TAA (Figures 3C-E).
Histopathological analysis revealed heightened liver cell necrosis, cell
swelling, inflammatory cell infiltration, and extensive bleeding in the
TAA group compared to the NC group. Treatment and lactulose
groups demonstrated a marked decrease in these pathological features
relative to TAA. There was no significant difference between QCLG
group and NC group in the above indexes. (Figures 3B, ).

Treatment with QCLG can restore TAA-
induced neuroinflammation

The severity of brain injury and neuroinflammation significantly
influences the progression of HE. Neuronal soma and synapse changes
serve as indicators for assessing brain lesions. Transmission electron
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microscopy (TEM) analyzed QCLG’s influence on neurons and
examined brain tissue neuronal structure (Figure 4). In the TAA
group, mice showed neuronal swelling and partial dendritic loss
compared to the NC group. However, the treatment group
demonstrated significant improvement. In the prefrontal cortex and
striatal synaptic structures (Figure 4), NC group synaptic structures
were intact, with several synaptic vesicles, clear synaptic cleft, average C
width, and standard postsynaptic density thickness. In TAA group
mice, synaptic structures were unclear; synapses showed varying
degrees of swelling, reduced synaptic vesicles, inconsistent synaptic
cleft width, and thinning postsynaptic density. The treatment group’s
synaptic structures showed significant relief compared to the TAA
group, with increased synaptic vesicles and some improvement in
synaptic cleft width.

In assessments related to neuroinflammation, the results revealed a
significant increase in TNF-o,, IL-1f, and IL-6 levels in the brain tissue
of the TAA group compared to the NC group. Conversely, the lactulose
and treatment groups substantially decreased these three inflammatory
factors compared to the TAA groups (Figure 5A). Meanwhile, markers
of astrocyte activation (GFAP), microglia (ionized calcium-binding
adapter molecule 1, ibal), and GABA expression in brain tissue were
assessed. Astrocyte staining in the TAA group appeared lighter and had
a significantly lower H-Score than that in the NC group. About ibal,
microglia staining in the TAA group was darker and had a significantly
higher H-Score than in the normal group. Regarding y-aminobutyric
acid (GABA), GABA staining in the TAA group was darker and had a
significantly higher H-Score than in the NC group. There was no
significant difference between QCLG and NC groups (Figures 5B, C).
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Effects of QCLG on behavioral tests: Open field tests and cognitive assessments (A) Total path, (B) Zone path, (C) Average speed, (D) Cognitive
assessments, NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG,
Qingchang Ligan Formula group. Data were presented as mean + SEM. (n = 5) *P < 0.05, **P < 0.01 and ***P < 0.001.

QCLG can alter gut microbiota structure

A body of research has emphasized the two-way association of
the brain with the gut, where changes in the gut microbiota are
linked to inflammation (Bajaj et al., 2015). To elucidate the
molecular mechanisms underlying QCLG treatment of HE, we
conducted 16S rRNA analysis on mouse feces and performed [3-
diversity analysis to assess differences between groups. Principal
coordinate analysis (PCoA) based on Unweighted-unifrac
dissimilarity demonstrated separation between the control group
and both model and QCLG-treated groups. Notably, the TAA
group exhibited distinct differences in gut microbiota structure
compared to the QCLG-treated one. To confirm whether these
changes were induced by QCLG, the QCLG group was also
compared with the control one, which revealed a divergence
(explaining 42.47% of the variance), indicating significant
alterations in the core microbiota after treatment (Figure 6A).
The diversity of the microbial community was assessed using
diversity indices (Shannon and Simpson indices) (Figure 6B). It
was observed that the fecal samples of TAA-treated mice showed a

Frontiers in Cellular and Infection Microbiology

remarkable increase in microbial diversity compared to those of NC
mice. In contrast, QCLG intervention led to a marked reduction in
gut microbial diversity. The QCLG group exhibited a substantial
increase in gut microbial diversity. The analysis of the microbiota
composition of mouse feces revealed notable differences. The TAA
group demonstrated a significant increase in the abundance of
Parabacteroides, norank-f-Eubacterium-coprostanoligenes-group
(P = 0.013), Oscillibacter (P = 0.028), Blautia (P = 0.029),
Colidextribacter (P = 0.021) and Helicobacter (P = 0.044)
compared with the normal one. However, the abundance of
Bifidobacterium (P = 0.039) notably decreased. Conversely, these
microorganisms displayed a marked decrease in the QCLG-treated
group compared with the TAA one, with a significant increase in
Bifidobacterium (Figure 6C). Furthermore, the analysis revealed
differences in the abundance of particular taxa, as shown in the
heatmap and dendrogram. The analysis indicated that HE was
associated with higher levels of Desulfovibrio (P = 0.007),
Helicobacter (P = 0.044), Oscillibacter (P = 0.028), Colidextribacter
(P = 0.021) and Rikenella (P = 0.025). However, these levels
significantly reduced QCLG-treated mice (Figure 6D).
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QCLG alleviates TAA-induced liver injury and the levels of ammonia, TNF-o, IL-6 and IL-1p in the blood (A) The levels of TNF-a, IL-6 and IL-1B in the
blood, (B) Representative liver sections from each group, Liver tissue hemorrhage and inflammatory infiltration (red border) (C) Plasma ammonia was
confirmed 48 hours after an intraperitoneal injection of TAA, (D) Plasma AST levels were confirmed 48 hours after an intraperitoneal injection of TAA,
(E) Plasma ALT levels were confirmed 48 hours after an intraperitoneal injection of TAA, (F) HAI score of the liver. NC, normal control group; TAA,
thioacetamide model group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan Formula group. Data were presented

as mean + SEM. (n = 5) *P < 0.05, **P < 0.01 and ***P < 0.001.
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QCLG can alter relevant metabolites in
the intestines

The complex interactions between the host and the intestinal
microbiota are closely related to the host-microbe metabolic axis. To
verify the impact of QCLG, we conducted untargeted metabolomic
studies on stool samples using liquid chromatography-mass
spectrometry (LC-MS). In negative and positive modes, 589 and
796 metabolites were identified in fecal samples. In negative and

positive modes, 589 and 796 metabolites were identified in fecal
samples. To determine the specific effects of QCLG on metabolites,
we conducted PCA on the TAA, QCLG, and NC groups. PCA
(26.60%) demonstrated clustering of metabolites in the NC group
and QCLG group, with the TAA group showing significant
differences compared with the other two groups (Figure 7A).

In analyzing the metabolites across the three groups, we found
946 distinct metabolites. KEGG pathway enrichment analysis
revealed that the Model group had significant pathways compared

FIGURE 4

QCLG alleviates TAA-induced neuronal damage. NC, normal control group; TAA, thioacetamide model group; treatment, treatment group; lactulose,
lactulose group; QCLG, Qingchang Ligan Formula group. Synaptic structure (red border).
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0.05, **P < 0.01.

to the normal group, including Isoflavonoid biosynthesis, steroid
hormone biosynthesis, flavonoid biosynthesis, sphingolipid
metabolism, glycine, serine and threonine metabolism, Vitamin
B6 metabolism, pyrimidine metabolism, aminobenzoate
degradation, lysine degradation, and arginine biosynthesis.
Notably, QCLG treatment differed from the TAA group in
pathways such as sphingolipid metabolism, aminobenzoate
degradation, caprolactam degradation, galactose metabolism,
steroid degradation, and alanine aspartate glutamate metabolism.
This suggests that QCLG may mitigate some effects of TAA through
these metabolic pathways (Figure 7B).

Subsequently, to identify potential biomarkers of QCLG
treatment efficacy, we employed Student’s t-test to compare the
metabolic alterations in HE across the three groups. We identified
307 metabolites that significantly changed between the NC group
and the TAA group (VIP>1, P<0.05, FDR<0.05). 179 metabolites
gradually returned to normal levels following QCLG treatment
(P<0.05). Within this group, the QCLG treatment upregulated
106 metabolites that were diminished by TAA and down-
regulated 73 other metabolites, including 5-Methoxytryptophan,
Daidzein, Stercobilin, and Plumieride (PLU), bringing their levels
closer to those of the NC group (Figure 7C).

Additionally, our Spearman correlation analysis of the microbiota
and metabolites revealed correlations between the top 50 most
abundant intestinal microbial communities and 50 differentially

Frontiers in Cellular and Infection Microbiology

altered fecal metabolites. Stercobilin, Leu-Thr-Ser-Lys-Tyr, and
Amastatin exhibited positive correlations with Blautia, whereas 5-
methoxy tryptophan and Plumieride showed negative correlations
with Blautia. Furthermore, Stercobilin, Leu-Thr-Ser-Lys-Tyr,
Dehydroepiandrosterone, Muramic-acid, Imperatorin, DL-dopa,
Ritodrine, Lactose, and Danunosamine showed a negative
correlation with Bifidobacterium. At the same time, Bifidobacterium
exhibited a positive correlation with Indoleacrylic-acid, N-
Eicosapentaenoyl-Asparagine, Daidzein, 5-methoxy tryptophan,
and Plumieride. Additionally, Oscillibacter exhibited positive
correlations with Daidzein, Stercobilin, Methionine-Sulfoxide,
Santamaria, Lumichrome, Prolyl-Alanine, N-Eicosapentaenoyl-
Asparagine, Imexon, 5-methoxy tryptophan, and Plumieride. In
contrast, Oscillibacter was negatively correlated with Lumichrome,
Prolyl-Alanine, N-Eicosapentaenoyl-Asparagine, Imexon, 5-methoxy
tryptophan, and Plumieride (Figures 7D).

Discussion

We created a mouse model of HE through intraperitoneal
injection of TAA to assess the therapeutic impact of QCLG and
delve into its potential mechanism. TAA serves as a preclinical
model for HE established following animal modeling guidelines,
demonstrating effective replication of human acute liver disease.

09 frontiersin.org


https://doi.org/10.3389/fcimb.2024.1381209
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

Yang et al.
PCoA on Genus level
o4
03
02 “
g g
£ /
S o
g
01 .
02
03
T4 63 9z S1 b or 6z o8 o o5
PC1(31.76%)
Kruskal-Wallis H test bar plot -y
m
Hore
Bifdobecierum h . 004691
v _ . o
T
Parsbacteroides ©oo0E
W\dambiwvh *0.04335
Ow\lmamrL * 0.03602
0 02040608 1 1214 1618 2 22 24 26 28 3
gonus
Gladogram
o
o
=
o
FIGURE 6

10.3389/fcimb.2024.1381209

PCoA on Genus level

=
D . ®cac

32 0% <1 abs 0 obs o1 0l 02 0%
PC1(42.47%)

Kruskal-Wallis H test for shannon index

w
w

32

H

i

H

conteol TR Tresiment QNG

Kruskal-Wallis H test for simpson index

Hono

T

et aiNG

Effects of QCLG on the composition and structure of the gut microbiota (n = 5-6). (A) B diversity was up to the principal based on unweighted-
unifrac distance. (B) a diversity. (C) Alterations in the relative abundances of genus-level bacterial taxa in treatment, QCLG, NC and TAA groups (*P <
0.05, one-way ANOVA). (D) Graphical phylogenetic analysis of changes in the gut microbiota. Heatmap of the relationships between microbiota and
other experimental results. NC, normal control group; TAA, thioacetamide model group; Treatment, treatment group; QCLG, Qingchang Ligan

Formula group.

This method is widely accepted for inducing HE (DeMorrow et al.,
2021). The experimental results unequivocally demonstrate the
efficacy of this method in inducing characteristic HE symptoms.
In our primary study, QCLG markedly enhanced behavioral and
cognitive functions affected by HE, mitigated brain inflammation,
rectified microbial imbalances, and improved metabolic status. We
summarized the outcomes of 16SrRNA gene sequencing and
metabolomic analysis, exploring the impact of QCLG on HE by
scrutinizing the interplay between intestinal bacteria and
metabolic biomarkers.

Frontiers in Cellular and Infection Microbiology

The neuropathology of HE involves astrocyte reduction, microglia
activation, and neuroinflammation (Butterworth, 2019; Hsu et al,
2021). Immunohistochemistry analysis revealed significant differences
between the NC and TAA groups in astrocyte, microglia, and GABA
expression. The TAA group showed increased microglia and GABA
expression and reduced astrocytes. Astrocyte dysfunction disrupts the
brain neurotransmission system, which subsequently causes a cascade
of neuronal injuries and ultimately results in neurocognitive deficits
associated with HE (Butterworth, 2016). Microglia belong to the
resident macrophage of the brain and play a pivotal role in innate
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QCLG can alter relevant metabolites in the intestines (n = 5-6). (A) PCA (PC1 = 26.6%, PC1 = 28.40%) (B) Meaningful metabolic routes in comparing
NC and TAA groups, TAA and treatment groups. (C) Based on VIP > 1 and P < 0.05, false discovery rate (FDR) < 0.05 served as a filter for differential
metabolites between NC and TAA groups. QCLG treatment contributed to a significant improvement in metabolic disorders. (D) Heatmap of the
association between the changed microbial community and greatly changed metabolites. NC, normal control group; TAA, thioacetamide model
group; treatment, treatment group; lactulose, lactulose group; QCLG, Qingchang Ligan Formula groups. *P < 0.05, **P < 0.01.

immunity. Microglia activation results in chronic brain inflammation
and an increase in proinflammatory cytokines such as TNF-o, IL-1f3,
and IL-6, which may be closely linked to the pathological features of
HE (Hsu et al,, 2021; Liu et al., 2021). Meanwhile, GABA is the brain’s
primary inhibitory neurotransmitter, regulating emotions, memory,
and appetite (Bickstrom et al, 2021). Therefore, this suggests that
QCLG can mitigate neuroinflammation in HE, thereby alleviating
cognitive abnormalities.

Frontiers in Cellular and Infection Microbiology

The gut microbiota is a crucial neuroinflammation regulator in
neurological diseases like HE. Recent advancements in metagenomics,
Metatranscriptomics, and meta-proteomics have elucidated the
functional interplay between the gut microbiota and central nervous
system (CNS) function, known as the “gut-brain axis.” The gut
microbiota is pivotal in numerous central nervous system diseases
(Yu et al, 2021). Recent research indicates the involvement of the gut
microbiota in modulating immune and inflammatory responses in
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acute and chronic neurological diseases (Li et al., 2021).

Our study shows that QCLG can alleviate this by regulating
intestinal flora and metabolites. There were significant differences in
the gut microbiota of HE mice compared with normal control mice.
At HE, the relative abundance of Bifidobacterium decreased.
Supplementation with Bifidobacterium alleviated cognitive deficits
in mice and suppressed neuroinflammation and synaptic
dysfunction (Zhu et al,, 2023). At the same time, Bifidobacterium
can also significantly regulate quinolinic acid (QUIN) levels in the
brain, as well as glutamate (Glu) and GABA levels, thereby reducing
the activity of microglia in the cerebellum (Kong et al., 2022). This
means that QCLG can alleviate HE by regulating the abundance of
beneficial bacteria. In the TAA group, the abundance of
Oscillibacter, Colidextribacter, Blautia, and Helicobacter increased,
and these significantly changed genera may be the signature
bacteria of HE. Studies have shown that the abundance of
Oscillibacter is relatively reduced after anti-inflammatory
treatment in AD rats with neuroinflammation (Wang et al,
2022). At the same time, the reduction of Oscillibacter helps
improve cognitive function and enhance learning and memory
abilities after exercise (Zhou et al., 2021).

Colidextribacter is classified under the Clostridiales cluster IV
and the Clostridium cluster Effect (Wang et al, 2022). Its
involvement in raising cellular oxidative stress levels elevates
serum inflammatory markers (Duan et al, 2021). The reduction
in Colidextribacter abundance may contribute to mitigating the
impact of peripheral inflammation on neuroinflammation. The
genus Blautia is classified within the family Ruminococcaceae,
order Clostridiales, phylum Firmicutes, and class Clostridia.
GABA is part of the Blautia-dependent arginine metabolism,
closely linked to HE and Alzheimer’s disease (AD). Alterations in
GABA levels can impact the susceptibility to mental disorders.
Research indicates a robust association with arginine metabolism,
potentially contributing to the pathogenesis of AD by modulating
metabolites like GABA (Zhuang et al., 2020).

QCLG treatment normalized metabolite levels that differed
significantly between the normal control and model groups.
Upregulated metabolites in the QCLG group included Daidzein, a
dietary metabolite with known anti-inflammatory properties (Das
et al, 2018).. Daidzein has been shown to protect neurons by
reducing neuronal apoptosis, enhancing neurite outgrowth, and
promoting astrocytes’ production of neurotrophic factors, thereby
preventing neuroinflammatory damage (Subedi et al., 2017).

As an anti-inflammatory endothelial factor, 5-methoxy
tryptophan (5-MTP) safeguards the endothelial barrier, promotes
endothelial repair, and inhibits the migration and proliferation of
vascular smooth muscle cells via suppressing p38 mitogen-activated
protein kinase (MAPK) activation (Wu et al., 2020). It is crucial in
anti-inflammation, anti-cancer, and myocardial protection. PLU is
a cyclic terpenoid compound extracted from willow flowers and
exhibits anti-inflammatory, antidepressant, anxiolytic, and other
effects (Dalmagro et al., 2020). Studies have shown that PLU can
lower serum levels of ALT, AST, and alkaline phosphatase (ALP),
thereby reducing liver damage (Singh et al., 2014).
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In the down-regulated metabolites of the QCLG treatment
group, Stercobilin and fecal pigments are demonstrated to trigger
proinflammatory responses in the macrophage RAW264 cells of
mice. This stimulation releases TNF-o, IL-1B, and other
inflammatory factors, intensifying inflammation (Sanada et al,
2020; Dai et al., 2022).

Therefore, metabolites may collaboratively ameliorate HE
through various direct and indirect pathways, such as inhibiting
the secretion of inflammatory factors, promoting astrocytes to
release neurotrophic factors, and mitigating liver damage.

Collectively, we speculate that QCLG can reduce
neuroinflammation by regulating intestinal microbiota metabolism,
thereby preventing HE.

Our study has limitations, including the need to investigate if
the decoction of Chinese medicine alone or in combination alters
the efficacy and composition of QCLG, a complex herbal formula.
At the same time, we did not test the intestinal tissue. Changes in
intestinal permeability will help us to explore the mechanism of
hepatic encephalopathy more deeply. We will make up for this
deficiency in the next step. Future research will explore the impact
of changes in bacterial flora on intestinal inflammation, the
influence of intestinal inflammation on HE progression, and the
potential of QCLG for fecal microbiota transplantation therapy.

Conclusion

Our study, for the first time, reveals the protective effect of
QCLG treatment on a TAA-induced HE mouse model. Further
mechanistic studies show that QCLG can ameliorate intestinal flora
disorder and regulate metabolic abnormalities. Furthermore, we
demonstrate the importance of microbiota dysbiosis in the
pathogenesis of TAA-induced HE.
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