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Objective: The human microbiota plays a key role in cancer diagnosis,

pathogenesis, and treatment. However, osteosarcoma-associated oral

microbiota alterations have not yet been unraveled. The aim of this study was

to explore the characteristics of oral microbiota in osteosarcoma patients

compared to healthy controls, and to identify potential microbiota as a

diagnostic tool for osteosarcoma.

Methods: The oral microbiota was analyzed in osteosarcoma patients (n = 45)

and matched heal thy controls (n = 90) us ing 16S rRNA MiSeq

sequencing technology.

Results: The microbial richness and diversity of the tongue coat were increased

in osteosarcoma patients as estimated by the abundance-based coverage

estimator indices, the Chao, and observed operational taxonomy units (OTUs).

Principal component analysis delineated that the oral microbial community was

significant differences between osteosarcoma patients and healthy controls. 14

genera including Rothia, Halomonas, Rhodococcus, and Granulicatella were

remarkably reduced, whereas Alloprevotella, Prevotella, Selenomonas, and

Campylobacter were enriched in osteosarcoma. Eventually, the optimal four

OTUs were identified to construct a microbial classifier by the random forest

model via a fivefold cross-validation, which achieved an area under the curve of

99.44% in the training group (30 osteosarcoma patients versus 60 healthy

controls) and 87.33% in the test group (15 osteosarcoma patients versus 30

healthy controls), respectively. Notably, oral microbial markers validated strong

diagnostic potential distinguishing osteosarcoma patients from healthy controls.

Conclusion: This study comprehensively characterizes the oral microbiota in

osteosarcoma and reveals the potential efficacy of oral microbiota-targeted

biomarkers as a noninvasive biological diagnostic tool for osteosarcoma.
KEYWORDS

osteosarcoma, oral microbiota, characteristics, operational taxonomy units,
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Introduction

Osteosarcoma is the most common primary malignant tumor

of bone, with a peak incidence in children and adolescents of

approximately ~3–4.5 cases per million population worldwide

(Mirabello et al., 2009; Beird et al., 2022). Although it can occur

in any bone in the body, its mainly frequent sites are around the

metaphysis and diaphysis of long bones such as the femur, tibia, and

humerus (Cascini and Chiodoni, 2021). Additionally, it can arise in

individuals concomitantly with a previous history of cancer as a

secondary malignancy related to the bone (Ottaviani and Jaffe,

2009). Osteosarcoma is characterized by the presence of osteoid

matrix or immature bone, which can lead to malignant progression

and metastasis (Cascini and Chiodoni, 2021; Beird et al., 2022). In

the past few decades, advancements in neoadjuvant chemotherapy

and surgical techniques have significantly improved outcomes for

patients with localized osteosarcoma, resulting in event-free

survival rates exceeding 70%. However, the event-free survival

rate drops to 20% in cases with metastasis at diagnosis or relapse

(Gill and Gorlick, 2021). Notably, the key pathophysiological

mechanism of osteosarcoma remains unclear. Furthermore, due

to the absence of specific symptoms and the lack of reliable markers,

most patients are often diagnosed in an advanced stage by the time

they seek medical care for help, with poor prognosis. Therefore, it is

important to explore novel diagnostic markers and efficacious novel

therapies for osteosarcoma to improve the prognosis

of osteosarcoma.

The human body harbors a diverse array of microorganisms

that ensure vital functions for the host. These microorganisms can

influence health, phenotype, and susceptibility to diseases by

modulating physiological homeostasis, energy metabolism, and

immune-related bioprocess (Eckburg et al., 2005; Rath and

Dorrestein, 2012; Kundu et al., 2017; Levy et al., 2017;

Dominguez-Bello et al., 2019). The oral microbiome is the second

largest and most diverse microecosystem of up to approximately

1000 microbial species, which is crucial in maintaining oral as well

as systemic health (Deo and Deshmukh, 2019). Emerging studies

have shown that oral microbiota is associated with various diseases

(Hayes et al., 2018; Radaic and Kapila, 2021; Hu et al., 2023;

Lacunza et al., 2023), and can be used as a diagnostic tool for

specific diseases or cancer, such as rheumatoid arthritis (Zhang

et al., 2015) and pancreatic cancer (Vogtmann et al., 2020). Our

previous research has verified the functional significance of the

human tongue microbiota in COVID-19 (Ren et al., 2021) and SLE

(Guo et al., 2023). However, the specific characteristics of the

tongue-coating microbiota in patients with osteosarcoma have

not yet been reported. In this study, we utilized 16S rRNA MiSeq

sequencing technology to analyze the oral microbial signatures of

osteosarcoma and focused on studying the association between

osteosarcoma and oral microbiota. Our findings provide novel

insights into the diagnostic and therapeutic potential

for osteosarcoma.
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Materials and methods

Study profile

This study was designed and performed in the light of the

principle of PRoBE (prospective specimen collection and

retrospective blinded evaluation) design, the Helsinki Declaration,

and the Rules of Good Clinical Practice (Ren et al., 2019). It was

approved by the Ethics Committee of the Affiliated Cancer Hospital

of Zhengzhou University (2021-KY-0148–001) and the First

Affiliated Hospital of Zhengzhou University (2021-KY-0716–003).

All participants in this study approved and signed written informed

consent before being recruited for the project.

A total of 147 samples were collected from the Affiliated Cancer

Hospital of Zhengzhou University and the First Affiliated Hospital

of Zhengzhou University between December 2020 and December

2022. This included 56 oral swabs of osteosarcoma patients (OS)

and 91 oral swabs of healthy controls (HC) matched with

osteosarcoma patients in terms of gender and age. The eligible

patients fulfilled the following criteria: typical radiographic and

histologic features of osteosarcoma of the extremity; newly

diagnosed osteosarcoma; not having used antibiotics or probiotics

in the 2 months before enrollment. Exclusion criteria included

patients with other bone cancers or prior diagnosis with other

tumors; non-extremity locations; non-compliance with National

Comprehensive Cancer Network (NCCN) treatment guidelines,

consumption of unhealthy substances including alcohol,

cigarettes, and drugs; concomitant with previous history of

infectious diseases, chronic diseases, oral mucosal diseases,

gingival inflammation, dental diseases and throat diseases; and

incomplete medical records. In addition, the relevant clinical data

of participants including gender, age, body mass index (BMI),

routine blood, liver function, kidney function, tumor site and size,

Enneking stage, and metastasis were prospectively collected.

Tongue-coating samples underwent 16S rRNA MiSeq sequencing.

Following rigorous inclusion and exclusion criteria, 135 samples

were included for further analysis.
Oral sample collection

Before collecting tongue coating samples, each participant

gargled twice with sterile water to maintain good oral hygiene.

Then, a professional operator used a pharyngeal swab to sample the

posterior middle to anterior middle area of the tongue coating. The

collected specimen was immediately placed into a tube and

transferred to a −80°C refrigerator.

DNA extraction, PCR amplification, and
MiSeq sequencing

The DNA extraction process was performed by following the

manufacturer’s instructions for bacterial DNA extraction using the
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E.Z.N.A. Stool DNA Kit (Omega Bio-tek, Inc., GA). The primers F1

and R2 (5 ’ - CCTACGGGNGGCWGCAG -3 ’ and 5 ’-

GACTACHVGGGTATCTAATC-C-3’) correspond to positions

341 to 805 in the Escherichia coli 16S rRNA gene were used to

amplify the V3~V4 region of extracted DNA sample by PCR. The

resulting amplicons from different samples were purified by Hieff

NGS DNA Selection Beads (YeasenBiotech Co., Ltd., China).

Subsequently, the products were indexed and mixed at equal

ratios for sequencing by Shanghai Mobio Biomedical Technology

Co., Ltd. using the Miseq platform (Illumina Inc., USA) according

to the manufacturer’s instructions. Raw Illumina reads have

been deposited in the European Bioinformatics Institute

European Nucleotide Archive database under accession

number PRJNA1016104.
Operational taxonomic unit clustering and
taxonomic annotation

Raw sequencing data was processed by FLASH software

(version 1.2.10) (Magoč and Salzberg, 2011). Operational

taxonomic units (OTUs) were classified based on 97% identity

using the UPARSE pipeline (version 11 http://drive5.com/uparse/)

(Edgar, 2013) and OTUs were annotated at different taxonomic

levels including phylum, class, order, and family and genus, using

the RDP ClassifierV.2.626 (http://rdp.cme.msu.edu/) (Wang et al.,

2007) against the SILVA216S rRNA database.
Bacterial diversity and taxonomic analysis

Bacterial richness and diversity were determined by a sampling-

based analysis of operational taxonomic units (OTUs). The a
diversity was evaluated by the Chao1, ACE, and Shannon indices

which were calculated using mothur7 (version v.1.42.1). The b
diversity was conducted using the R package (http://www.R-

project.org/), and visualized through nonmetric multidimensional

scaling (NMDS), principal component analysis (PCA) and principal

coordinate analysis (PCoA). A heatmap of the identified key

variables was plotted by the package pheatmap (http://CRAN.R-

project.org/package=pheatmap).

To determine the relative differential abundance and the

multivariable association between osteosarcoma patients and

healthy controls, the PERMANOVA was used to identify features

that differ in these groups. The specific characterization of the oral

microbiota to distinguish taxonomic types was further analyzed by

Linear discriminant analysis (LDA) effect size (LEfSe) method

(http://huttenhower.sph.harvard.edu/lefse/) (Segata et al., 2011).

The LEfSe method, based on the normalized relative abundance

matrix, was used to pinpoint key bacteria in oral samples between

osteosarcoma patients and healthy controls, according to the results

of the Kruskal-Wallis rank sum test and Wilcoxon test (p < 0.05).

The effect size of each feature was assessed by LDA (LDA score

(log10) = 3 as the cut-off value) (Ling et al., 2014). Finally,

Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States (PICRUSt) was utilized to assess the potential

differences in metabolic pathways by comparing the 16S rRNA gene
Frontiers in Cellular and Infection Microbiology 03
sequencing data against a reference database of microbial

metagenomics including KEGG and MetaCyc database.
Identification of the OTU biomarkers and
construction of probability of disease

OTU biomarkers in the oral microbiome were selected using the

Wilcoxon rank-sum test (p < 0.05) for further analysis. The optimal

OTUs were identified through the random forest model with a

fivefold cross-validation to construct a diagnostic model in the train

set, effectively distinguishing between the OS group and HC group

with high accuracy and stability (Heitner et al., 2010). The

probability of disease (POD) index and Receiver operating

characteristics (ROC) analysis were then performed to evaluate

the quality of the classification models, with the area under the ROC

curve (AUC) measuring the ROC effect (Robin et al., 2011).

Moreover, the diagnostic efficacy of the diagnostic model was

further validated in the test group.
Statistical analysis

Statistical analyses were conducted using SPSS version 22.0 for

Mac (SPSS, Chicago, Illinois, USA). Continuous variables between

two groups were compared by Student’s t-test or Wilcoxon rank-

sum test. Categorical variables between the two groups were

compared by the c2 test or Fisher’s exact test. Spearman rank

correlation test was utilized for correlation analysis. Statistically

significant differences were identified as p < 0.05 (two-sided).
Results

Study design and subject characteristics

Following strict pathological diagnosis and exclusion criteria, 45

patients diagnosed with osteosarcoma and 90 matched healthy

controls were finally enrolled in the study. Initially, we

characterized the oral microbiota and identified key microbial

markers in both osteosarcoma patients and healthy controls.

Then, all of the eligible participants were randomly allocated into

a training set (30 OS verse 60 HC) and a test set (15 OS verse 30

HC). In the training group, prediction models were constructed

based on the optimal OTUs and further validated for diagnostic

efficacy in the test group (Figure 1).

The general characteristics of the overall participants, including

the clinical data collected from medical records, are summarized in

Table 1. Among the osteosarcoma patients, the mean age at

diagnosis was 16.40 years (standard deviation 5.47) and 25

(55.56%) patients were male. Of the tumor sites, 41 (92.2%) were

located in the lower extremities (femur, fibula, tibia), and 12

(7.80%) were found in the upper extremities (humerus, radius).

The Enneking Stage included the severity, progression, and

prognosis of osteosarcoma showing that 37 (82.22%) patients

were categorized in stage II, and 8 (17.78%) patients were stage
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III. No significant differences existed in terms of age, gender, body

mass index (BMI), and serum levels of white blood cells, red blood

cells, hemoglobin, platelets, and albumin between the OS group and

HC group, while clinically significant increases in the serum levels

of alkaline phosphatase and serum creatinine were observed in the

patient group, as detailed in Table 1.
The richness and diversity of oral
microbiota increased in OS

Rarefaction analysis was conducted to assess the species

richness in each group. A flat curve indicates reasonable species

abundance. The analysis of rarefaction demonstrated that the count

of OTU richness basically approached saturation in each group, and

it was significantly decreased in osteosarcoma (n = 45) compared to

healthy controls (n = 90) (Figure 2A; Additional File 1: Figure S1). A

total of 931 bacterial OTUs were identified across the entire cohort,

with 645 OTUs shared by the two groups. Among these, 49 OTUs

were unique for osteosarcoma and 237 OTUs were specific to

healthy controls (Figure 2B).

We further tested whether the oral microbial diversity differed

across multiple variables between OS and HC. For alpha diversity,
Frontiers in Cellular and Infection Microbiology 04
there were significant differences between the two groups, with

greater richness in the osteosarcoma group based on the

abundance-based coverage estimator (ACE) indices, the Chao,

and observed OTUs (Figures 2C–E; Additional File 2: Data S1).

The Shannon index as one of the community diversities displayed a

slight increase in the osteosarcoma tongue coating microbiome

compared to healthy controls, although this difference was not

statistically significant (Figure 2F). Beta diversity analysis revealed

microbiome space between samples, which determines the distinct

distribution of microbial composition. The distribution of OTUs

was found to significantly differ in the two groups calculated using

NMDS, PCoA analysis, and CAP analysis (Figures 2G–I).
Phylogenetic profiles of the oral
microbiota in OS

To identify key OTU phylotypes in osteosarcoma, the taxa

composition and variation of oral microbiota were analyzed in OS

and HC based on the OTU annotations of each sample. A total of 48

distinguishing OTUs in the tongue-coating microbiota were

identified as the key lineages in osteosarcoma patients and
FIGURE 1

Study design and flow diagram. A total of 147 oral samples were collected. After a rigorous pathological diagnosis and exclusion process, 45 patients
with osteosarcoma and 90 matched healthy controls were ultimately enrolled. Firstly, we analyzed the oral microbiota and identified key microbial
markers in osteosarcoma patients and healthy controls. Then, all of the eligible participants were randomly divided into either the train set (30 OS
verse 60 HC) or the test set (15 OS verse 30 HC). We constructed an osteosarcoma classifier by random forest model in the training group and
validated the diagnostic efficacy in the test group. OS, osteosarcoma; HC, healthy control; RFC, random forest classifier.
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healthy controls (Figure 3, Additional File 2: Data S2). Of the

discriminatory OTUs, 14 were decreased while 34 were increased in

the oral microbiota of osteosarcoma patients compared to

healthy controls.

Relative abundances of taxa at phylum and genus levels were

evaluated, and the average compositions and relative abundances of

bacterial taxa in both groups were shown in Figures 4A, C

(Additional File 2: Data S3, S4), respectively. Bacterial phyla of

Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria

accounting for approximately 90%, were the main dominant

populations in the two groups (Figure 4A; Additional File 2: Data

S5). Compared with healthy controls, Actinobacteriota and

Proteobacteria were decreased significantly in OS, while

Bacteroidetes and Campilobacterota were increased (Figure 4B;

Additional File 2: Data S5). There was no significant difference in
Frontiers in Cellular and Infection Microbiology 05
terms of Firmicutes between the groups. Correspondingly, at the

genus level, 14 genera including Rothia, Halomonas, Rhodococcus,

and Granulicatella were reduced remarkably, whereas 5 genera

including Alloprevotel la , Prevotel la , Selenomonas , and

Campylobacterota were enriched in OS versus HC (Figure 4D;

Additional File 2: Data S6). Additionally, bacterial differences at

the class, order, and family levels in the two groups were also

compared and shown in the Additional File 1: Figures S2-S4 and

Additional File 2: Data S7-S9.
Key bacteria and microbial functions
related to OS

We further compared the oral microbiota using LEfSe to

identify specific bacterial taxa and predominant bacteria

associated with the alteration of oral microbiota between OS and

HC, which implies the differences in oral microbiota in

osteosarcoma patients. Based on the linear discriminant analysis

(LDA) selection, a cladogram representative of key oral microbial

structures and their major bacteria showed the greatest differences

in taxa between OS and HC (Figure 5A; Additional File 2: Data

S10). At the genus level, the tongue-coating microbiota within

osteosarcoma patients was characterized by the preponderance of

3 genera including Prevotella, Alloprevotella, and Campylobacter

(LDA score (log10) > 3). However, 8 genera including Rothia,

Rhodococcus, Halomonas, and Porphyromonas were significantly

enriched in the healthy controls group (LDA score (log10) > 3). The

result is shown in Figure 5B (Additional File 2: Data S11).

Additionally, the relative alterations of major functional and

metabolic modules concerning the different groups were

demonstrated in Additional File 1: Figure S5, indicating the

differences in functional patterns within osteosarcoma patients

compared to the healthy controls. KEGG pathway/module

analysis at level 3 (Figure 5C; Additional File 2: Data S12)

demonstrated that 45 predicted microbial functions, including

other glycan degradation, biosynthesis of ansamycins, one carbon

pool by folate and D-Glutamine and D-glutamate metabolism were

enriched in OS group, whereas 35 functions including cyanoamino

acid metabolism, beta-alanine metabolism, chloroalkane and

chloroalkene degradation and synthesis and degradation of

ketone bodies were significantly abundant in HC (all p < 0.05,

LDA score (log10) > 3).

Furthermore, Spearman’s correlation analysis was utilized to

explore the relationship between the oral microbiome and clinical

data of osteosarcoma. Nine OTUs were found to be related to six

clinical indicators, including age, red blood cell count, hemoglobin,

albumin, serum creatinine, and alkaline phosphatase (Additional

File 1: Figure S6, Additional File 2: Data S13). Of note, alkaline

phosphatase was negatively correlated with six genera including

Halomonas, Rothia, and Rhodococcus, and positively correlated with

one genus (Alloprevotella). This suggested a potential interaction

between oral microbiota and alkaline phosphatase that may be

involved in affecting disease progression.
TABLE 1 Demographics and clinical characteristics of participants in
this cohort.

Clinical
indices

Osteosar-
coma
(n=45)

Healthy
control
(n=90)

p-value

Age (year) 16.40 ± 5.47 17.14 ± 4.81 0.419

Sex

Female 20(44.44%) 39(43.33%) 0.902

Male 25(55.56%) 51(56.67%)

BMI 20.05 ± 4.32 20.43 ± 3.55 0.582

Tumor site

lower
extremity

39(86.70%) − −

upper
extremity

6(13.30%) − −

Tumor
volume (cm3)

303.71 ± 319.24 − −

Enneking stage

stages IIA-IIB 37(82.22%) − −

stages
IIIA-IIIB

8(17.78%) − −

WBC (10ˆ9/L) 5.31 ± 1.40 5.39 ± 1.23 0.982

RBC (10ˆ12/L) 4.66 ± 0.48 4.67 ± 0.43 0.951

Hemoglobin
(g/L)

140.93 ± 14.51 138.23 ± 15.91 0.162

Platelet (10ˆ9/L) 237.13 ± 41.54 258.01 ± 47.71 0.938

Albumin (g/L) 49.098 ± 2.63 48.89 ± 1.80 0.292

Alkaline
phosphatase
(m/L) 262.27 ± 248.88

60.42 ± 15.33 < 0.001

Serum creatinine
(mmol/L) 76.76 ± 10.51 69.91 ± 13.01 0.003
BMI, body mass index; WBC, white blood cells; RBC, red blood cells.
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Diagnostic model of the oral microbial
OTUs-based markers for OS

To explore whether oral microbial OTUs-based markers

accurately distinguish OS from HC, a random forest prediction

model was constructed using fivefold cross-validation in the

training set (30 OS versus 60 HC). The results showed that four

OTU markers , inc lud ing OTU32 (Roth ia ) , OTU440

(Aeromicobium), OTU694 (Alloprevotella), and OTU1071

(Alloprevotella), were identified as the optimal marker set

(Figures 6A, B). The corresponding abundance of these four OTU

markers in each sample was presented in Additional File 2: Data

S14. Subsequently, the POD index was calculated using these four

identified optimal OTUs in the training group. The POD value of

osteosarcoma patients increased significantly compared to healthy

controls, with an area under the receiver operating characteristic

(ROC) curve (AUC) of 99.44% and 95% confidence interval (CI) of

98.47% - 100.00% (p < 0.0001) between the OS and the HC cohorts

as shown in Figures 6C, D (Additional File 2: Data S15).

In addition, an independent validation group was utilized to

confirm the diagnostic efficiency of the oral microbial marker model
Frontiers in Cellular and Infection Microbiology 06
for osteosarcoma in the test set. The relative abundance of the four

OTU markers in each sample within the test set was shown in

Additional File 2: Data S16. Figures 6E, F (Additional File 2: Data

S17) showed that the POD index of osteosarcoma patients was

significantly increased compared with healthy controls, with the

AUC value of 87.33% and 95% CI of 75.24% - 99.43% (p < 0.0001)

in the test set. Importantly, the results suggested the potential of the

oral microbial markers-based classifier model for diagnosing

osteosarcoma in healthy individuals.
Discussion

Osteosarcoma is the most common malignant bone tumor with

an advanced tendency of invasion and metastasis (Beird et al.,

2022). Although the therapeutic regimens (including surgical

techniques, chemotherapy, and radiotherapy) have advanced

significantly in the last few decades, the prognosis is still poor in

osteosarcoma patients with metastases at diagnosis or relapse,

resulting in a high mortality rate (Allison et al., 2012; Gill and

Gorlick, 2021). This may be due to the rarity and heterogeneity of
A B

D E F

G IH

C

FIGURE 2

The diversity of oral microbiota increased in OS. (A) The Rarefaction analysis between the number of samples and OTUs. (B) A Venn diagram showed
that 709 out of 832 OTUs were shared in both groups, while 49 OTUs were unique for OS and 237 OTUs were specific to HC. As measured by ACE
(C), Chao (D), observed OTUs (E), and the Shannon index (F), the oral microbiota diversity was increased in OS (n = 45) versus HC (n = 90). The
NMDS (G), PCoA analysis (H), and CAP analysis (I) showed that the OTUs distribution significantly differed in the two groups. OS, osteosarcoma; HC,
healthy control; OUT, operational taxonomic unit; NMDS, nonmetric multidimensional scaling; PCoA, principal coordinate analysis; CAP, Canonical
analysis of principal coordinates.
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FIGURE 3

Heat map of the relative abundances of the discriminatory OTUs that drive the differences between OS (n = 45) and HC (n = 90). For each sample,
the columns show relative abundance data of the differential OTUs listed on the right of the figure. The relative abundance of each OTU was used to
plot the heat map (blue, low abundance; red, high abundance). Group information is shown above the plot: OS on the left with a red line. HC on the
right with a blue line. Each row represents one OTU. OS, osteosarcoma; HC, healthy control; OUT, operational taxonomic unit.
A

B D

C

FIGURE 4

Phylogenetic profiles of the oral microbiota in OS. (A) The average compositions and relative abundances of bacterial taxa in both groups at the phylum
level, respectively; (B) Significant differences among the abundances of discriminatory phyla between OS (red) and HC (blue); (C) The average compositions
and relative abundances of bacterial taxa in both groups at the genus level, respectively; (D) Significant differences among the abundances of discriminatory
genus between OS (red) and HC (blue). Significant differences by *p < 0.05; **p < 0.01 and ***p < 0.001. OS, osteosarcoma; HC, healthy control.
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the tumor, as well as the lack of identified pathognomonic

mutations and limited diagnostic markers (Davis et al., 1994;

Kansara et al., 2014; Corre et al., 2020). Consequently, it is critical

to identify reliable markers that can detect early osteosarcoma

individuals to improve the prognosis of osteosarcoma.

The human microbiome has been defined as the new emerging

“Hallmarks of Cancer” (Hanahan and Weinberg, 2011). Extensive

studies have now uncovered the role of oral microbiota in the

initiation, progression, and prognosis of multiple cancer types

(Sepich-Poore et al., 2021; Wang et al., 2023), such as oral cancer

(Zhang et al., 2019a), lung cancer (Hosgood et al., 2021), and

colorectal cancer (Rezasoltani et al., 2022). However, the oral

microbiota in osteosarcoma still needs to be further studied. In

this study, we focused on analyzing the bacterial composition and
Frontiers in Cellular and Infection Microbiology 08
functional changes in the tongue-coating microbiota of

osteosarcoma patients compared to healthy controls. We

identified the key microbiota and constructed a microbial

classifier that achieved good diagnostic efficacy in distinguishing

osteosarcoma from healthy controls in China. These findings

suggested that the distinct oral microbiota profiles could

potentially serve as a noninvasive biomarker for osteosarcoma.

The microbiota colonizing the tongue in healthy individuals

was identified at the phylum level, including Firmicutes,

Bacteroidetes, Proteobacteria, Actinobacteria, Spirochaetes,

Fusobacteria, and Synergistetes (Sun et al., 2017; Li et al., 2021).

Consistent with the results aforementioned, our study observed that

Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria were

the predominant bacterial phyla in both osteosarcoma patients and
A
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FIGURE 5

Key bacteria and microbial functions related to OS. (A) Cladogram generated by the LEfSe method indicating the phylogenetic distribution of oral
microbiota associated with OS (red) and HC (blue); (B) LDA scores showed the significant bacterial difference between the OS and HC; (C) Prediction of
the key functional and metabolic pathways between in the two groups. OS, osteosarcoma; HC, healthy control.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1383878
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fcimb.2024.1383878
healthy individuals. In comparison to healthy controls,

Actinobacteriota and Proteobacteria were decreased significantly,

while Bacteroidetes were increased in osteosarcoma. Furthermore,

the different signature of oral microbiota in osteosarcoma patients

was characterized by increased diversity and altered bacterial

communities compared to healthy controls. Notably, the relative

abundance of phylum Bacteroidota (Alloprevotella, Prevotella, and

Campylobacter) exhibited the highest in osteosarcoma patients,

followed by the unclassified phylum Selenomonas. Some of these

bacteria are recognized as opportunistic pathogens that may

pose a risk to the host. Specifically, Alloprevotella has been

implicated in the development of oral cavity squamous cell
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cancer (Ganly et al., 2019) and the prognosis of colorectal

cancer (Ge et al., 2020; Wang et al., 2021). Prevotella and

Selenomonas genera are associated with severe early childhood

caries (He et al., 2015; Zhang et al., 2019b), while Campylobacter

is linked to malignant oral leukoplakia (Amer et al., 2017).

We further explored the relationship between oral microbiota

and clinical indices in osteosarcoma. For example, Alloprevotella

was positively correlated with alkaline phosphatase (r = 0.222,

p = 0.009), indicating that the potential link between

Alloprevotella and bone metabolism may be involved in the

progression of osteosarcoma. Several clinical trials have reported

significantly poorer overall survival in osteosarcoma patients with
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FIGURE 6

Diagnostic potential of oral microbial markers for OS. (A) Four OUTs were identified as the optimal markers set by the random forest model.
(B) Importance distribution map of the selected microbial markers in the model. (C) The POD value was significantly increased in OS (n = 30) versus
HC (n = 60) in the training cohort. (D) The POD value achieved an AUC of 99.44% (95% CI 0.9847–1.0000, p < 0.0001) in the training cohort.
(E) The POD value was remarkably increased in OS (n = 15) compared with HC (n = 30) in the independent test cohort; (F) The POD value achieved
an AUC of 87.33% (95% CI 0.7524–0.9943, p < 0.0001) in the independent validation cohort. OUT, operational taxonomic unit; CI, confidence
interval; OS, osteosarcoma; HC, healthy control; POD probability of disease, AUC, area under the curve.
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high levels of alkaline phosphatase than in those with low levels

(Ferrari et al., 2001; Bacci et al., 2006). It is important to note that

while our correlation analysis hints at a potential relationship

between clinical parameters and oral microbiota. Whether there is

a causal relationship and its specific mechanism, needs to be

verified experimentally.

Recently, convincing studies have demonstrated that the oral

microbiome is not only closely related to a variety of diseases but

can also serve as a non-invasive diagnostic tool for specific diseases.

Zhang et al. constructed an oral microbial diagnostic model and

verified its diagnostic efficacy in rheumatoid arthritis (Zhang et al.,

2015). Flemer et al. analyzed the alterations of the oral microbiome

in colorectal cancer and developed a diagnostic model based on 16

optimal oral microbial markers, which achieved good diagnostic

efficacy in distinguishing colorectal cancer from healthy individuals

(Flemer et al., 2018). Our previous studies presented that oral

microbial markers could be a potential non-invasive diagnostic

tool for COVID-19 (Ren et al., 2021) and SLE (Guo et al., 2023). In

this research, we established and validated a diagnostic model for

osteosarcoma based on four optimal OTUs from the oral

microbiota. This model effectively differentiated between

osteosarcoma patients and healthy controls with an area under

the curve of 99.44% in the training group and 87.33% in the test

group, respectively. The oral microbial markers identified

demonstrated promising diagnostic capabilities in discerning

osteosarcoma cases. Overall, these findings underscored the

potential utility of oral microbiota as a non-invasive diagnostic

tool for osteosarcoma.

Despite the advantages outlined above, this study is limited by the

scarcity of newly diagnosed osteosarcoma patients and challenges in

obtaining an adequate sample size. Additionally, being a single-center

study in China, the performance of the diagnostic model lacks

validation across multiple regions. Furthermore, the mechanisms

through which the oral microbiome contributes to osteosarcoma

development have not been elucidated. These issues need to be

investigated in further study.
Conclusion

In summary, the study characterized the alteration of oral

microbiota in osteosarcoma patients compared with healthy controls

and identified key bacteria that distinguish osteosarcoma patients

from healthy subjects. The results confirmed the association between

oral microbiota and osteosarcoma. Notably, a new diagnostic model

based on oral microbial signatures was established, thus providing a

potential non-invasive diagnostic method for osteosarcoma.

Therefore, the results suggested that oral microbiota could serve as

targeted indicators for developing new diagnostic tools or treatment

approaches for osteosarcoma in the future.
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