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MDSCs use a complex molecular
network to suppress T-cell
immunity in a pulmonary
model of fungal infection
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Bianca Vieira Santos1, Nycolas Willian Preite1,
Vera Lucia Garcia Calich2 and Flávio Vieira Loures1*

1Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil,
2Department of Immunology, Institute of Biomedical Sciences, University of São Paulo – USP,
São Paulo, Brazil
Background: Paracoccidioidomycosis (PCM) is a systemic endemic fungal

disease prevalent in Latin America. Previous studies revealed that host

immunity against PCM is tightly regulated by several suppressive mechanisms

mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3

indoleamine dioxygenase (IDO-1), regulatory T-cells (Tregs), and through the

recruitment and activation of myeloid-derived suppressor cells (MDSCs). We

have recently shown that Dectin-1, TLR2, and TLR4 signaling influence the IDO-

1-mediated suppression caused by MDSCs. However, the contribution of these

receptors in the production of important immunosuppressive molecules used by

MDSCs has not yet been explored in pulmonary PCM.

Methods:We evaluated the expression of PD-L1, IL-10, as well as nitrotyrosine by

MDSCs after anti-Dectin-1, anti-TLR2, and anti-TLR4 antibody treatment

followed by P. brasiliensis yeasts challenge in vitro. We also investigated the

influence of PD-L1, IL-10, and nitrotyrosine in the suppressive activity of lung-

infiltrating MDSCs of C57BL/6-WT, Dectin-1KO, TLR2KO, and TLR4KOmice after

in vivo fungal infection. The suppressive activity of MDSCs was evaluated in

cocultures of isolated MDSCs with activated T-cells.

Results: A reduced expression of IL-10 and nitrotyrosine was observed after in

vitro anti-Dectin-1 treatment of MDSCs challenged with fungal cells. This finding

was further confirmed in vitro and in vivo by using Dectin-1KO mice.

Furthermore, MDSCs derived from Dectin-1KO mice showed a significantly

reduced immunosuppressive activity on the proliferation of CD4+ and CD8+ T

lymphocytes. Blocking of TLR2 and TLR4 by mAbs and using MDSCs from

TLR2KO and TLR4KO mice also reduced the production of suppressive

molecules induced by fungal challenge. In vitro, MDSCs from TLR4KO mice

presented a reduced suppressive capacity over the proliferation of CD4+ T-cells.

Conclusion:We showed that the pathogen recognition receptors (PRRs) Dectin-

1, TLR2, and TLR4 contribute to the suppressive activity of MDSCs by inducing the

expression of several immunosuppressive molecules such as PD-L1, IL-10, and
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nitrotyrosine. This is the first demonstration of a complex network of PRRs

signaling in the induction of several suppressive molecules by MDSCs and its

contribution to the immunosuppressive mechanisms that control immunity and

severity of pulmonary PCM.
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1 Introduction

Myeloid-derived suppressor cells (MDSCs) are heterogeneous

cell populations that can impair immune responses. These cells

comprise morphologically distinct subsets such as monocyte-like

MDSCs (M-MDSCs) and polymorphonuclear-like MDSCs (PMN-

MDSCs). M-MDSCs are classified as CD11b+Ly6G−Ly6Chi and

PMN-MDSCs are defined as CD11b+Ly6G+Ly6Clow, both of

which are implicated in various aspects of immune regulation,

from pregnancy to diseases that involve chronic inflammation,

including infections, autoimmune diseases, and other pathologies

(Bronte et al., 2016; Köstlin et al., 2016; Goldmann et al., 2017).

MDSCs have a strong ability to suppress T-cell responses. After

migration to target sites that exhibit a milieu of cytokines,

chemokines, and other inflammatory mediators, MDSCs adapt

and acquire a suppressive behavior, such as the production of

IDO-1, nitric oxide (NO), IL-10, as well as the expression of

programmed death-ligand 1 (PD-L1), an immune checkpoint

inhibitor (Gabrilovich and Nagaraj, 2009; Goh et al., 2013; Poe

et al., 2013; Dorhoi and Du Plessis, 2017).

Characterized as a chronic systemicmycosis, Paracoccidioidomycosis

(PCM) has a high prevalence in Latin America. The etiological agents of

the disease are the thermally dimorphic fungi Paracoccidioides

brasiliensis, P. lutzii, P. americana, P. restrepiensis, and P. venezuelensis

(Teixeira et al., 2009; Turissini et al., 2017). The infection occurs from

inhaling conidia or mycelial fragments into the lungs’ host, which can

lead to a latent infection. However, the reactivation of a latent focus or the

progression of a primary infection event can cause overt disease, which

can be acute or chronic (McEwen et al., 1987; Brummer et al., 1993;

Colombo et al., 2011; Coutinho et al., 2015; de Oliveira et al., 2016;

Turissini et al., 2017). Both in human and murine models, resistance to

PCM has been related to the predominant secretion of Th1 cytokines,

such as interferon-gamma (IFN-g), while the predominance of cytokines

with a Th2 profile has been related to severe and progressive disease

(Kashino et al., 2000; Souto et al., 2000; Pagliari et al., 2011; Pina et al.,

2013). Furthermore, the expression of IL-17 in cells from patients with

PCM has been associated with the organization of mucosal and

cutaneous granulomas. Additionally, transcripts to IL-17 were reported

within granulomatous lesions in murine models, indicating the

participation of Th17 immunity in PCM granulomas (Pagliari et al.,

2011; De Castro et al., 2013). The resistance to disease mediated by IFN-g
02
and tumor necrosis factor-alpha (TNF-a) produced by Th1 immunity,

results in activated macrophages that characterize the asymptomatic

individuals. The severe acute form of the disease, also called the “juvenile

form”, has a predominance of a Th2/Th9 profile with a strong humoral

response and high production of antibodies. Severe cases of the chronic

form of PCM can also present elevated IL-10 and IL-4 production due to

prevalent Th2 immunity. Furthermore, the predominance of a Th17

immune response concomitant with a robust participation of Th1

immunity mediated has also been described in the inflammatory

response that characterizes the chronic form of the disease (Borges

et al., 2023).

The immunoregulatory mechanisms that control resistance to

PCM are multifaceted and not yet completely solved. Previous studies

revealed that host immunity is tightly regulated by several suppressive

mechanisms mediated by tolerogenic plasmacytoid dendritic cells,

the enzyme 2,3 indoleamine dioxygenase (IDO-1), the transcription

factor Aryl Hydrocarbon Receptor (AhR) regulatory T-cells (Tregs),

and MDSCs (Felonato et al., 2012; Pina et al., 2013; Araújo et al.,

2016; de Araújo et al., 2017a; de Araújo et al., 2017b; Preite et al.,

2018; de Araújo et al., 2020; de Araújo et al., 2021). In a previous

study, we demonstrated that the increased influx of MDSCs into the

lungs of P. brasiliensis-infected mice was linked to more severe

disease and impaired Th1 and Th17 protective responses. Besides,

partial reduction of MDSC using anti-Gr1 antibody led to a robust

Th1/Th17 response, resulting in regressive disease as revealed by

reduced fungal burden on target organs, diminishing lung pathology,

and diminished mortality ratio as compared with control IgG2b-

treated mice. The suppressive activity of MDSCs on CD4+ and CD8+

T-lymphocytes and Th1/Th17 cells was also demonstrated in vitro

using coculture experiments. Conversely, the adoptive transfer of

MDSCs to P. brasiliensis-infected mice resulted in a more severe

disease (Preite et al., 2023).

Dectin-1, TLR2, and TLR4 are pattern recognition receptors

(PRRs) classically recognized as important sensors for the

pathogen-associated molecular patterns (PAMPs) of fungi

(Romani, 2011). Dectin-1 is a specific receptor for b-glucans,
which are found in abundance in the cell walls of fungi (Brown

et al., 2003). The involvement of the Dectin-1 receptor has already

been extensively studied in murine models of PCM (Calich et al.,

2008; Loures et al., 2014; Loures et al., 2015; Preite et al., 2018).

The importance of TLR2 and TLR4 has also been investigated in
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murine (Loures et al., 2009; Loures et al., 2010) and human PCM

(Bonfim et al., 2009) by our research group. The recruitment of

MDSCs as well as the production of immunosuppressive molecules

by these cells has already been observed in different clinical contexts

(Ray et al., 2013; Karumuthil-Melethil et al., 2014; Rieber et al.,

2015; Zhai et al., 2017; Bahraoui et al., 2020; Oliveira et al., 2021).

Infection by the fungi Aspergillus fumigatus and Candida albicans

promotes the recruitment of MDSCs, whose mechanism of action

depends on Dectin-1 signaling, leading to the production of reactive

oxygen species with concomitant production of IL-1b (Rieber et al.,

2015). In addition, monocytic MDSCs can be induced by TLR2 and

TLR4 cognates derived from infectious agents such as hepatitis C

virus (HCV) and Staphylococcus aureus (Zhai et al., 2017). Of note,

S. aureus has TLR2 agonists that can induce the differentiation of

MDSCs from monocytes, which leads to the accumulation of these

suppressor cells in skin lesions (Skabytska et al., 2014; Dorhoi and

Du Plessis, 2017). In addition, we have recently reported that IDO-1

expression by MDSCs is important for the control of T-cell

proliferation and is partially dependent on Dectin-1, TLR2, and

TLR4 signaling during P. brasiliensis infection in mice (Karumuthil-

Melethil et al., 2014). Considering these previous findings, we aimed

to investigate the influence of Dectin-1, TLR2, and TLR4 from

MDSCs on the expression of PD-L1, IL-10, and NO suppressive

molecules by MDSCs. Besides, we investigated the importance of

these receptors for the suppressive activity of MDSCs on T-

activated cells using coculture experiments.
2 Methods

2.1 Ethics statement

The experiments were performed in strict accordance with the

Brazilian Federal Law 11,794 establishing procedures for the

scientific use of animals and the State Law establishing

the Animal Protection Code of the State of São Paulo. Also, the

experiments were performed following the ARRIVE guidelines. All

efforts were made to minimize animal suffering. The procedures

were approved by the Ethics Committee on Animal Experiments of

the Federal University of São Paulo-UNIFESP (Protocol N

° 2135170220).
2.2 Mice

Eight- to 12-week-old male C57BL/6J WT, TLR2KO, and

TLR4KO mice were bred as specific pathogen-free mice at the

Center for the Development of Experimental Models for Biology

and Medicine, Federal University of São Paulo – CEDEME-

UNIFESP, and kept in the Facility of the Institute of Science and

Technology of the Federal University of São Paulo – ICT-UNIFESP

in São José dos Campos. Also, 8- to 12-week-old male C57BL/6

(backcrossed for at least nine generations) Dectin-1 KO and WT

mice were obtained from the specific pathogen-free Isogenic

Breeding Unit of the Department of Immunology, Institute of

Biomedical Sciences, University of São Paulo, and kept in the
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Faci l i ty of ICT-UNIFESP. In agreement with ethical

recommendations regarding the use and demand of genetically

modified animals, we used cells from a few wild-type animals to

differentiate MDSCs. We then used mAbs against the PRRs of

interest as an exploratory study into the possible effects of the non-

availability of these PRRs in these suppressor cells. Without

preliminary results (replicated or not with KO cells or animals),

the use of genetically modified animals at first would not be ethically

acceptable to the committees.
2.3 Fungal strain and mice infection

Virulent P. brasiliensis 18 (Pb18 isolate) yeast cells were

maintained by weekly cultivation in Fava Netto culture medium at

37°C and used on days 7–8 of culture. The viability of yeasts, which

was always higher than 95%, was determined using Janus Green B vital

dye (Merck). Mice were anesthetized and subjected to intratracheally

(it.) infection as previously described (Cano et al., 1995). In brief, after

intraperitoneal (ip.) injection of ketamine (90 mg/kg) and xylazine (10

mg/kg), animals were infected with 1 × 106 yeast cells in 50 mL
phosphate-buffered saline (PBS) by surgical (it.) inoculation, which

allowed direct dispensing of the fungal cells into the lungs.
2.4 Flow cytometry

Cell suspensions were added to 96-well round-bottoms plates,

and Fc receptors were blocked using 10 ng/mL Fc block

(eBiosciences) for 10 min at 4°C. Plates were washed twice with

FACs Buffer (BioLegend). Afterward, 25 mL of a mixture containing

1% of each fluorochrome-conjugated antibody used for M-MDSC

and PMN-MDSC identification was added per well and incubated

for 25 min at 4°C. The conjugated antibodies used for MDSC

identification were Live/Dead-BV510, CD45-BV605, CD11b-

APCCy7, Ly6C-APC R700, and Ly6G-BV421. The Supplementary

Figures 1A–E shows the gating strategy for MDSC identification.

We also evaluated the surface expression of PD-L1 (CD274) using

anti-mouse PD-L1 PECy7 (Biolegend) (Supplementary Figure 1F)

and the intracellular expression of IL-10 and nitrotyrosine in

MDSCs. For intracellular cell staining, cells were treated with

fixation/permeabilization buffer (BD Biosciences) for 20 min at

4°C. Then, cells were washed and submitted to a 25 mL mix of a

FACs buffer containing 2% of the anti-IL-10 PerCP (Biolegend) and

anti-nitrotyrosine FITC. For in vitro experiments, a total of 50,000

events were acquired while for in vivo experiments 100,000 events

were acquired, both using the FACSuite software (BD Biosciences)

and a BD FACS Lyric equipment. Cell population analysis was

performed using the FlowJo software (Tree Star).
2.5 In vitro generation of MDSCs from
mice bone-marrow

Bone-marrow-derived MDSCs (BM-MDSCs) were generated

from naïve C57BL/6 WT, Dectin-1KO, TLR2KO, and TLR4KO
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mice as previously described (Kurkó et al., 2014; Kaminski et al.,

2023). Mice were euthanized with intraperitoneal (ip.) injections of

ketamine (270 mg/kg) and xylazine (30 mg/kg). Then, BM cells

were flushed out from the femurs and tibias of mice with a 1 mL

syringe and Dulbecco’s Modified Eagle Medium (DMEM, Sigma-

Aldrich) supplemented with 3% fetal bovine serum (FBS). For red

blood cell (RBC) lysis, RBC lysis buffer (BioLegend) was used for 4

min. Cells were then washed with DMEM, and 7 × 105 white blood

cells per mL were seeded in cell culture bottles with DMEM

supplemented with 10% FBS, recombinant murine IL-6, and

granulocyte-monocyte colony-stimulating factor (GM-CSF), both

at 10 ng/mL (Biolegend) for MDSCs stimulation. BM cells were

cultured for three days at 37°C in a 5% CO2 chamber. BM-MDSCs

were positively isolated from other myeloid cell populations using

the MDSC-isolation kit (Miltenyi), following the manufacturer’s

instructions. Concerning the yeast-cells ratio used for in vitro

challenge of MDSCs with P. brasiliensis, in our previous work

investigating MDSCs in murine PCM we observed that an

intratracheal infection of mice with 1 million P. brasiliensis yeasts

resulted in the recovery of approximately 8 million MDSCs

( c omp r i s i n g 3 m i l l i o n mono c y t i c a n d 5 m i l l i o n

polymorphonuclear cells) from the lungs after 72 hours,

representing an estimated ratio of 1:8 (Preite et al., 2023). It is

important to mention that, during in vivo infection (or natural

infection), the presence of the fungus in the host’s tissues triggers

the entire inflammatory response, including MDSC recruitment.

Our pilot experiments on the in vitro fungal challenge started with

yeast-to-MDSC ratios of 1:8 and 1:10. However, at a 1:10 ratio, cell

death occurred, preventing co-culture with lymphocytes and

subsequent flow cytometry analysis. To improve cell viability, we

increased the proportion of cells, as smaller proportions yielded few

live MDSCs for flow cytometric analysis involving intracellular cell

staining (Kaminski et al., 2023).
2.6 Blockade of Dectin-1, TLR2, and TLR4
of BM-MDSCs by mAbs

BM-MDSCs obtained from C57BL/6 WT mice were treated or

not with 10mg/mL of anti-Dectin-1 (Thermo Fisher), anti-TLR2, or

anti-TLR4 (both from Invitrogen). For each treatment, 2 × 105 BM-

MDSCs were seeded in a 96-well round-bottom plate. A

monoclonal IgG2b (BioxCell) was used as an isotype control.
2.7 Immunosuppression of BM-MDSCs on
T-lymphocytes

Single-cell suspensions were generated from the spleens of naïve

C57BL/6 WT mice. After RBC lysis, T-cell populations were

isolated from splenocytes using the Pan T-Cell Isolation Kit

(Miltenyi) according to the manufacturer’s instructions. To

analyze the proliferation of T-lymphocytes, cells were stained

with carboxyfluorescein succinimidyl ester (CellTrace™ CFSE

Cell Proliferation Kit, Invitrogen) according to the manufacturer’s

instructions. Subsequently, 1 × 106 T-cells were activated with 1 mg/
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mL anti-CD3 and anti-CD28 monoclonal antibodies (BioLegend)

and cultured at 37°C and 5% CO2 for four days in the presence or

absence of 1 × 105 BM-MDSCs per well in a 96-well round-bottom

plate. Of note, BM-MDSCs were previously challenged or not with

4 × 103 P. brasiliensis yeasts. T-cell proliferation was defined

according to the CFSE dilution and assessed by flow cytometry as

previously shown (Supplementary Figure 2) (Mannering et al.,

2003; Kaminski et al., 2023).
2.8 Lung infiltrating MDSCs in WT, Dectin-
1KO, TLR2KO, and TLR4KO infected mice

Lungs were collected from C57BL/6 WT, Dectin-1KO,

TLR2KO, and TLR4KO P. brasiliensis-infected mice 72 h, two

weeks, and eight weeks post-infection. Lung tissue was

enzymatically digested in RPMI medium with 10% FBS

containing 2 mg/mL of collagenase (Sigma-Aldrich) at 37°C for

40 min and 120 rpm in a shaker incubator. Lung leukocyte

suspensions were obtained as previously described (Loures et al.,

2014) and cells were subjected to cell staining as described above.
2.9 Statistical analysis

Statistical analysis was performed using GraphPad Prism,

version 8. Comparisons of two Groups, means and ± standard

errors were analyzed by unpaired Student’s t-test. For comparisons

with more than two groups, significance was determined using

One-Way ANOVA with the Tukey test.
3 Results

3.1 Dectin-1 absence decreased the
number of lung-infiltrating M-MDSCs
PD-L1+ after 72 h of infection

We have used three different approaches: cells fromwild-type mice

and receptor blockade with mAbs, bone marrow extraction from

genetically modified (KOs) animals and subsequently in vitro

generation of MDSCs, and finally, in vivo infection of WT and KO

animals at different times of infection to confirm or not our findings

obtained in vitro. We previously demonstrated that Dectin-1

deficiency influences the production of IDO-1, an important

immunosuppressive mechanism of MDSCs in PCM (Kaminski

et al., 2023; Preite et al., 2023). Here, we tested whether Dectin-1

could be involved in other immunosuppressive mechanisms of

MDSCs, such as PD-L1 expression. The expression of PD-L1 in

MDSCs was not affected by anti-Dectin-1 treatment or Dectin-1

absence in vitro (Figures 1A, B). Since the experiments in triplicate

with mAbs showed some significant differences between the groups,

we further investigated the effect in deficient animals for the genes

coding for the molecules of interest. However, we could observe a

reduced total number of PD-L1+ M-MDSCs after 72h of infection
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(Figure 1C), which could be a direct effect of the reduced number ofM-

MDSCs recruited to lungs 72 h post-infection (Kaminski et al., 2023).

Interestingly, it has been shown that the expression of PD-L1 on

murine and human neutrophils was upregulated upon the engagement

of Dectin-1 in C. albicans yeast infection (Yu et al., 2022).
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However, our results regarding PD-L1+ PMN-MDSCs were similar

between WT and Dectin-1KO mice (Figure 1D). These results suggest

that different fungi may elicit distinct mechanisms in different immune

cells, especially considering cells in different stages of differentiation,

such as MDSCs.
B

C

D

A

FIGURE 1

The role of Dectin-1 signaling in PD-L1 expression by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and cultured in
96-well plates (2 × 105 cells per well) and challenged with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight or not (control). In addition,
some wells were treated with 10 µg/mL of anti-Dectin-1 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in
MDSCs generated from WT and Dectin-1KO mice. (A) The frequencies of PD-L1+M- and PMN-MDSCs following treatment with anti-Dectin-1 or
IgG2b control. (B) The frequencies of PD-L1+M- and PMN-MDSCs generated in vitro from WT and Dectin-1 KO mice. Differences between groups
were analyzed by analysis of variance (ANOVA) followed by the Tukey test. The data represent three independent experiments (N = 5 wells/
treatment). Results were considered significant at *p < 0.05. **p < 0.01. (C, D) WT and Dectin-1 KO mice were intratracheally infected with 1 × 106 P.
brasiliensis yeasts. Lungs were collected after 72 h, two weeks, and eight weeks of infection. Adequate antibodies conjugated to fluorochromes were
used to characterize MDSC subpopulations, as shown in Supplementary Figure 1. The frequency and total cell count of lung-infiltrating M-MDSCs
(C) and PMN-MDSCs (D) positive to PD-L1 72 h, two weeks, and eight weeks post-infection were determined by comparing WT with Dectin-1KO.
The data represent three independent experiments with 3–5 mice each. For comparisons between the two groups, the mean ± SEM was obtained
and analyzed by the unpaired Student’s t-test. Differences were considered significant at *p < 0.05.**p < 0.01.
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3.2 Dectin-1 deficiency affected IL-10
production by MDSCs in vitro and in vivo
after P. brasiliensis infection

IL-10 production is another suppressive molecule used by MDSC

activity during P. brasiliensis infection (Preite et al., 2023). Of note, it

has been shown that Dectin-1 regulates IL-10 production via

mitogen- and stress-activated protein kinase (MSK1/2) and cyclic

AMP-response element-binding protein 1 (CREB), thus promoting

the induction of regulatory macrophage markers after zymosan

stimulation (Elcombe et al., 2013). As can be seen in Figure 2A,

anti-Dectin-1 treatment diminished the ability of M- and PMN-

MDSCs to produce IL-10 in vitro after yeast challenge, in addition to

Dectin-1KOMDSCs that also presented impaired IL-10 expression in

vitro (Figure 2B). In vivo, reduced IL-10+M-MDSCs were observed in

the lungs of Dectin-1KO mice after 72 h and 2 weeks of infection

(Figure 2C), while PMN-MDSCs presented impairments in IL-10

expression 2 weeks post-infection (Figure 2D). Together, our results

reinforce the important role of IL-10 as a potent immunosuppressive

factor elicited by the activation of C-type lectin receptors by

fungal pathogens.
3.3 Dectin-1 absence reduced
the production of nitrotyrosine
by MDSCs in vitro and in vivo
after P. brasiliensis infection

Peroxynitrite is the product of the reaction of nitric oxide (NO) and

superoxide radicals, being a short-lived reactive peroxide and a good

oxidant. Radicals derived from peroxynitrite act by promoting the

nitration of proteins. A recognized protein modification left by

peroxynitrite in vitro and in vivo is the formation of 3-nitrotyrosine

(Radi, 2013). Of note, the immunosuppressive function of MDSCs has

been related to the inducible nitric oxide synthase (iNOS) pathway,

leading to NO synthesis and reactive oxygen species (ROS) generation

(Ohl and Tenbrock, 2018). In this way, it is possible to evaluate

peroxynitrite-producing MDSCs using an anti-nitrotyrosine antibody

to residues in intracellular compartments. Here, we investigated the

production of nitrotyrosine in vitro and in vivo in the context of Dectin-

1 deficiency and P. brasiliensis yeast challenge. In vitro, no differences

were observed regarding monocytic MDSCs (Figures 3A, B, left panels)

when both WT and KO cells were challenged with P. brasiliensis.

Additionally, PMN-MDSCs were unable to increase nitrotyrosine

production after fungal infection after blocking Dectin-1 with a

monoclonal antibody (Figure 3A, right panel). The production of

nitrotyrosine by Dectin-1KO PMN-MDSCs was smaller than that of

WT PMN-MDSCs (Figure 3B, right panel). The production of

nitrotyrosine was also investigated in lung-infiltrating MDSCs from

WT and Dectin-1KO animals. A lower frequency of nitrotyrosine+ M-

MDSCs was observed after 8 weeks of infection in Dectin-1KO mice

(Figure 3C, left panel) compared to WT counterparts. Besides, M-
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MDSCs from Dectin-1KO animals had a lower total number of

nitrotyrosine-producing cells 72 hours and 8 weeks post-infection

(Figure 3C, right panel). Interestingly, concerning lung infiltrating

nitrotyrosine-producing PMN-MDSCs, lower frequency and number

of these cells were observed in Dectin-1KO animals 2 weeks after

infection (Figure 3D) compared toWT animals. Given the discrepancies

observed in nitrotyrosine production between in vitro experiments with

mAbs and Dectin-KO cells, it is important to emphasize the significance

of in vivo experiments for elucidating the role of Dectin-1 in MDSCs

activity. Considering this, Supplementary Figure 3 presents the replicates

of the in vivo experiments shown in Figures 3C, D.
3.4 In vivo, TLR2 absence affected the
expression of PD-L1 by PMN-MDSCs 72
hours and 2 weeks post-infection

In our investigations into the role of TLR2 and TLR4 in the

activity of MDSCs, we also employed three distinct approaches: the

use of wild-type cells, receptor blockade, and validation of results

using cells from receptor knockout mice and in vivo infection. The

signaling through TLRs in MDSCs has been extensively investigated

in various infectious diseases (Tacke et al., 2012; Skabytska et al.,

2014; Pang et al., 2016; Ren et al., 2016; Dorhoi and Du Plessis, 2017;

Zhai et al., 2017). To assess the influence of TLR2 on in vitro-

generated MDSCs challenged with P. brasiliensis yeast, we used bone

marrow cells from WT and TLR2KO mice. Administration of anti-

TLR2 and the use of TLR2KO mice showed no alteration in PD-L1

expression in MDSCs in vitro (Figures 4A, B). Furthermore, in vivo,

PD-L1 expression in M-MDSCs was unaffected (Figure 4C).

However, when analyzing PMN-MDSCs from lung infiltrates of

TLR2KO mice, we observed an increase in PD-L1 expression after

72 hours, followed by a reduction after two weeks of infection

(Figure 4D). These data suggest little effect of TLR2 on PD-L1

expression by MDSCs, but a dual influence on PMN-MDSCs

recruited to the site of infection during the acute phase of the disease.
3.5 Deficiency in TLR2 signaling altered the
expression of IL-10 by MDSCs

Previous studies have suggested that MDSCs are the main

producers of IL-10 in tumors and infections (Huang et al., 2006; Ren

et al., 2016). Then, we also evaluated if TLR2 deficiency would interfere

with the IL-10 production by these suppressive cells in the context of P.

brasiliensis infection. After treatment with anti-TLR2 and the use of

TLR2KO cells, TLR2-deficient PMN-MDSCs showed no change in IL-

10 expression compared to controls (Figures 5A, B). However, a

reduced frequency of IL-10+ M-MDSCs was observed after anti-

TLR2 treatment or in TLR2 absence after yeast challenge

(Figures 5A, B). Under in vivo conditions, at 72 hours and 2 weeks

post-infection, results regarding IL-10+ MDSCs were similar between

WT and TLR2-deficient mice (Figures 5C, D). However, after 8 weeks
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of infection, TLR2KO mice presented a reduced frequency of IL-10+

PMN-MDSCs compared to WT mice (Figure 5D). These results

indicate that TLR2 deficiency led to a reduction in the presence of

MDSCs expressing IL-10 recruited to the lungs during P. brasiliensis
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infection in the chronic phase of the disease. Therefore, our results

corroborate previous data from other studies that showed IL-10 as an

important suppressive mechanism for MDSCs (Dorhoi and Du

Plessis, 2017).
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FIGURE 2

The role of Dectin-1 signaling in IL-10 production by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and cultured in 96-
well plates (2 × 105 cells per well) and challenged with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight or not (control). In addition, some
wells were treated with 10 µg/mL of anti-Dectin-1 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in MDSCs
generated from WT and Dectin-1 KO mice. (A) The frequencies of IL-10+M- and PMN-MDSCs following treatment with anti-Dectin-1 or IgG2b
control. (B) The frequencies of IL-10+M- and PMN-MDSCs generated in vitro from WT and Dectin-1 KO mice. Differences between groups were
analyzed by analysis of variance (ANOVA) followed by the Tukey test. The data represent three independent experiments (N = 5 wells/treatment).
Results were considered significant at *p < 0.05. **p < 0.01 and ****p < 0.0001. (C, D) WT and Dectin-1 KO mice were intratracheally infected with
1 × 106 P. brasiliensis yeasts. Lungs were collected after 72 h, two weeks, and eight weeks of infection. Adequate antibodies conjugated to
fluorochromes were used to characterize MDSC subpopulations, as shown in Supplementary Figure 1. The frequency and total cell count of lung-
infiltrating M-MDSCs (C) and PMN-MDSCs (D) positive for IL-10 72 h, two weeks, and eight weeks post-infection were determined by comparing WT
with Dectin-1 KO. The data represent three independent experiments with 3–5 mice each. For comparisons between the two groups, the
mean ± SEM was obtained and analyzed by the unpaired Student’s t-test. Differences were considered significant at *p < 0.05.**p < 0.01. Replicates
of the in vivo experiments are shown in Supplementary Figure 3.
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FIGURE 3

The role of Dectin-1 signaling in the generation of nitrotyrosine by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and
cultured in 96-well plates (2 × 105 cells per well) and challenged with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight or not. In addition,
some wells were treated with 10 µg/mL of anti-Dectin-1 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in
MDSCs generated from WT and Dectin-1 KO mice. (A) The frequencies of Nitrotyrosine+M- and PMN-MDSCs following treatment with anti-Dectin-
1 or IgG2b control. (B) The frequencies of nitrotyrosine+M- and PMN-MDSCs generated in vitro from WT and Dectin-1KO mice. Differences
between groups were analyzed by analysis of variance (ANOVA) followed by the Tukey test. The data represent three independent experiments
(N = 5 wells/treatment). Results were considered significant at p < 0.05. **p < 0.01 and ****p < 0.0001. (C, D) WT and Dectin-1KO mice were
intratracheally infected with 1 × 106 P. brasiliensis yeasts. Lungs were collected after 72 h, two weeks, and eight weeks of infection. Adequate
antibodies conjugated to fluorochromes were used to characterize MDSC subpopulations, as shown in Supplementary Figure 1. The frequency and
total cell count of lung-infiltrating M-MDSCs (C) and PMN-MDSCs (D) positive for nitrotyrosine 72 h, two weeks, and eight weeks post-infection
were determined by comparing WT with Dectin-1 KO. The data represent three independent experiments with 3–5 mice each. For comparisons
between the two groups, the mean ± SEM was obtained and analyzed by the unpaired Student’s t-test. Differences were considered significant at
*p < 0.05. **p < 0.01. Replicates of the in vivo experiments are shown in Supplementary Figure 4.
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FIGURE 4

The role of TLR2 signaling in PD-L1 expression by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and cultured in 96-
well plates (2 × 105 cells per well) and challenged with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight or not (control). In addition, some
wells were treated with 10 µg/mL of anti-TLR2 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in MDSCs
generated from WT and TLR2KO mice. (A) The frequencies of PD-L1+M- and PMN-MDSCs following treatment with anti-TLR2 or IgG2b control.
(B) The frequencies of PD-L1+M- and PMN-MDSCs generated in vitro from WT and TLR2KO mice. Differences between groups were analyzed by
analysis of variance (ANOVA) followed by the Tukey test. The data represent three independent experiments (N = 5 wells/treatment). Results were
considered significant at *p < 0.05. **p < 0.01. (C, D) WT and TLR2KO mice were intratracheally infected with 1 × 106 P. brasiliensis yeasts. Lungs were
collected after 72 h, two weeks, and eight weeks of infection. Adequate antibodies conjugated to fluorochromes were used to characterize MDSC
subpopulations, as shown in Supplementary Figure 1. The frequency and total cell count of lung-infiltrating M-MDSCs (C) and PMN-MDSCs (D)
positive to PD-L1 72 h, two weeks, and eight weeks post-infection were determined by comparing WT with TLR2KO. The data represent three
independent experiments with 3–5 mice each. For comparisons between the two groups, the mean ± SEM was obtained and analyzed by the
unpaired Student’s t-test. Differences were considered significant at *p < 0.05. **p < 0.01, ***p < 0.001, and ****p < 0.0001. Replicates of the in vivo
experiments are shown in Supplementary Figure 5.
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FIGURE 5

The role of TLR2 signaling in IL-10 production by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and cultured in 96-well
plates (2 × 105 cells per well) and challenged with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight or not (control). In addition, some
wells were treated with 10 µg/mL of anti-TLR2 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in MDSCs
generated from WT and TLR2KO mice. (A) The frequencies of IL-10+M- and PMN-MDSCs following treatment with anti-TLR2 or IgG2b control.
(B) The frequencies of IL-10+M- and PMN-MDSCs generated in vitro from WT and TLR2KO mice. Differences between groups were analyzed by
analysis of variance (ANOVA) followed by the Tukey test. The data represent three independent experiments (N = 5 wells/treatment). Results were
considered significant at *p < 0.05. **p < 0.01. (C, D) WT and TLR2KO mice were intratracheally infected with 1 × 106 P. brasiliensis yeasts. Lungs
were collected after 72 h, two weeks, and eight weeks of infection. Adequate antibodies conjugated to fluorochromes were used to characterize
MDSC subpopulations, as shown in Supplementary Figure 1. The frequency and total cell count of lung-infiltrating M-MDSCs (C) and PMN-MDSCs
(D) positive to IL-10 72 h, two weeks, and eight weeks post-infection were determined by comparing WT with TLR2KO. The data represent three
independent experiments with 3–5 mice each. For comparisons between the two groups, the mean ± SEM was obtained and analyzed by the
unpaired Student’s t-test. Differences were considered significant at p < 0.05. **p < 0.01.
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3.6 In vivo, TLR2 absence led to a
reduction in MDSCs
expressing nitrotyrosine

In vitro, both TLR2-blocked PMN-MDSCs as well as M-

MDSCs TLR2KO presented alterations regarding nitrotyrosine

expression (Figures 6A, B). In agreement, in vivo, nitrotyrosine+

M-MDSCs underwent a reduction 72 hours and 2 weeks post-

infection, while PMN-MDSCs showed a reduction only at 8 weeks

(Figures 6C, D). Taken together, our results indicate that the

absence of TLR2 had a direct impact on the reduction of

nitrotyrosine expression in MDSCs. In a recent study from our

group, an increase in nitrotyrosine+ PMN-MDSCs was observed

after 8 weeks of infection with P. brasiliensis (Preite et al., 2023).
3.7 TLR4 absence reduced the frequency
of PD-L1+ PMN-MDSCs

As the suppressive response mediated by MDSCs is highly

dynamic and dependent on the microenvironment (Peñaloza

et al., 2019), we decided to assess the impact of TLR4 blocking

and deficiency on the expression of PD-L1 by MDSCs. In vitro, no

differences were observed between WT and TLR4-blocked or

TLR4KO MDSCs regarding the expression of PD-L1 (Figures 7A,

B), as well as among PD-L1+ M-MDSCs in the lungs of WT and

TLR4KO animals (Figure 7C). Only regarding PMN-MDSCs we

could observe a slight decrease in PD-L1 expression in TLR4KO

animals after 8 weeks of infection (Figure 7D). This indicates that

TLR4 absence has little effect on the frequency of PD-L1+ MDSCs

recruited to the lungs of P. brasiliensis-infected mice, with an effect

detected only in polymorphonuclear populations.
3.8 TLR4 deficiency reduced the frequency
of IL-10+ M-MDSCs

Some studies, including Arora et al. (2010) (Arora et al., 2010)

and Su et al. (2017) (Su et al., 2017), have identified the presence of

TLR4+ MDSCs in infectious processes. In coculture experiments

involving MDSCs and macrophages from BALB/c WT and

TLR4KO mice, it was observed that MDSCs from WT animals

presented an increased inflammation due to tumors and produced

significantly more IL-10 as compared to controls (Bunt et al., 2009).

Considering these, we have evaluated the influence of TLR4 on the

expression of IL-10 by MDSCs in murine paracoccidioidomycosis.

TLR4 deficiency in vitro resulted in a reduction in the frequency of

IL-10+ M-MDSCs (Figure 8A), while no differences in IL-10

production were observed concerning PMN-MDSCs from WT

and TLR4KO mice (Figure 8B).

Considering the expression of IL-10 by MDSCs recruited to the

lungs of infected mice, the only difference observed between WT

and TLR4KO animals was a lower frequency of IL-10+ M-MDSCs

in TLR4-deficient mice after 72 hours of infection. There were no

differences in the other time points studied (Figure 8C). Similarly,
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no difference was observed between the studied groups regarding

the production of IL-10 by PMN-MDSCs (Figure 8D). Our results

suggest that, in vivo, TLR4 deficiency leads to a reduction in IL-10+

M-MDSCs during the acute phase of the disease.
3.9 TLR4 deficiency reduced the
expression of nitrotyrosine by PMN-MDSCs
in vitro

In vitro, TLR4 deficiency had no effect on the production of

nitrotyrosine by M-MDSCs (Figures 9A, B, left panels). However,

regarding PMN-MDSCs, we observed a decrease in nitrotyrosine

production (Figures 9A, B, right panels). No difference between the

groups was detected regarding the production of nitrotyrosine by

MDSCs recruited to the lungs of WT and TLR4KO mice

(Figures 9C, D). Thus, considering that the defects in

nitrotyrosine production observed in vitro were not reproduced

in vivo, the effects observed in vitro may be due to the absence of

additional signaling present at the infectious site.
3.10 Dectin-1, TLR2 and TLR4 contribute to
the suppressive capacity of MDSCs on
T-cells

To verify whether the changes in the production of

immunosuppressive molecules observed in the defective signaling

of Dectin-1, TLR2, and TLR4 in MDSCs could play a role in the

suppressive capacity of these cells on activated T lymphocytes,

coculture experiments were performed. T lymphocytes were

isolated from the spleens of WT and Dectin-1 KO, TLR2KO, and

TLR4KO mice. Lymphocytes were activated and cocultured with

MDSCs exposed or not to P. brasiliensis yeast. We verified that the

absence of the Dectin-1 receptor resulted in a lower suppressive

capacity of MDSCs, evidenced by a lower percentage of suppression

on CD4+ and CD8+ T lymphocytes (Figures 10A, B). TLR2 absence

in MDSCs had little effect on T-cell suppression, which could be

detected only in the T CD4+ lymphocyte population, which

presented an elevated proliferation index when cultured with

MDSCs TLR2KO in comparison to the cultures with WT MDSCs

(Figures 10C, D). This same pattern was observed in experiments

addressing TLR4-deficient MDSCs, where only TCD4+

lymphocytes were slightly more proliferative when cocultured

with MDSCs TLR4KO than when exposed to WT MDSCs

(Figures 10E, F).
4 Discussion

In the present work, we demonstrated the relative role of three

different PRRs expressed by MDSCs in the immunosuppression

that characterizes the severe forms of pulmonary PCM. Using in

vitro and in vivo experiments we showed that Dectin-1, TLR2, and

TLR4 act to favor the suppressive activity of MDSCs, which is
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diminished after PRR blockade by monoclonal antibodies or when

experiments are carried out with cells derived from knockout

animals for these receptors. The in vivo experiments should be

considered the most important results, as they best represent the
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complexity of infection and the possible outcomes of the absence of

PRRs in animals (including the absence on the surface of MDSCs).

In this context, we showed that Dectin-1, TLR2, and TLR4 are

important for the basic activity of MDSCs in a fungal disease,
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FIGURE 6

The role of TLR2 signaling in nitrotyrosine generation by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and cultured in
96-well plates (2 × 105 cells per well) and challenged or not with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight. In addition, some wells
were treated with 10 µg/mL of anti-TLR2 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in MDSCs generated
from WT and TLR2KO mice. (A) The frequencies of nitrotyrosine+M- and PMN-MDSCs following treatment with anti-TLR2 or IgG2b control. (B) The
frequencies of nitrotyrosine+ M- and PMN-MDSCs generated in vitro from WT and TLR2KO mice. Differences between groups were analyzed by
analysis of variance (ANOVA) followed by the Tukey test. The data represent three independent experiments (N = 5 wells/treatment). Results were
considered significant at *p < 0.05. **p < 0.01. (C, D) WT and TLR2KO mice were intratracheally infected with 1 × 106 P. brasiliensis yeasts. Lungs were
collected after 72 h, two weeks, and eight weeks of infection. Adequate antibodies conjugated to fluorochromes were used to characterize MDSC
subpopulations, as shown in Supplementary Figure 1. The frequency and total cell count of lung-infiltrating M-MDSCs (C) and PMN-MDSCs (D)
positive to nitrotyrosine 72 h, two weeks, and eight weeks post-infection were determined by comparing WT with TLR2KO. The data represent three
independent experiments with 3–5 mice each. For comparisons between the two groups, the mean ± SEM was obtained and analyzed by the
unpaired Student’s t-test. Differences were considered significant at p < 0.05. **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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bringing to light discoveries recently evaluated in the context of

cancer and other diseases.

In the tumor environment, damaged cancer cells produce

redundant damage-associated molecular patterns (DAMP)
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recognized by specific PRRs on MDSCs (Man and Jenkins, 2022).

Interestingly, a link between specific PRRs (mainly TLRs) and cancer-

associated microorganisms has been described, including Helicobacter

pylori and Epstein–Barr virus in gastric cancer (Shehab et al., 2019;
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FIGURE 7

The role of TLR4 signaling in PD-L1 expression by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and cultured in 96-
well plates (2 × 105 cells per well) and challenged or not with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight. In addition, some wells
were treated with 10 µg/mL of anti-TLR4 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in MDSCs generated
from WT and TLR4KO mice. (A) The frequencies of PD-L1+M- and PMN-MDSCs following treatment with anti-TLR4 or IgG2b control. (B) The
frequencies of PD-L1+M- and PMN-MDSCs generated in vitro from WT and TLR4KO mice. Differences between groups were analyzed by analysis of
variance (ANOVA) followed by the Tukey test. The data represent three independent experiments (N = 5 wells/treatment). Results were considered
significant at *p < 0.05. **p < 0.01 and ****p < 0.0001. (C, D) WT and TLR4KO mice were intratracheally infected with 1 × 106 P. brasiliensis yeasts.
Lungs were collected after 72h, two weeks, and eight weeks of infection. Adequate antibodies conjugated to fluorochromes were used to
characterize MDSC subpopulations, as shown in Supplementary Figure 1. The frequency and total cell count of lung-infiltrating M-MDSCs (C) and
PMN-MDSCs (D) positive to PD-L1 72 h, two weeks, and eight weeks post-infection were determined by comparing WT with TLR4KO. The data
represent three independent experiments with 3–5 mice each. For comparisons between the two groups, the mean ± SEM was obtained and
analyzed by the unpaired Student’s t-test. Differences were considered significant at *p < 0.05.
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Dooyema et al., 2022), hepatitis B virus and hepatitis C virus in

hepatocellular carcinoma, human papillomavirus in cervical cancer

(Hasan et al., 2013), and also gut microorganisms involved in

dysbiosis such as Bacteroides fragilis (Round et al., 2011) in
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pancreatic cancer and colorectal carcinoma (Fan et al., 2021). The

data above emphasizes that the presence and concentration of DAMPs

and PAMPs can contribute differently to the effects on the host

immune system and possibly to therapy outcomes.
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FIGURE 8

The role of TLR4 signaling in IL-10 production by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and cultured in 96-
well plates (2 × 105 cells per well) and challenged or not with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight. In addition, some wells
were treated with 10 µg/mL of anti-TLR4 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in MDSCs generated
from WT and TLR4KO mice. (A) The frequencies of IL-10+M- and PMN-MDSCs following treatment with anti-TLR4 or IgG2b control. (B) The
frequencies of IL-10+M- and PMN-MDSCs generated in vitro from WT and TLR4KO mice. Differences between groups were analyzed by analysis of
variance (ANOVA) followed by the Tukey test. The data represent three independent experiments (N = 5 wells/treatment). Results were considered
significant at *p < 0.05. **p < 0.01, ***p < 0.001 and ****p < 0.0001. (C, D) WT and TLR4KO mice were intratracheally infected with 1 × 106 P.
brasiliensis yeasts. Lungs were collected after 72 h, two weeks, and eight weeks of infection. Adequate antibodies conjugated to fluorochromes were
used to characterize MDSC subpopulations, as shown in Supplementary Figure 1. The frequency and total cell count of lung-infiltrating M-MDSCs
(C) and PMN-MDSCs (D) positive to IL-10 72 h, two weeks, and eight weeks post-infection were determined by comparing WT with TLR4KO. The
data represent three independent experiments with 3–5 mice each. For comparisons between the two groups, the mean ± SEM was obtained and
analyzed by the unpaired Student’s t-test. Differences were considered significant at *p < 0.05.
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PRRs represent the primary MDSC receptors for integrating

signals from pathogens or damaged cells. By recognizing different

ligands, PRRs orchestrate MDSC immunosuppressive function,

survival, migration, accumulation, differentiation, and soluble

molecule release, thus exerting protumor or antitumor effects in
Frontiers in Cellular and Infection Microbiology 15
mice and humans (Wang et al., 2023). In cancer, the corresponding

signal transduction after PRR stimulation amplifies the effect of the

immunosuppressive response of MDSCs by producing a variety of

proteins, including arginase-1, iNOS, IDO-1, prostaglandin E2, PD-

L1, CD40, TNF-a, IL-1b, IL-6, cyclooxygenase-2, and others.
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FIGURE 9

The role of TLR4 signaling in nitrotyrosine generation by MDSCs. MDSCs were generated in vitro from C57BL/6 wild-type (WT) mice and cultured in
96-well plates (2 × 105 cells per well) and challenged or not with P. brasiliensis yeasts at a 1:25 ratio (yeast: MDSCs) overnight. In addition, some wells
were treated with 10 µg/mL of anti-TLR4 or IgG2b for 2 h before the fungal challenge. The same fungal challenge was used in MDSCs generated
from WT and TLR4KO mice. (A) The frequencies of nitrotyrosine+M- and PMN-MDSCs following treatment with anti-TLR4 or IgG2b control. (B) The
frequencies of nitrotyrosine+ M- and PMN-MDSCs generated in vitro from WT and TLR4KO mice. Differences between groups were analyzed by
analysis of variance (ANOVA) followed by the Tukey test. The data represent three independent experiments (N = 5 wells/treatment). Results were
considered significant at *p < 0.05. ***p < 0.001 and ****p < 0.0001. (C, D) WT and TLR4KO mice were intratracheally infected with 1 × 106 P.
brasiliensis yeasts. Lungs were collected after 72 h, two weeks, and eight weeks of infection. Adequate antibodies conjugated to fluorochromes were
used to characterize MDSC subpopulations, as presented in Supplementary Figure 1. The frequency and total cell count of lung-infiltrating M-MDSCs
(C) and PMN-MDSCs (D) positive to nitrotyrosine 72 h, two weeks, and eight weeks post-infection were determined by comparing WT with TLR4KO.
The data represent three independent experiments with 3–5 mice each. For comparisons between the two groups, the mean ± SEM was obtained
and analyzed by the unpaired Student’s t-test. Differences were considered significant at p < 0.05.
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Together, these molecules create an immunosuppressive tumor

microenvironment with reduced antigen presentation and

reduced T-cell or natural killer cell activation, proliferation, and

cytotoxicity (Jang et al., 2020). Therefore, understanding the effects

of signaling via diverse PRRs on MDSCs recruited to the

inflammatory site in infectious diseases may reveal the relative
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contribution of each receptor in the immunoregulation that

controls disease severity.

An important function of C-type lectin receptors for MDSCs

activity has been revealed in a study using human samples and

animal models of A. fumigatus and C. albicans infections (Rieber

et al., 2015). Likewise, our group has previously revealed that in
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FIGURE 10

Suppression of T-cell proliferation by MDSCs. To evaluate the influence of MDSCs PRRs Dectin-1, TLR2, and TLR4 in suppressing T-cell proliferation,
in vitro generated MDSCs were obtained from both wild-type (WT) and Dectin-1KO, TLR2KO and TLR4KO mice. Subsequently, these MDSCs were
challenged with P. brasiliensis yeasts at a rate of 1:50 (yeast: MDSCs) and cocultured with 1 × 106 CFSE-labeled T-cells per well in a 96-well round-
bottom plate. T-cells were activated previously with 1 mg/mL of anti-CD3/CD28 antibodies. Following four days of coculture (ratio of 1:10 MDSC: T-
cells), the frequency of CD4 and CD8 T-cells was characterized by flow cytometric analysis. The cell proliferation indices were obtained. The control
T-cells (CTL) were cultured without contact with MDSCs. (A, B) The frequency and proliferation index of CD4+T-cells (A) and CD8+T-cells (B) in
coculture with WT and Dectin-1KO MDSCs. (C, D) The frequency and proliferation index of CD4+T-cells (C) and CD8+T-cells (D) in coculture with
WT and TLR2KO MDSCs. (E, F) The frequency and proliferation index of CD4+T-cells (E) and CD8+T-cells (F) in coculture with WT and TLR4KO
MDSCs. The data represent three independent experiments for each PRR approached (N = 5 wells/group). Differences between treatments were
analyzed by analysis of variance (ANOVA) followed by the Tukey test. Results were considered significant at *p < 0.05; **p < 0.01; ***p < 0.001,
and ****p < 0.0001.
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murine PCM IDO-1 produced by MDSCs needs the expression of

Dectin-1 for adequate activation and suppressive activity (Kaminski

et al., 2023; Preite et al., 2023). In cancer, fungal-derived b-glucan (a

major ligand of Dectin-1) has been shown to induce the

differentiation of monocytic MDSCs into a more mature

population expressing a CD11c+F4/80+ phenotype and impaired

iNOS and ARG-1 production via the Dectin-1 pathway in vitro,

thereby reducing tumor progression in a mouse lung cancer model

(Tian et al., 2013). In agreement, we showed that Dectin-1 absence

influences nitrotyrosine production by MDSCs after P. brasiliensis

infection. In this context, our results with nitrotyrosine and

previous observations regarding the role of nitrogenous

compounds in immune responses (Pinke et al., 2016; Luo et al.,

2023), cells of very close origins, such as neutrophils and

polymorphonuclear MDSCs, can use the same mechanisms, with

the result for the host being either beneficial or harmful, depending

on the cell type. For example, NO-producing neutrophils have been

shown to confer protection against Chlamydia psittaci in mouse

lung infection (Luo et al., 2023) while MDSCs-producing

nitrotyrosine contributes to severe paracoccidioidomycosis (Preite

et al., 2023). Moreover, it was previously shown that mast cells that

phagocytose C. albicans produce NO through mechanisms

involving Dectin-1 (Pinke et al., 2016), which is in agreement

with our results with MDSCs.

We have previously shown the important effects of Dectin-1

absence in host immunity against P. brasiliensis infection. It was

shown that the absence of Dectin-1 impaired the production of T-

helper type 1 (Th1), Th2, and Th17 cytokines and the activation and

migration of T-cells to the site of infection. Besides, compared with

WT mice, the fungal infection of Dectin-1KO mice was more

severe, resulting in enhanced tissue pathology and mortality rates

(Loures et al., 2014). In another study, we have also shown that

Dectin-1 deficiency causes a decrease in the total number of MDSCs

recruited to the lungs only 72 hours after fungal infection, with no

differences after 2 and 8 weeks (Kaminski et al., 2023).

The vast majority of studies regarding MDSCs and these innate

receptors were conducted in the context of cancer and it has been

shown that TLR1/2 agonists in MDSCs can act controversially. The

TLR1/2 agonist Pam3CSK4 can promote the differentiation of

monocytic MDSCs into M2-type macrophages with highly

immunosuppressive functions in patients with colon, prostate,

pancreas, or liver cancer (Wang et al., 2015); in melanoma,

Pam3CSK4 upregulated the expression of PD-L1 (CD274) on

immature myeloid cells (Fleming et al., 2019), in agreement to our

findings presented here. Instead, in a model of hepatocellular

carcinoma, Pam3CSK4 facilitates M-MDSCs polarization toward

mature macrophages and dendritic cells that prevent tumor

progression (Li et al., 2022). In MDSCs, TLR2 activation with

bacterial lipoproteins favors cancer growth by enhancing MDSC

recruitment, survival, and accumulation to the tumor site in mouse

lung cancer, fibrosarcoma, lymphoma, melanoma, and colorectal

cancer models and is also correlated with bad prognosis in human

colorectal cancer tissues (Maruyama et al., 2015; Shime et al., 2017;

Hangai et al., 2021). Considering that TLR2 absence led to a reduction

in MDSCs expressing nitrotyrosine and that nitrotyrosine expression

by MDSCs is associated with severe paracoccidioidomycosis in mice
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(Preite et al., 2023), it would be intuitive to assume that blocking TLR2

could contribute to reducing the deleterious effects mediated by

nitrotyrosine+ MDSCs in PCM. However, another previous study by

our group revealed that TLR2 deficiency results in increased Th17

immunity associated with a diminished expansion of Treg cells and

increased lung pathology due to unrestrained inflammatory reactions

(Loures et al., 2015). Therefore, TLR2 deficiency would only be

therapeutic if directly targeted to MDSCs at an infectious site,

otherwise, it could be harmful to the host.

The role of TLRs in MDSC activity has also been investigated in

other disease processes (Arora et al., 2010; Ray et al., 2013; Dorhoi

and Du Plessis, 2017; Oliveira et al., 2021). Interestingly, it has been

shown that TLR2 agonists, like those present in S. aureus, can favor

the differentiation of monocytes into MDSCs, leading to their

accumulation in the skin lesions (Skabytska et al., 2014; Dorhoi

and Du Plessis, 2017) of patients. Recently we have also shown that

TLR2 and TLR4 signaling is important for IDO-1 production by

MDSCs during murine PCM (Kaminski et al., 2023). Here, we

showed that such signaling could also affect the expression of other

immunosuppressive molecules produced by MDSCs in systemic

fungal disease. Considering the effects of TLR2 on the host infected

with P. brasiliensis, Loures et al. (2009) revealed that, in vivo, TLR2-

deficient mice presented increased lung pathology due to

unrestrained inflammatory reactions (Loures et al., 2009). Thus,

the deficiency in the activity of MDSCs through the reduced

production of immunosuppressive molecules in TLR2KO mice

presented here could contribute to this unfavorable outcome for

the host. Of note, TLR2 absence did not affect the recruitment of

MDSCs towards the infected lungs in mice (Kaminski et al., 2023).

In tuberculosis, which enhances lung cancer risk (Ho et al., 2021),

Mycobacterium bovis Bacille–Calmette–Guerıń (BCG) infection

upregulated PD-L1, CD40, and CD69 via induced expression of

TLR2 and TLR4 in both M-MDSCs and PMN-MDSCs in mice, also

upregulating iNOS expression, leading to an increased NO

production necessary for the suppression of T-cells in BCG-

infected mice (John et al., 2019). In the context of C. albicans

infection, it has been demonstrated that the absence of TLR2 can

increase the survival of neutrophils (Tessarolli et al., 2010). Given that

PMN-MDSCs and neutrophils share a common origin, it is likely that

the increase in PD-L1-expressing PMN-MDSCs observed in

Figure 4D and Supplementary Figure 5 is due to the absence of

TLR2 which caused an increased survival of these cells in the infected

lungs. Regarding TLR4 absence in the context of P. brasiliensis

infection, in vivo, previous studies from our group revealed that

TLR4-deficient mice developed reduced fungal burdens, but also

decreased levels of pulmonary NO, proinflammatory cytokines, and

antibodies, contributing to the inability of the host to clear totally

their diminished fungal burdens (Loures et al., 2010). Alike the

findings concerning TLR2, a comparison between WT and

TLR4KO animals revealed no differences in the recruitment of

leukocytes to the lungs after 72 h, 2 weeks, and 8 weeks of

P. brasiliensis infection (Kaminski et al., 2023).

Concerning T-cell suppression the results observed here in

coculture experiments confirm the strongest effect of Dectin-1

absence on the activity of MDSCs, in which the defects in the

production of anti-inflammatory mediators were largely reflected in
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the reduced ability to suppress the proliferation of CD4+ and CD8+ T

lymphocytes. Likewise, a small effect of TLR2 and TLR4 absence in

MDSCs on the production of immunosuppressive molecules was

reflected in a small effect on the suppression of CD4+ T

lymphocytes, with no effect on CD8+ T populations. Although our

primary focus was to investigate the role of MDSC receptors Dectin-1,

TLR2, and TLR4 in murine PCM it is important to note that the

suppressive action of MDSCs was independent of the presence of the

fungus in some in vitro experiments. Notably, in vivo, the fungal

infection and its associated cytokine milieu are the primary stimuli for

the generation of MDSCs in mice (Preite et al., 2023). This

discrepancy could explain why the effects observed in vitro do not

exactly replicate in vivo. The difference between testing the absence of

a molecule in an isolated environment and testing it in a complex

environment further complicates comparisons. In vitro, cells are tested

in the well of a culture plate. These cells are generated in a controlled

setting. In contrast, in vivo experiments involve cells generated in an

infected mouse. The so-established environment is rich with various

stimuli from different cells. Additionally, in vivo, MDSCs interact with

yeast after myelopoiesis is triggered by the host’s immune system

stimuli. In vitro, MDSCs are generated by specific stimuli, such as IL-6

and GM-CSF, in an adapted culture medium.

The present work, together with findings from previous studies

of our group, indicates that Dectin-1, TLR2, and TLR4 are

important PRRs for the activity of MDSCs in pulmonary PCM, as

already demonstrated in cancer and other diseases, such as other

fungal, bacterial, and viral infections (Arora et al., 2010; Tessarolli

et al., 2010; Ray et al., 2013; Dorhoi and Du Plessis, 2017; Wang

et al., 2023). Given the few data available to date, our studies help to

clarify the complex network of molecules used in the development

and suppressive activity of MDSCs in PCM. We believe that this

study is an important additional knowledge regarding the

suppressive mechanisms that control PCM and helps to explain

the therapeutic difficulties to overcome the immunosuppression

associated with the severe forms of the disease.
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