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Multiple research groups have consistently underscored the intricate interplay

between the microbiome and apical periodontitis. However, the presence of

variability in experimental design and quantitative assessment have added a layer

of complexity, making it challenging to comprehensively assess the relationship.

Through an unbiased methodological refinement analysis, we re-analyzed 4

microbiota studies including 120 apical samples from infected teeth (with/

without root canal treatment), healthy teeth, using meta-analysis and machine

learning. With high-performing machine-learning models, we discover disease

signatures of related species and enriched metabolic pathways, expanded

understanding of apical periodontitis with potential therapeutic implications.

Our approach employs uniform computational tools across datasets to

leverage statistical power and define a reproducible signal potentially linked to

the development of secondary apical periodontitis (SAP).
KEYWORDS

oral microbiota, apical periodontitis, meta-analysis, machine learning, secondary apical

periodontitis, oral microbiome
1 Introduction

Apical periodontitis (AP), a distinctive endodontic disease characterized by

inflammatory lesions around the tooth apical, is primarily attributed to microbial

intrusion into the root canal system (Kakehashi et al., 1965; Nair, 1997). Typically

stemming from untreated dental caries, this infection leads to symptomatic

manifestations and, in severe cases, life-threatening abscesses. The standard approach to

AP treatment involves antibiotic therapy and either root canal treatment (RCT),
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also known as endodontic therapy, or extraction of the affected

tooth to eradicate the source of infection (Siqueira et al., 2000).

Though many cases resolve with appropriate root canal

treatment, known as primary apical periodontitis (PAP), clinical

studies reported an alarming number of cases with persistent case

of AP, characterized by persistent inflammation, known as secondary

apical periodontitis (SAP) or post-treatment apical periodontitis

(Sundqvist et al., 1998; Siqueira et al., 2014). A substantial

proportion (30–65%) of root-filled teeth may exhibit radiographic

evidence of secondary apical periodontitis even when treatment has

followed proper standards (Sjögren et al., 1990; Ekelund et al., 2003;

Siqueira and Rôças, 2013; Segura-Egea et al., 2015). SAP disease is

closely linked with intraradicular infection, caused by bacteria that

resist treatment and lead to ongoing periradicular inflammation.

These bacteria are often found in hard-to-reach areas like the root

canal’s apical part, lateral canals, apical ramifications, isthmuses, and

dentinal tubules, where they access nutrients from surrounding

tissues (Ricucci et al., 2009; Mombelli and Décaillet, 2011; Rôças

and Siqueira, 2012; Vieira et al., 2012). Endodontic treatment of teeth

affected by apical periodontitis typically exhibits a reduced success

rate. This may necessitate further interventions, such as endodontic

microsurgery or apical microsurgery, and in certain cases, tooth

extraction might be required to resolve the issue (Ricucci et al., 2011;

Siqueira et al., 2014). The persistent infection caused by SAP can lead

to an increased risk of various systemic diseases, particularly

cardiovascular diseases and diabetes (Segura-Egea et al., 2015).

Previous investigations utilizing broad-range culture and 16S

rRNA sequencing have identified a variety of relevant species into

the microbial communities associated with necrotic root canals,

primarily strict anaerobic bacteria from Peptostreptococcus,

Prevotella, Porphyromonas, Fusobacterium, Eubacterium, and

Actinomyces, along with facultative anaerobic Streptococci

(Sakamoto et al., 2006; Tatikonda et al., 2017). Notably, the

presence of these pathogens has been linked to primary apical

periodontitis; whereas, secondary apical periodontitis exhibits

distinct microbial populations, predominantly Gram-positive

facultative anaerobes like Streptococcus, Lactobacillus, and

Enterococcus (Siqueira and Rôças, 2005; Siqueira et al., 2016; Qian

et al., 2019). The emergence of Enterococcus faecalis is identified as a

frequently isolated bacterium in root-filled teeth, and has drawn

attention due to its biofilm establish resistance against many

conventional antimicrobial agents and root canal sealer (Peciuliene

et al., 2001; Johnson et al., 2006; Wang et al., 2021). However, not all

cases of SAP exhibit the presence of E. faecalis, indicating the

existence of other potential contributing microorganisms.

Despite previous efforts to investigate the impact of the

microbiome on AP, further analyses were hindered to identify

reproducible signals across studies (Kumar et al., 2012;

Vengerfeldt et al., 2014; Siqueira et al., 2016; Bouillaguet et al.,

2018; Qian et al., 2019), due to inconsistencies in experimental

settings and a lack of common quantitative definitions, commonly

referred to as “reproducibility crisis” (Baker, 2016). Interpretation

of the canal bacterial community’s effects was complicated by

technical and biological inconsistencies. Even though exploring

similar variables (bacterial communities collected) and outcomes

(disease stages: health, SAP, or PAP), these studies varied in
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inconsistent control settings and rooted in population differences.

For instance, Zhang et al. (2022) studied diseased tooth canal using

supragingival samples from healthy tooth as control groups,

whereas Bouillaguet et al. (2018) applied dentin from diseased

tooth as controls. Control samples from other studies such as

Vengerfeldt et al. (2014); Qian et al. (2019) were variable from

canal surface to root, exacerbating complexities. Experiment design

involved variability in sample tissues, population biases, or control

group configurations, making the core bacterial communities

associated with primary and secondary Apical Periodontitis (AP)

remain refuted. As a consequence, scientific reanalysis is essential to

systematically address these inconsistencies in an unbiased manner,

which benefits a robust foundation for AP progression (Gurevitch

et al., 2018).

In the current field of microbiome research, deep learning

methods across datasets are considered effective means to acquire

profound microbiome knowledge. Meta-analysis systematically

quantified and mitigated technical variation and contamination.

These methods can handle large-scale microbiome data and

discover patterns and regularities hidden within the data. In this

study, we place particular emphasis on the significance of deep

learning for extracting knowledge from cross-dataset apical AP

microbiomes, revealing the pivotal microbial taxa and functional

pathways linked to PAP and SAP, thereby.

Here we present the meta-analysis and machine learning of

16S rRNA sequencing-based studies investigating the effect of

apical microbiome on apical periodontitis progress. Rigorous

measures were taken to eliminate observed batch effects from

data sources and exclude data from inappropriate control groups.

What is more, machine learning further identify microbial

signatures both phylogenetic and pathway levels, distinguishing

among different disease stages. High-predictive machine-learning

models (AUROC > 0.95, AUPR > 0.9) unveiled signatures that

predict various disease types, demonstrated that phylogenetic and

gene-centric transformations contribute to shaping the overall

disease landscape. Finer systematic analysis unveiled that, beyond

the previously acknowledged influence of Enterococcus faecalis,

Cutibacterium acnes and Delftia acidovorans may also be

implicated in the occurrence of secondary apical periodontitis.

The phosphotransferase system and peptidoglycan biosynthesis

pathway were enriched among different apical periodontitis

stages. This revelation extends our comprehension of apical

periodontitis, holds the potential to serve as a foundation for

targeted therapeutic interventions.
2 Materials and methods

2.1 Study selection

The following all encompassing search term was entered into

PubMed and the NCBI Sequence Read Archive (SRA) in Oct 2023

to generate an unbiased representation of studies studying the

relationship between bacteria community and apical periodontitis.

“‘apical periodontitis”[All Fields] AND “microbiome”[All Fields]

OR “apical periodontitis”[All Fields] AND “microbiota”[All Fields] OR
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1393108
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1393108
“apical periodontitis”[All Fields] AND “bacteria community”[All

Fields] “

Among these, we identified 7 studies as sequencing-based

research. We further examined the sampling and sequencing

methods, selected only paired-end sequencing data sets, and

removed samples from the maxillofacial region or samples that had

not been externally sterilized during the sampling. Of these 7 studies, 4

datasets(SRA ID: SRP075560, SRP121389, ERP108053, SRP361111)

from Siqueira et al. (2016); Bouillaguet et al. (2018); Qian et al. (2019);

Zhang et al. (2022) encompass a collection of 224 samples that include

110 dentin and periapical microbiota from teeth with primary apical

periodontitis, 95 dentin and periapical microbiota samples with

secondary apical periodontitis, and 19 periapical microbiota samples

from healthy molar. we filtered out 104 samples from the dentin,

thereby ensuring that the characteristics we ultimately observed were

associated exclusively with the disease process, rather than with the

tissue type. All SAP samples were identified by imaging evidence, and

none of the selected samples had been on antibiotics for two weeks.
2.2 Data retrieval and ASV picking

120 final samples were derived via V3-V4 16S rRNA amplicon

sequencing on Illumina-platform. Raw reads were downloaded for

120 samples from the NCBI Sequence Read Archive (SRA), then

were filtered on quality in qiime2 2023.9 (Bolyen et al., 2019). Pair

reads were aligned and denoised using deblur following parameters

–p-trim-length 200/–p-min-reads 10. A total of 6,636 ASVs were

observed across 110 samples, those ASV numbers varies from data

sources (Supplementary Figure S1). The feature table was annotated

using naive-bayes classifer trained on eHOMD v15.23 from (Escapa

et al., 2018) release in qiime2. The ASV feature table was converted

to a biom file and processed with PIRCRUSt (Langille et al., 2013)

for ko and ec recognition. Tree based on feature table was generated

using qiime2 fasttree pipeline. We further refined the dataset by

filtering out near-zero variance ASVs using the ‘nearZeroVar’

function from the ‘caret’ package and ASVs not presenting in at

least 3 samples with at least a total of 10 reads with

‘Confidence.Filter’ function from ‘MicrobeR’ package, resulting in

2063 ASVs. Additionally, we filtered out datasets whose depth is less

than 1000 reads. This process resulted in a final feature table

containing 1740 ASVs. In order to demonstrate our data

processing, we also set up 2 group with data filter1 presenting in

at least 1 sample with at least a total of 10 reads, and data filter2

presenting in at least 3 samples with at least a total of 500 reads.
2.3 PVCA and batch effect elimination

Raw counts were normalized using limma (Ritchie et al., 2015)

package and then use sva package (Leek et al., 2012) to reduce batch

effect with command (ComBat(dat=voomdata, batch=BatchVariable,

mod=NULL, par.prior=TRUE), in which ‘BatchVariable’ refers to data

sources. Principal variance components analysis was used to quantified

these changes between raw count data and SNM-corrected data using

pvca (Bushel, 2024) package in R.
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2.4 Diversity analysis

For analysis on a per study basis, samples were rarefied to 5000

depth samples for generating alpha diversity metrics. The diversity

and estimateR functions of Vegan (Dixon, 2003) were used to

generate Shannon’s diversity index (log base e) and Chao1 estimates

respectively and Picante (Kembel et al., 2010) was used to generate

Faith’s phylogenetic distance. UniFrac and Jensen-Shannon

divergence were calculated using the parallel-enabled distance

function of Phyloseq (McMURDIE and Holmes, 2012) on

subsampled proportional abundances. Bray-Curtis dissimilarity

was also calculated (vegdist, Vegan) on subsampled proportional

abundances. The CLR Euclidean distance was calculated by carrying

out a centered log2-ratio transformation (Make.CLR, MicrobeR)

with count zero multiplicative replacement [zCompositions

(Palarea-Albaladejo and Martıń-Fernández, 2015)] followed by

calculating the Euclidean distance (dist, base). The PhILR

Euclidian distance was calculated by first carrying out the

phylogenetic isometric log ratio transformation [philr, PhILR

(Silverman et al., 2017)] and calculating the distance matrix as

before. Principal coordinates analysis was carried out using the pcoa

function of APE (Paradis and Schliep, 2019). ADONIS calculations

were carried out using adonis2 in Vegan on each distance/

dissimilarity metric.
2.5 Models selection and evaluation

Our study evaluated machine learning models commonly used

in genetics, including Random Forest (RF), Support Vector

Machine (SVM) with radial and linear kernels, and Logit Boost

(LB). RF is known for its robust performance in datasets with a high

feature-to-sample ratio and is effective in handling weak predictors

and complex interactions. SVM applies kernel functions for robust

modeling, even with outliers. LB, part of the boosting family of

algorithms, creates strong classifiers by combining multiple weak

ones, known for improved accuracy and robustness. Analyses were

performed in R Version 4.3.1 using the ‘caret’ package.

Models were built 5 times cross validation by random data

splitting, training of the models, making predictions and recording

of accuracies after each run using the caret packages for the R

statistical environment (Kuhn, 2008). Cross-validation and parallel

processing were enabled by the inclusion of a train control

parameter. Analysis of variance, at significance alpha value of

0.05 was used to analyze the differences in mean accuracy

between the models.

To enhance model performance and interpretability, our

approach incorporated a rigorous search for key features within

the dataset. This process involved analyzing a wide array of

potential predictors, identifying those with the most significant

impact on the predictive accuracy of our models. The identification

of these key features is critical, especially in complex datasets, as it

aids in refining the model and focusing on the most relevant

variables. Since our classification target here has three categories,

we need to introduce the multiROC package (Pérez-Fernández

et al., 2021). The performance of our models was evaluated using
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two metrics: Area Under the Receiver Operating Characteristic

(AUROC), which measures the model’s ability to distinguish

between classes, and Area Under the Precision-Recall Curve

(AUPR), important for assessing models in imbalanced datasets

by evaluating precision and recall. Macro-average ROC/AUC was

chosen in this study to describe each model, and it was calculated by

averaging all groups results (one vs rest) and linear interpolation

was used between points of ROC.

The number of predictor variables was determined by selecting

the point of saturation in minimizing error rate and selecting the

features based on ranked MeanDecreaseGINI, all other features

were excluded from the model. Mtry and Ntree were left as default

values (Mtry = sqrt(Nfeatures) and Ntree = 500).
2.6 Subsampling for class imbalances

Our exploration of clinical outcome classes revealed significant

class imbalances (as shown in Supplementary Figure S1,

Supplementary Table S4). Such imbalances can lead to models

with poor class-specific performance, as the training process tends

to favor patterns associated with larger classes (Velez et al., 2007).

To mitigate the effects of this imbalance on our trained model, we

employed post hoc sampling approaches (Kuhn et al., 2013). Given

the considerably low number of samples in the smallest class, we

opted for up-sampling, utilizing methods available in the R

environment. The Logit Boost learning method, along with 5-fold

cross-validation, was employed to evaluate the effectiveness of our

resampling approach.
3 Results

3.1 Study selection and characteristics

63 unique studies were retrieved by our search methodology.

Among these, 7 studies were identified as sequencing-based and

met the eligibility criteria for inclusion in our meta-analysis. Of

these 7 studies, 3 lacked public, accessible sequencing data or

metadata sufficient for pairing sequencing. As an illustrative

example highlighting the difficult acquiring data post-publication,

we attempted to contact the corresponding author via email for

sequencing data without any response. This left 4 studies for

inclusion in our meta-analysis, encompassing a collection of 120

samples (Siqueira et al., 2016; Bouillaguet et al., 2018; Qian et al.,

2019; Zhang et al., 2022).

The afflicted samples were limited to those presenting

radiographic evidence of periapical lesions, and excluding any

with crown damage, severe oral health conditions, or antibiotic

treatment within one month prior to extraction. Contamination

from saliva was minimized by strictly experimental condition in

each study. To establish robust controls and focus our comparison

on the apical, we filtered out 105 samples from the dentin, thereby

ensuring that the characteristics we ultimately observed were

associated exclusively with the disease process, rather than with

the tooth structure itself (Figure 1A). From the initial 6663 ASVs
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identified from the sequenced data, we got 1740 ASVs which are

present in at least 3 samples with at least a total of 10 reads. We

examined the distribution of these remaining ASVs in different

study sources (Supplementary Figure S1) and further analyzed their

community composition below. We also checked the current data

structure and found that there are two datasets with small sample

sizes (¡20), and the number between different disease stages is

unbalanced. Therefore, we integrate them together for processing

instead of applying independent validation on each dataset latter.
3.2 Selected studies showed biased
batch effort

Sequencing data obtained from different instruments and

studies often exhibit significant batch effects and contamination,

especially in microbiota (Salter et al., 2014; Glassing et al., 2016;

Poore et al., 2020). We applied PCoA to visualize the hidden batch

effect in each study by comparing their community compositions.

We first calculated common metrics for beta diversity for PCoA

through Bray-Curtis dissimilarity, weighted/unweighted UniFrac,

Jensen-Shannon divergence, PhILR Euclidean distance, and CLR

Euclidean distance. Due to matrix sparsity, significant distance

saturation was observed when all studies were aggregated

(Supplementary Figure S6), so only 3 metrics were employed:

CLR-Euclidean, unweighted UniFrac, PhILR Euclidean, and

associated scree plot. We then employed visualization strategies

and statistically tested the effect of data source on community

composition. Clear visual clustering independent of study was

observed by using principal coordinates analysis of all distance

metrics, and ADONIS analysis showed significant difference

between data sources (Supplementary Table S1).

Given the clear evidence the existed batch effort in each study, we

implemented a pipeline to eliminate observed batch effort in all

datasets. Subsequently, we applied supervised normalization (SNM)

to reduce noise from data sources variability, while preserving and

highlighting the biological variability of interest. Principal Variance

Components Analysis (PVCA) demonstrated that SNM-correction

mitigated batch effects in main technical variance from 0.504 to

0.013, and enhance the biological signal, specifically the ‘disease type’

from 0.001 to 0.089. Meanwhile, 89.5% of the residual variance in

SNM-corrected data suggests the limitations of differential analysis in

addressing this dataset. To extract relevant features, we need to employ

more sophisticated models, indicating the necessity of applying

machine learning approaches (Figure 1B; Supplementary Figure S3).
3.3 Apical periodontitis reduce
microbial diversity

SNM-corrected data was applied to generate an unbiased

distribution of periapical microbial community (Figure 2A),

which is dominated by Firmicutes, Bacteroidetes, Proteobacteria,

and Actinobacteria (Figure 1C). Within the Firmicutes, orders such

as Lactobacillales have been implicated in the fermentation of

dietary carbohydrates, a process integral to oral microbial
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homeostasis. Similarly, the abundance of Bacteroidetes, particularly

the Bacteroidia class, aligns with recent insights into their enzymatic

capabilities and their potential to degrade polysaccharides, a

function essential in the oral ecological balance (Supplementary

Figure S4).

Then, we estimate whether the biodiversity of oral microbial

environment relates to AP development. We calculated common

metrics for alpha diversity, Chao1 richness, Shannon’s diversity,

and Faith’s phylogenetic diversity. Taking all studies into

consideration, it was observed that the alpha diversity of the

periapical microbiota consistently decreased with the progression

of apical periodontitis (Figure 1D; Supplementary Figure S11)

Significant differences were found in the ACE and Chao1 richness

indices between healthy samples and primary apical periodontitis

samples (p-values < 0.001). This suggests that the occurrence of

apical periodontitis is associated with a reduction in the alpha

diversity of the periapical microbial community. Furthermore,

significant differences (p-values < 0.01) in Shannon and Simpson

richness indices were observed between PAP and SAP samples. This

is likely attributed to the effects of root canal treatment and

indicates that in apical periodontitis, a small number of

pathogenic bacteria play a dominant role in disease progression.

We next re-tested the relationship between apical periodontitis

and beta diversity, i.e. community composition. Multiple distance

metrics acquired from statistical testing via ADONIS (analysis of
Frontiers in Cellular and Infection Microbiology 05
variance using distance matrices) are used for principal coordinates

analysis. All distance demonstrated a significant correlation

between disease stage and community composition (p ¡0.01,

ADONIS, Supplementary Table S1), albeit with the variance

explained ranging from 0.032 to 0.121 (R square, Supplementary

Table S1). In summary, both alpha and beta biodiversity is highly

correlated to AP development, yet principle coordinate analysis

cannot provide simple prediction accordingly.
3.4 Predictive microbial responses to
AP stage

Next, we attempted to apply machine learning on the corrected

ASV table, in order to create a predictive model of AP stages. To

provide better interpretability and reduce the complexity of model

training, we removed ASVs with near-zero changes among all

samples and discarded any ASVs un-annotated at the genus level,

which left 1740 ASVs. We selected five machine learning (ML)

methods—random forest (RF), support vector machine (SVM) with

radial and linear kernels, gradient boosting machine (GBM), and

logit boost (LB)—to cover a spectrum of approaches commonly

employed in bioinformatics for analyzing complex datasets. These

methods are renowned for their capacity to handle high-

dimensional data and discern intricate variable interrelationships.
A B

DC

FIGURE 1

Approach and overall findings of microbiome analysis in AP. (A) CONSORT-style diagram showing quality control processing and the number of
remaining samples. (B) Principal variance components analysis of raw taxonomical count data and Voom-SNM corrected data, showing the variance
sources before and after data correction. (C) Phylum abundance of each sample, group by disease stage, color refers to different phylums. (D) ;Measures
of alpha diversity including Shannon’s diversity, and Shimpson diversity demonstrate inconsistent effects of disease type, complete figure is shown in
Supplementary Figure S12, the signal indicating the statistic difference (***p ≤ 0.001; **0.001 < p ≤ 0.01; *0.01 < p ≤ 0.05, NS, 0.5 < p).
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By integrating these methods, our aim was to construct a robust,

accurate, and interpretable predictive model for AP stages, a

standard practice in microbiomics for classification tasks. Datasets

were randomly divided into 7:3 for training and test sets, with

training details in Methods. Initially, class imbalances in dataset

(19:58:43 in health:PAP: SAP) resulted in poor performance with

average accuracy of 5 cross-validations under 0.5 in all models.

Thus, we upsampled cases from the minority classes with

replacement until each class had approximately the same number,

and retrained models.

Meanwhile, we employ other 3 feature representation methods

on raw 6663 ASVs to enrich the interpretability of the data and

elucidate the functioning and potential impacts of microbial

communities. The PhilR (Phylogenetic Isometric Log-Ratio)

approach transforms species abundance data into balanced

evolutionary ratios using phylogenetic trees, providing a more

stable and interpretable feature space that captures the true

biological signals within the evolutionary context. KEGG

Orthology (KO) features, derived from the KEGG database

(Kanehisa et al., 2017), annotate the gene content of the

microbiome to identify genes associated with known metabolic

pathways and biological processes, revealing the functional

potential of microbial communities. Enzyme Commission (EC)
Frontiers in Cellular and Infection Microbiology 06
numbers annotate genes encoding enzymes in the microbiome

genomes, reflecting the enzymatic repertoire and metabolic

activities present within the community.

After applying up-sampling to all four features (ASV/PhilR/

KO/EC), we compared the aforementioned performance metrics.

Upon 3 repetitions, methods such as Gradient Boosting Machine

(gbm), Random Forest (rf), and Logistic Regression (lb)

demonstrated higher average accuracy. Furthermore, we depicted

multi-class ROC and PR curves and computed the corresponding

AUROC and AUPR values. Notably, gbm and lb showed higher

values for these metrics (Figure 2B). Likely due to data sparsity and

interspecies variation in ASV content, the model trained on ASVs

counts had a high AUROC(AUROC = 0.897 in gbm model),

indicating a good separation between classes, but shown lower

Area Under the Precision-Recall Curve AUPR(AUPR < ¡0.85,

Supplementary Figure S10), suggesting that the model’s

performance on predicting the minority class was not as strong,

particularly in cases where the positive class is less prevalent.

Logistic Regression showed to be the best-performing model

according to 5-fold cross-validation accuracy, followed by gbm and

svm with a radial basis function kernel, respectively (Figure 2B). We

then employed a Logistic Regression classifier to define reliable

biomarkers of AP stage based on a training set consist 70% of whole
A

B C

FIGURE 2

Machine learning approaches to classify disease stages. (A) Principal Coordinate Analysis of Samples by disease stage. Ordination, where
compositionally related samples are co-localized, provides clear visual evidence for a significant effect of disease stages(p ¡ 0.001 ADONIS).
(B) Accuracy of different models applied to classification tasks, ranked by mean accuracy. Models included random forest (RF), support vector
machine (SVM) (radial and linear kernels), gradient boosting machine(GBM) and logit boost (LB). (C) Receiver operator curves for ASVs, phylogenetic
node balances (PhILR), KEGG orthologies (KO) and Enzyme commission(EC) trained Logit boost models. The integrated area under the receiver
operator curve (AUROC) for each model is provided in the bottom right corner, with higher AUROC values indicating better model performance.
Certain AUROC of each class are provided in Supplementary Table. Lines are colored by representative method.
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dataset. This model exhibits the highest performance on the philR

features (multiclass AUROC = 0.967, Figure 2C), indicating that the

additional evolutionary node information confers enhanced its

predictive power .(Figure 2C) 10-fold cross validation was applied to

determine the optimal number of each features included in the model

required to minimize error rates. We noted that even with as few as 14

ASVs, 0.3% classification error rates could be obtained, emphasizing

the high predictive power of the top features. (Supplementary Figure

S5) To visualize these, a phylogenetic tree of the 14 most informative

ASVs was created. Among these ASVs, we scrutinized the abundance

of the Lactobacillus genus, a group frequently encountered in food and

cause contamination in microbiota analysis, ensuring that the

contamination from food-borne bacteria was not shown in our

features. To validate the result under varying data cleaning

processes, we also compare the number of key ASVs from RF model

training on dataset with different filtering criteria (Supplementary

Figure S12). 10 key ASVs were commonly recognized from 3 filtered

data indicating the robustness of our data processing.

The most predictive ASV, as indicated by the mean decrease in

GINI coefficient (Figure 3A), belonged to Enterococcus faecalis, which

also showed significant differences in raw ASV counts (Figure 3C). It is

a commonly reported multidrug-resistant pathogen that is prevalent

in secondary apical periodontitis (SAP) in previous studies (Peciuliene
Frontiers in Cellular and Infection Microbiology 07
et al., 2001; Johnson et al., 2006; Wang et al., 2012). However, its role

has been controversial in differential 16SrRNA-sequencing-based

analysis (Bouillaguet et al., 2018; Qian et al., 2019), and our analysis

has now provided further confirmation across datasets. It is

recognized that E.faecalis serves as the strongest indicator signal for

distinguishing different stages of apical periodontitis, especially in

SAP, where it exhibits significantly high abundance (Figures 3B, C).

Cutibacterium acnes (C.acnes) andDelftia acidovorans(D.acidovorans)

also displayed a similar characteristic of a substantial increase in

abundance in SAP. (Figure 3C) This suggests that treatment failures in

root canal therapy may be closely related to the persistent presence of

those bacteria, which could be responsible for the development of SAP

during the root canal filling process. In recent transcriptome-based

differential analyses of primary and secondary AP, C.acnes

unexpectedly contributed the largest number of differential genes at

the transcriptomic level (Pinheiro et al., 2022). This specie was also

highlighted as an active member of the persistent community in a RT-

PCR based study (Nardello et al., 2020), and popular in root canal after

chemomechanical procedures (Nardello et al., 2022). Remarkably, our

batch-corrected data endorses D. acidovorans as a crucial contributor

to the progression of SAP, as proposed in Anderson et al. (2012),

while some studies have recognized its protective role in root caries

(Abram et al., 2022).
A B

C

FIGURE 3

Reproducible Signature of the AP-Associated Apical Microbiome. (A) Phylogenetic tree of informative ASVs (n = 14) demonstrates highly informative
clades. Size of circle correlates with mean decrease in GINI coefficient and circles are colored by phylum. The heatmap around phylogenetic tree
showed CLR abundance of the ASVs in each stage, continuous colors from yellow to blue refer to CLR abundance from high to low. (B) key KO
features enriched and their abundance, the y-axis corresponds to KO features. Boxlots are colored by disease stages, those features are ranked by
p-values. Raw data is provided in Supplementary Table S3. (C) CLR abundances for selected key species E. faeclis, B. cepacia, C. acnes and F.
nucleatum in 3 disease stages (***p ≤ 0.001; **0.001 < p ≤ 0.01; *0.01 < p ≤ 0.05, NS, 0.5 < p).
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Prevotellaceae family, with the highest proportion in ASVs

features, was once again highlighted in PhILR features.

(Figure 3A; Supplementary Figure S5) Previous studies have also

emphasized the role of Prevotellaceae in periodontal inflammation

(Könönen et al., 2022). Within this family, Prevotella nigrescens

and Prevotella oris, initially isolated from periodontal pockets and

considered important pathogenic bacteria in periodontal

inflammation, were found to have a significant impact on the

progression of apical periodontitis in our analysis. Notably,

Alloprevotella tannerae from the Prevotellaceae family, previously

reported to induce dentin caries, showed an increase in prevalence

in primary apical periodontitis but a reduction in SAP. This

suggests that these bacteria play a role in the pathogenesis of

primary apical periodontitis, but they are effectively cleared by

root canal treatment. Similarly, bacteria such as Burkholderia

cepacia and Fusobacterium nucleatum, which can be effectively

managed by root canal treatment, were enriched in PAP and have

been previously detected in periapical abscess samples (Pinheiro

et al., 2022). The role of Fusobacterium has been emphasized in

primary infections at the transcriptomic level in a recent study, in

which the Fusobacterium nucleatum carries over 10 antibiotic

resistance genes homologs in multiple cases (Pinheiro et al., 2022).

Utilizing KO and EC features, we were able to perform an

enrichment pathway analysis that honed in on particular metabolic

pathways of interest. Our findings notably spotlight the

phosphotransferase system (PTS), a pathway familiarly

documented in biofilm of Streptococcus and Enterococcus

species, which is intricately connected to the etiology of dental

caries (Suriyanarayanan et al., 2018) (Figure 3B; Supplementary

Table S2). This discovery is in harmony with our cross-validation

results concerning Streptococcus and Enterococcus in the ASVs

feature. Complementing this, our data derived from EC features

also showed a significant enrichment in fructose and mannose

metabolism (Supplementary Table S3). These pathway-based

analyses collectively underscore the significance of carbohydrate

metabolism pathways, highlighting their pivotal role in the

pathogenesis of AP and indicating potential biological mechanisms.
4 Discussion

The intricate interplay between the microbiome and AP has long

been a subject of scientific intrigue. However, the presence of

variability in experimental design and quantitative assessment has

added layers of complexity, obscuring a comprehensive

understanding of this dental malady. In this exploratory voyage, we

embarked on a methodological refinement analysis, reexamining four

microbiota studies encompassing 120 tooth samples from afflicted

teeth (with or without root canal treatment) and healthy teeth. Our

relentless quest aimed to eliminate batch effects, banishing data from

incongruous control groups. Employing high-predictive machine

learning models, we unveiled microbial signatures capable of

predicting diverse disease types. In addition, our odyssey unearthed

hitherto less-recognized culprits in the genesis of secondary apical

periodontitis, offering tantalizing prospects for targeted therapeutic

interventions. Furthermore, our analysis identified pathways, such as
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the phosphotransferase system and peptidoglycan biosynthesis,

enriched during the progression of AP. This revelation extends the

boundaries of our comprehension of AP and lays the foundation for

precision-focused therapeutic strategies.

Our comprehensive analysis has harmonized various datasets,

aligning control setups and analysis standards. As previously

reported, datasets from different studies included various bias

from experimental contamination or batch effect (Salter et al.,

2014; Glassing et al., 2016; Poore et al., 2020). We have

uncovered significant technical and experimental differences

existing in previous study on AP. By reducing these variations, we

conducted a more robust analysis, thereby we could perform

analysis on a more reliable dataset. We demonstrated that the

phylum abundance showed not significant shift in all case of AP

progression, yet the diversity of species is reduced with the AP

progression. This result indicating that the PAP and SAP may stem

from an imbalance in the canal microbiota, causing a small number

of bacteria to dominate and trigger infections, which may play a

core microbial community of the disease.

It is important to note that we found simple variance analysis like

PCA or Variance analysis consistently insufficient in providing adequate

explanatory power, regardless of whether contamination was removed

or not. Traditional variance analysis fell short in elucidating the

differences across disease stages, which leads us to apply machine

learning methods to explore and process the data. We used

upsampling to handle imbalanced data and identified Logistic

Regression (lb) as a suitable model through comparison. Different

feature representation methods effectively reduced dimensionality

while providing richer information, which have enhanced the

transferability and repeatability of the conclusions drawn before

(Bisanz et al., 2019). In this case, the adoption of techniques like

PhILR and KO empowered us to unearth potential structured

biological features within the ASV data, facilitating downstream analyses.

In contrast to traditional differential analysis, our machine

learning approach enabled us to reverse-engineer the most

decisive features. By employing advanced models, we pinpointed

14 ASVs that spanned different datasets, addressing the previous

uncertainty regarding the importance of E. faecalis in SAP. Our

analysis also shed light on less-recognized culprits, including

C. acnes and D. acidovorans, which exhibited substantial increases

in abundance exclusively in SAP. Both of these bacteria have been

found to be associated with SAP in culture-based and PCR research

(Anderson et al., 2012; Nardello et al., 2020; Pinheiro et al., 2022),

but have long been overlooked in 16S rRNA-based studies. Our re-

identification of them here underscores the necessity of unbiased

meta-analyses that eliminate experimental errors. The core species

identified through reverse engineering should not be understood as

the sole cause of all cases of PAP or SAP. In many study, the

presence of species like E. faecalis is not guaranteed. Understanding

these core species should be framed as their alterations significantly

increasing the probability of the disease or affecting its progression.

One remarkable finding is that C. acnes, E. faecalis, and D.

acidovorans have been identified here as the most influential

bacteria contributing to root canal failures. A common

characteristic of these bacteria is their potential to form complex

biofilms and carry antibiotic resistance genes (Pinheiro et al., 2022).
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Our research supports the conclusion that while E. faecalis is often

associated with the formation of biofilms leading to apical

periodontitis (AP), other species forming biofilms have been found

in cases of SAP without E. faecalis. This suggests that the occurrence

of SAP is not necessarily due to a specific species like E. faecalis, but

rather more likely due to the presence of stubborn, difficult-to-

remove biofilms. It is noteworthy that the importance of C. acnes

and D. acidovorans may have been previously underestimated. The

differential abundance might be attributed to the environmental

conditions within necrotic dental pulps, which favor the growth of

strict anaerobes. These anaerobes can ferment amino acids/peptides

from necrotic pulp tissue and periradicular fluid (Mombelli and

Décaillet, 2011). Conversely, the microbial composition might be

influenced by changes in the root canal ecology post-treatment,

leading to persistent infections (i.e., bacteria surviving from the

primary infection) or secondary infections (i.e., invasion of oral

microbes through coronal microleakages) (Siqueira et al., 2014).

Pathway analysis are consistent with the potential biofilm

formation mentioned above . The enrichment of the

phosphotransferase system (PTS) and the peptidoglycan

biosynthesis pathway during the progression of apical

periodontitis are aligned with previous reports of these pathways’

association with dental caries and suggest their involvement in the

disease’s microbial community. Notably, these pathways are

associated with sugar metabolism and biofilm/plaque formation,

underscoring their relevance in the disease context (Chávez de Paz

et al., 2007). Our research suggests a possibility that bacteria with

high PTS activity and robust sugar metabolism may more easily

form stubborn biofilms in the root canal environment. These

biofilms could resist mechanical cleaning during primary apical

periodontitis (PAP) treatment, leading to bacterial regrowth and the

development of secondary apical periodontitis (SAP).

Fusobacterium nucleatum has been suggested as a keystone

species in the development of periodontal disease. In the field of

endodontics, F. nucleatum has been linked to primary infections,

particularly in cases presenting clinical symptoms (Bouillaguet

et al., 2018). Future transcriptomic analyses should explore the

metabolism of Fusobacterium spp. in instances of acute

endodontic infections.

Our findings offer new insights into the microbial landscape of

AP and open avenues for precision-focused therapeutic

interventions. By identifying microbial signatures and pathways

associated with disease progression, we lay the foundation for

targeted approaches to managing AP, potentially reducing the

risk of treatment failures and improving patient outcomes. It is

essential to acknowledge that the statistical power of our meta-

analysis was constrained by the substantial amount of missing data

in published studies. Efforts to minimize such gaps in future

research are imperative.
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Vengerfeldt, V., Špilka, K., Saag, M., Preem, J.-K., Oopkaup, K., Truu, J., et al. (2014).
Highly diverse microbiota in dental root canals in cases of apical periodontitis (data of
illumina sequencing). J. endodontics 40, 1778–1783. doi: 10.1016/j.joen.2014.06.017

Vieira, A. R., Siqueira, J. F. Jr., Ricucci, D., and Lopes, W. S. (2012). Dentinal tubule
infection as the cause of recurrent disease and late endodontic treatment failure: a case
report. J. endodontics 38, 250–254. doi: 10.1016/j.joen.2011.10.019

Wang, Z., Yang, G., Ren, B., Gao, Y., Peng, X., Li, M., et al. (2021). Effect of
antibacterial root canal sealer on persistent apical periodontitis. Antibiotics 10, 741.
doi: 10.3390/antibiotics10060741

Wang, Q.-Q., Zhang, C.-F., Chu, C.-H., and Zhu, X.-F. (2012). Prevalence of
enterococcus faecalis in saliva and filled root canals of teeth associated with apical
periodontitis. Int. J. Oral. Sci. 4, 19–23. doi: 10.1038/ijos.2012.17

Zhang, J.-L., Yun, J., Yue, L., Du, W., and Liang, Y.-H. (2022). Distinctive microbiota
distribution from healthy oral to post-treatment apical periodontitis. Front. Cell.
Infection Microbiol. 1327. doi: 10.3389/fcimb.2022.980157
frontiersin.org

https://doi.org/10.1074/mcp.RA117.000461
https://doi.org/10.5005/jp-journals-10024-1986
https://doi.org/10.5005/jp-journals-10024-1986
https://doi.org/10.1002/gepi.20211
https://doi.org/10.1016/j.joen.2014.06.017
https://doi.org/10.1016/j.joen.2011.10.019
https://doi.org/10.3390/antibiotics10060741
https://doi.org/10.1038/ijos.2012.17
https://doi.org/10.3389/fcimb.2022.980157
https://doi.org/10.3389/fcimb.2024.1393108
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

	High-performing cross-dataset machine learning reveals robust microbiota alteration in secondary apical periodontitis
	1 Introduction
	2 Materials and methods
	2.1 Study selection
	2.2 Data retrieval and ASV picking
	2.3 PVCA and batch effect elimination
	2.4 Diversity analysis
	2.5 Models selection and evaluation
	2.6 Subsampling for class imbalances

	3 Results
	3.1 Study selection and characteristics
	3.2 Selected studies showed biased batch effort
	3.3 Apical periodontitis reduce microbial diversity
	3.4 Predictive microbial responses to AP stage

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


